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Abstract : In this paper, the convection-diffusion equation with Dirichlet’s type
boundary conditions is solved numerically by cubic B-spline quasi-interpolation.
The numerical scheme, obtained by using the derivative of the quasi-interpolation
to approximate the spatial derivative of the dependent variable and first order
forward difference to approximate the time derivative of the dependent variable.
The developed method is tested on various problems and the numerical results
are reported in tabular and graphical form. Easy and economical implementation
process is the strength of the scheme. The results of numerical experiments are
compared with analytical solutions by calculating errors L2, L∞-norms.
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1 Introduction

The term convection means the movement of molecules within fluids, whereas,
diffusion describes the spread of particles through random motion from regions of
higher concentration to regions of lower concentration. Convection-diffusion equa-
tions model a variety of physical phenomena. The numerical solution of convection-
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diffusion transport problems arises in many important applications in science and
engineering. Characteristic examples are the heat transfer through a permeable
medium, the transport of a pollutant through the atmosphere or the transport of a
fluid through the porous medium. Various numerical techniques have been devel-
oped and compared for solving the one dimensional convection-diffusion equation
with constant coefficient [1, 2, 3, 4, 5, 6]. The piecewise polynomial, especially B-
spline, has become a fundamental tool for numerical methods to get the solution
of the differential equations [7, 8, 9, 10, 11]. The numerical solutions of partial dif-
ferential equations by B-spline quasi-interpolation were introduced in [12, 13, 14].
B-splines in the collocation and Galerkin methods are introduced for the numerical
solutions of the convection-diffusion equation in [15, 16]. In this paper, we provide
a numerical scheme to solve convection-diffusion equation using the derivative of
the cubic B-spline quasi-interpolation to approximate the spatial derivative of the
differential equations and utilize first order forward difference to approximate the
time derivative. The convection-diffusion equation is given by

ut + ǫux = γuxx, 0 < x < L, 0 < t ≤ T (1.1)

with initial condition
u(x, 0) = φ(x) (1.2)

and boundary conditions are of the form

u(0, t) = g0(t), u(1, t) = g1(t), t ∈ [0, T ] (1.3)

where the parameters γ, ǫ > 0 are the viscosity coefficient and phase speed re-
spectively and subscripts t and x denote differentiation. g0, g1 and φ are known
functions with sufficient smoothness. This paper is organized as follows. In Sec-
tion 2, we obtain the numerical schemes using cubic B-spline quasi-interpolation
to solve convection-diffusion equation (1.1). Numerical experiments for various
test problems are solved to assess the accuracy of the technique and the maximum
absolute errors will be presented in Section 3. Finally, we give some concluding
remarks in Section 4.

2 Numerical Scheme Using Cubic B-Spline Quasi-

Interpolant

Given a bounded interval I = [0, L], denoted by Sd(Xn) the space of splines of
degree d and class Cd−1 on the uniform partition Xn = {xi = ih, i = 0, 1, . . . , n}
with meshlength h = L/n. Let a basis of Sd(Xn) be {Bj,d,r, h = 1, 2, . . . , n+ d}
where Bj,d,r is the j th B-spline of degree d for the knot sequence r := (ri)

n+d
i=−d,

r−d = r−d+1 = . . . = r−1 = 0, ri = xi, 0 ≤ i ≤ n and rn = rn+1 = . . . = rn+d =
L. Since the cubic spline has become the most commonly used spline we use cubic
B-spline quasi-interpolation in this paper. Discretizing Eq (1.1) in time, we get

uk+1
i = uk

i + τ(γ(uxx)
k
i − ǫ(ux)

k
i ) (2.1)
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where uk
i is the approximation of the value u(x, t) at (xi, tk), tk = kτ , and τ is the

time step. Then for fixed k, we can get the cubic quasi-interpolation as follows
[17]:

Q3u
k =

n+3
∑

j=1

µj(u
k)Bj,3,r(x) (2.2)

where uk = u(x, tk) and the coefficient functionals are:

µ1(u
k) = uk

0

µ2(u
k) =

1

18
(7uk

0 + 18uk
1 − 9uk

2 + 2uk
3)

µj(u
k) =

1

6
(−uk

j−3 + 8uk
j−2 − uk

j−1) , 3 ≤ j ≤ n+ 1

µn+2(u
k) =

1

18
(2uk

n−3 − 9uk
n−2 + 18uk

n−1 + 7uk
n)

µn+3(u
k) = uk

n.

