Thai Journal of Mathematics Volume 14 (2016) Number 3 : 591–598

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Regular Weakly Continuous Functions in Ideal Topological Spaces

A. Vadivel 1 and M. Navuluri

Department of Mathematics (FEAT), Annamalai University Annamalainagar, Tamil Nadu-608 002 e-mail: avmaths@gmail.com (A. Vadivel) mohanaraonavuluri@gmail.com (M. Navuluri)

Abstract: In this paper, we study the concepts of I_{rw} -continuity in ideal topological spaces, and obtain several characterizations and some properties of these functions. Also, we investigate their relationship with other types of functions.

Keywords : I_{rw} -continuous, I_{rw} -irresolute; quasi regular semiclosed map; almost I_{rw} -continuous; \wp_I -rw-continuous; I_{rw}^* -continuous; I_{rw}^* -closed map. **2010 Mathematics Subject Classification :** 54C10; 54A05.

1 Introduction

A nonempty collection I of subsets of a set X is said to be an ideal on X, if it satisfies the following two properties: (1) $A \in I$ and $B \subseteq A$ imply $B \in I$. (2) $A \in I$ and $B \in I$ imply $A \cup B \in I$. A topological space (X, τ) with an ideal I on X is called an ideal topological space (an ideal space) and is denoted by (X, τ, I) . For an ideal space (X, τ, I) and a subset $A \subseteq X$, $A^*(I) = \{x \in X : U \cap A \notin I \text{ for}$ every $U \in \tau(x)\}$, is local function [1] of A with respect to I and τ . It is well known that $Cl^*(A) = A \cup A^*$ defines a Kuratowski closure operator for a topology τ^* finer than τ [2] and $Int^*(A)$ will denote the interior of A in (X, τ^*) . In this paper, we introduce and investigate the notions of I_{rw} -continuity, almost I_{rw} -continuity and quasi *-rs-normal spaces in ideal topological spaces. Also, we characterize quasi *-rs-normal spaces in terms of I_{rw} -open sets.

Copyright 2016 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

By a space, we always mean a topological space (X, τ) on which no separation axioms are assumed unless explicitly stated. In a space (X, τ) , the closure and the interior of a subset A of X will be denoted by Cl(A) and Int(A), respectively. A subset A of a space (X, τ) is said to be regular-open [3] (resp. regular-closed, α -open [4]) if A = Int(Cl(A)) (resp. $A = Cl(Int(A)), A \subseteq Int(Cl(Int(A))))$. The family of all regular-open (resp. regular-closed) subsets of a space (X, τ) is denoted by RO(X) (resp. RC(X)). Finite union of regular open sets in (X, τ) is π -open [5] in (X, τ) . The complement of a π -open set in (X, τ) is π -closed in (X,τ) . The family of all α -open sets in (X,τ) denoted by τ^{α} is a topology on X finer than τ . The closure of A in (X, τ^{α}) is denoted by $Cl_{\alpha}(A)$. A subset A of a space (X, τ) is said to be regular semiopen [6] if there is a regular open set U such that $U \subseteq A \subseteq Cl(U)$. A subset A of a space (X, τ) is said to be rwclosed [7] if $Cl(A) \subset U$ whenever $A \subseteq U$ and U is regular semiopen. A is said to be rw-open (resp. g-open) if X - A is rw-closed (resp. g-closed). A function $f:(X,\tau)\to (Y,\sigma)$ is R-map [8] (resp. completely continuous [9]) if $f^{-1}(V)$ is regular closed in (X, τ) for every regular closed (resp. closed) set V of Y. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be *rw*-continuous [7] if $f^{-1}(A)$ is *rw*-closed in (X,τ) for every $A \in \sigma$. A space (X,τ) is said to be quasi-normal [5] if for disjoint π -closed sets F_1 and F_2 there exist disjoint open sets U_1 , U_2 such that $F_1 \subseteq U_1$ and $F_2 \subseteq U_2$. A subset A of an ideal space (X, τ, I) is *-perfect [10] (resp. *-closed [11]) if $A = A^*$ (resp. $A^* \subseteq A$). A subset A of an ideal space (X, τ, I) is I_q -closed [12] if $A^* \subseteq U$ whenever U is open in X and $A \subseteq U$. An ideal I is said to be completely codense [17] if $PO(X) \cap I = \{\phi\}$, where PO(X)is the family of all pre-open sets in (X, τ) . \mathcal{N} denotes the ideal of all nowhere dense subset in (X, τ) . A function $f: (X, \tau, I) \to (Y, \sigma)$ is *-continuous [15] (resp. I_g -continuous [15]) if $f^{-1}(A)$ is *-closed (resp. I_g -closed) in X for every closed set A of Y. A space (X, τ, I) is said to be *-normal if for any two disjoint closed sets A and B in (X, τ) , there exist disjoint *-open sets U, V such that $A \subseteq U$ and $B \subseteq V$. A subset A of an ideal space (X, τ, I) is said to be a I_{rw} -closed [16] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is regular semiopen. The complement of I_{rw} -closed is said to be I_{rw} -open. The family of all I_{rw} -closed (resp. I_{rw} -open) subsets of a space (X, τ, I) is denoted by IRWC(X) (resp. IRWO(X)).