From [17], we have the error estimate

||Uk −Q3u
k||∞ = O(h4). (2.3)

For approximate derivatives of uk by derivatives of Q3u
k up to the order h3 at xi

we can evaluate the value of uk at xi by:

(Q3u
k
i )

′

=

n+3
∑

j=1

µj(u
k)B

′

j(xi), (Q3u
k
i )

′′

=

n+3
∑

j=1

µj(u
k)B

′′

j (xi).

We set

Uk = (uk
0 , u

k
1 , . . . , u

k
n)

T ,

Uk
x = ((uk

0)
′

, (uk
1)

′

, . . . , (uk
n)

′

),

Uk
xx = ((uk

0)
′′

, (uk
1)

′′

, . . . , (uk
n)

′′

),

where
(uk

i )
′

= (Q3u
k
i )

′

, (uk
i )

′′

= (Q3u
k
i )

′′

, i = 0, 1, . . . , n.

By solution of the linear systems

(uk
i )

′

=

n+3
∑

j=1

µj(u
k)B

′

j(xi), i = 0, 1, . . . , n

(uk
i )

′′

=

n+3
∑

j=1

µj(u
k)B

′′

j (xi), i = 0, 1, . . . , n,

we obtain

Uk
x =

1

h
D1U

k, Uk
xx =

1

h2
D2U

k (2.4)
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where D1, D2 ∈ R
(n+1)×(n+1) are obtain as follows:

D1=
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From the initial conditions (1.2) and boundary conditions (1.3), we can compute
the numerical solution of Eq. (1.1) step by step using the scheme (2.1) and formulas
(2.4).

3 Numerical Examples

In this section we test our scheme on some examples. We tested the accuracy
of this method for different values of γ and ǫ. The versatility and the accuracy of
the proposed method is measured using the L2 and L∞ error norms for the test
problems. The error norms are defined as

L2 =

√

√

√

√h

n
∑

j=0

|(uexact
j − unumerical

j )2| and L∞ = max
j

|uexact
j − unumerical

j |.

Example 3.1 ([15]). Consider Equation (1.1) with the initial condition

φ(x) = eαx.

The exact solution is given by

u(x, t) = eαx+βt.
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The boundary conditions can be obtained from the exact solution. First, we take
ǫ = 0.1, γ = 0.02, α = 1.17712434446770, β = −0.09, h = 0.01, τ = 0.001, T =
5 and L = 1. The absolute errors for some values of t and error norms are
reported in Table 1. The exact solution is shown in Figure 1 and the estimated
solution is shown in Figure 2. We drew absolute error function in Figure 3, to show
how little its magnitude is. The exact and numerical solutions are also depicted
with ǫ = 3.5, γ = 0.022, h = 0.01, τ = 0.001, α = 0.02854797991928, β =
−0.0999, T = 5 and L = 1. in Figure 4 and Figure 5 respectively. The absolute
errors for some values of t and error norms are reported in Table 2. Absolute error
between the numerical and exact solution is also depicted at all mesh points in
Figure 6.

Table 1: Errors of (3.1) using ǫ = 0.1, γ = 0.02, α = 1.17712434446770, β =
−0.09, h = 0.01, τ = 0.001, T = 5, L = 1

t = 1 t = 2 t = 3 t = 4 t = 5
x = 0.1 2.1506e-06 2.8217e-06 3.1023e-06 3.1872e-06 3.1585e-06
x = 0.5 7.0601e-06 1.2276e-05 1.5562e-05 1.7383e-05 1.8176e-05
x = 0.9 7.6594e-06 1.1643e-05 1.4165e-05 1.5637e-05 1.6307e-05

L2 6.4790e-07 1.0719e-06 1.3410e-06 1.4942e-06 1.5632e-06
L∞ 9.1107e-06 1.5204e-05 1.9302e-05 2.1738e-05 2.2909e-05

Table 2: Errors of (3.1) using ǫ = 3.5, γ = 0.022, α = 0.02854797991928, β =
−0.0999, h = 0.01, τ = 0.001, T = 5, L = 1

t = 1 t = 2 t = 3 t = 4 t = 5
x = 0.1 1.1646e-07 1.0539e-07 9.5371e-08 8.6304e-08 7.8099e-08
x = 0.5 6.4136e-07 5.8039e-07 5.2521e-07 4.7527e-07 4.3009e-07
x = 0.9 1.1783e-06 1.0663e-06 9.6490e-07 8.7317e-07 7.9015e-07

L2 7.5052e-08 6.7917e-08 6.1460e-08 5.5617e-08 5.0329e-08
L∞ 1.2803e-06 1.1586e-06 1.0484e-06 9.4875e-07 8.5855e-07

Example 3.2 ([15]). We consider the initial condition for this example as follows

φ(x) = e
−(x−2)2

80γ .

The exact solution is given by

u(x, t) =

√

20

20 + t
e

−(x−2−ǫt)2

4γ(t+20) .

The boundary conditions can be obtained from the exact solution. In our numer-
ical computation, we take ǫ = 0.8, γ = 0.1, h = 0.01, τ = 0.0001, T = 5 and L = 1.
The absolute errors are reported in Table 3. Approximate and exact solutions are
drawn in Figure 7 and Figure 8 respectively. Absolute error for all mesh point
shown in Figure 9.
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Figure 1: Exact solution of (3.1) using ǫ = 0.1, γ = 0.02, α = 1.17712434446770, β =
−0.09, h = 0.01, τ = 0.001, T = 5, L = 1

Figure 2: Numerical solution of (3.1) using ǫ = 0.1, γ = 0.02, α =
1.17712434446770, β = −0.09, h = 0.01, τ = 0.001, T = 5, L = 1

Figure 3: Absolute error of (3.1) using ǫ = 0.1, γ = 0.02, α = 1.17712434446770, β =
−0.09, h = 0.01, τ = 0.001, T = 5, L = 1



Numerical Solution of Convection-Diffusion Equation ... 605

Figure 4: Exact solution of (3.1) using ǫ = 3.5, γ = 0.022, α = 0.02854797991928, β =
−0.0999, h = 0.01, τ = 0.001, T = 5, L = 1

Figure 5: Numerical solution of (3.1) using ǫ = 3.5, γ = 0.022, α =
0.02854797991928, β = −0.0999, h = 0.01, τ = 0.001, T = 5, L = 1

Figure 6: Absolute error of (3.1) using ǫ = 3.5, γ = 0.022, α = 0.02854797991928, β =
−0.0999, h = 0.01, τ = 0.001, T = 5, L = 1
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Figure 7: Exact solution of (3.2) using ǫ = 0.8, γ = 0.1, h = 0.01, τ = 0.0001, T =
5 and L = 1

Figure 8: Numerical solution of (3.2) using ǫ = 0.8, γ = 0.1, h = 0.01, τ = 0.0001, T =
5 and L = 1

Figure 9: Absolute error of (3.2) using ǫ = 0.8, γ = 0.1, h = 0.01, τ = 0.0001, T =
5 and L = 1
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Table 3: Errors of (3.2) using ǫ = 0.8, γ = 0.1, h = 0.01, τ = 0.0001, T = 5 and L = 1

t = 1 t = 2 t = 3 t = 4 t = 5
x = 0.1 2.5554e-07 3.3519e-07 2.8761e-07 1.9785e-07 1.1726e-07
x = 0.5 7.7590e-07 1.6315e-06 1.6606e-06 1.2651e-06 2.6567e-07
x = 0.9 3.0883e-07 1.4544e-06 1.7161e-06 1.4086e-06 9.4519e-07

L2 5.6389e-08 6.1.3863e-07 1.4937e-07 1.1760e-07 7.6859e-08
L∞ 7.7622e-07 1.9618e-06 2.2098e-06 1.7807e-06 1.1819e-06

Example 3.3 ([15]). In this example, we consider the (1.1) with the initial con-

dition

φ(x) = e
−(x−x0)2

2σ0
2 .

The exact solution is given by

u(x, t) =
σ0

σ
e

−(x−x0−ǫt)2

2σ0

where σ2 = σ2
0 + 2γt. The boundary conditions can be obtained from the exact

solution. First, we take ǫ = 1, γ = 0.01, x0 = −05, σ0 = 0.025, h = 0.01, τ =
0.001, T = 2 and L = 1. The absolute errors for some values of t and error norms

are reported in Table 4. The exact and numerical solution is shown in Figure 10

and Figure 11, respectively. The error function shown in Figure 12. The exact

and numerical solutions are also depicted with ǫ = 0.5, γ = 0.01, x0 = 1, σ0 =
025, h = 0.01, τ = 0.001, T = 6, L = 4 in Figure 13 and Figure 14 respectively.

The absolute errors for some values of and error norms are reported in Table 5.

Absolute error between the numerical and exact solution is also depicted at all

mesh points in Figure 15.

Figure 10: Exact solution of (3.3) using ǫ = 1, γ = 0.01, x0 = −0.5, σ0 = 0.025, h =
0.01, τ = 0.001, T = 2 and L = 1
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Figure 11: Numerical solution of (3.3) using ǫ = 1, γ = 0.01, x0 = −0.5, σ0 = 0.025, h =
0.01, τ = 0.001, T = 2 and L = 1

Figure 12: Absolute error of (3.3) using ǫ = 1, γ = 0.01, x0 = −0.5, σ0 = 0.025, h =
0.01, τ = 0.001, T = 2 and L = 1

Figure 13: Exact solution of (3.3) using ǫ = 0.5, γ = 0.01, x0 = 1, σ0 = 0.25, h =
0.01, τ = 0.001, T = 6 and L = 4
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Figure 14: Numerical solution of (3.3) using ǫ = 0.5, γ = 0.01, x0 = 1, σ0 = 0.25, h =
0.01, τ = 0.001, T = 6 and L = 4

Figure 15: Absolute error of (3.3) using ǫ = 0.5, γ = 0.01, x0 = 1, , σ0 = 0.25, h =
0.01, τ = 0.001, T = 6 and L = 4



610 Thai J. Math. 14 (2016)/ H. Aminikhah and J. Alavi

Table 4: Errors of (3.3) using ǫ = 1, γ = 0.01, x0 = −0.5, σ0 = 0.025, h = 0.01, τ = 0.001, T =

2 and L = 1

t = 0.5 t = 1 t = 1.5 t = 2
x = 0.1 1.8144e-04 4.7594e-05 9.3582e-09 2.3923e-13
x = 0.2 9.2820e-04 2.8199e-04 2.3797e-07 1.1222e-11
x = 0.3 4.4890e-04 4.5771e-04 3.0825e-06 2.9660e-10
x = 0.4 4.7669e-05 5.0619e-04 2.4601e-05 5.4092e-09
x = 0.5 1.4460e-06 2.0176e-03 1.2517e-04 7.1842e-08
x = 0.6 1.3372e-08 1.2396e-03 3.9731e-04 7.0828e-07
x = 0.7 3.8782e-11 8.9995e-04 7.0882e-04 5.2113e-06
x = 0.8 3.7521e-14 1.3376e-03 3.8544e-04 2.8536e-05
x = 0.9 1.3477e-17 5.9735e-04 1.0301e-03 1.1504e-04

L2 3.2786e-05 9.5514e-05 6.4029e-05 6.8806e-06
L∞ 9.4414e-04 2.1034e-03 2.0682e-03 2.5806e-04

Table 5: Errors of (3.3) using ǫ = 0.5, γ = 0.01, x0 = 1, σ0 = 0.25, h = 0.01, τ =

0.001, T = 6 and L = 4

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6
x = 0.5 2.1148e-05 3.3534e-07 2.2440e-09 1.0190e-11 3.7126e-14 1.1739e-16
x = 1 5.5666e-04 8.7226e-05 2.2966e-06 2.6200e-08 1.8511e-10 9.6722e-13
x = 1.5 1.2499e-03 8.4289e-04 1.9575e-04 8.1979e-06 1.4647e-07 1.5421e-09
x = 2 5.6004e-04 1.8280e-03 9.2924e-04 3.2799e-04 2.0487e-05 5.3775e-07
x = 2.5 5.5020e-05 6.9113e-04 2.1162e-03 8.9925e-04 4.6445e-04 4.0761e-05
x = 3 9.1453e-08 1.8141e-04 6.2597e-04 2.2623e-03 8.0872e-04 5.9138e-04
x = 3.5 5.2812e-12 1.2693e-06 3.4891e-04 4.8353e-04 2.3326e-03 6.9051e-04

L2 8.0990e-05 1.2384e-04 1.4893e-04 1.6362e-04 1.6128e-04 1.1192e-04
L∞ 1.3097e-03 1.8976e-03 2.1831e-03 2.3235e-03 2.3878e-03 2.1097e-03

Example 3.4 ([15]). As final test problem, (1.1) has exact solution

u(x, t) =
1√
s
e

−50(x−t)2

s , s = 1 + 200γt

with ǫ = 1, γ = 1, h = 0.02, τ = 0.0001, T = 5, L = 1 and the following initial
condition

φ(x) =
1√
s
e

−50x2

s , s(diffusion number) = 1.

The boundary conditions can be obtained from the exact solution. The exact solu-
tion is shown in Figure 16 and the approximated is shown in Figure 17. Absolute
error is shown in Figure 18. The absolute errors for some values of t and error
norms are reported in Table 6.
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Figure 16: Exact solution of (3.4) using ǫ = 1, γ = 1, h = 0.02, τ = 0.0001, T = 5, L = 1

Figure 17: Numerical solution of (3.4) using ǫ = 1, γ = 1, h = 0.02, τ = 0.0001, T =
5, L = 1

Figure 18: Absolute error of (3.4) using ǫ = 1, γ = 1, h = 0.02, τ = 0.0001, T = 5, L = 1
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Table 6: Errors of (3.4) using ǫ = 1, γ = 1, h = 0.02, τ = 0.0001, T = 5 and L = 1

t = 0.1 t = 1 t = 2 t = 5

x = 0.1 4.4353e-05 1.4759e-07 1.5244e-05 1.8722e-09
x = 0.5 2.6284e-04 6.1066e-07 8.8292e-08 7.7043e-09
x = 0.9 1.0684e-04 2.7987e-07 4.4067e-08 1.6307e-05

L2 2.5970e-05 6.3033e-08 9.2375e-09 8.1088e-10
L∞ 2.6750e-04 6.1978e-07 9.0535e-08 7.9055e-09

4 Conclusions

In this study, the cubic B-spline quasi-interpolation (BSQI) method is used
for solving convection-diffusion equation. The numerical solutions of some test
problems are compared with the exact solutions to convince us that the proposed
scheme of numerical approximation seems to be accurate and dependable. The
implementation of the present method is a very easy, acceptable, and valid scheme.
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