Lemma 1.1. [14] If (X, τ, I) be an ideal space and I is completely codense, then $\tau^* \subseteq \tau^{\alpha}$.

2 I_{rw} -Continuous Functions

Definition 2.1. A function $f: (X, \tau, I) \to (Y, \sigma)$ is said to be I_{rw} -continuous if $f^{-1}(A)$ is I_{rw} -closed in (X, τ, I) for every closed set A of Y.

Theorem 2.2. For a function $f : (X, \tau, I) \to (Y, \sigma)$, the following hold. 1. If f is rw-continuous, then f is I_{rw} -continuous. 2. If f is I_g -continuous, then f is I_{rw} -continuous.

592

Regular Weakly Continuous Functions in Ideal Topological Spaces

Example 2.3. Let $X = Y = \{a, b, c, d, e\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d\}, \{b, c, d, e\}, X\}, I = \{\phi, \{b\}, \{d\}, \{b, d\}\} \text{ and } \sigma = \{\phi, \{a, c, d, e\}, Y\}.$ Then the identity function $f : (X, \tau, I) \to (Y, \sigma)$ is I_{rw} -continuous but not *rw*-continuous.

Example 2.4. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}, I = \{\phi, \{c\}\}$ and $\sigma = \{\phi, \{b\}, X\}$. Then the identity function $g : (X, \tau, I) \to (Y, \sigma)$ is I_{rw} continuous but not I_g -continuous.

Definition 2.5. A function $f: (X, \tau, I) \to (Y, \sigma, I)$ is said to be I_{rw} -irresolute if $f^{-1}(A)$ is I_{rw} -closed in (X, τ, I) for every I_{rw} -closed set A of (Y, σ, I) .

Example 2.6. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}, I = \{\phi, \{c\}\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Let $f : (X, \tau, I) \to (Y, \sigma, I)$ be the identity map. Then f is I_{rw} -irresolute.

Definition 2.7. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be *quasi regular semi*closed if f(A) is regular semiclosed in (Y, σ) for every regular semiclosed set A in (X, τ) .

Example 2.8. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{c\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity map. Then f is quasi regular semiclosed.

Theorem 2.9. If $f : (X, \tau, I) \to (Y, \sigma, I)$ is I_{rw} -continuous and quasi regular semiclosed, then f is I_{rw} -irresolute.

Proof. Assume that A is I_{rw} -closed in Y. Let $f^{-1}(A) \subseteq U$, where U is regular semiopen in X. Then $(X-U) \subseteq f^{-1}(Y-A)$ and hence $f(X-U) \subseteq Y-A$. Since f is quasi regular semiclosed, f(X-U) is regular semiclosed. Then, since Y-Ais I_{rw} -open. By Theorem 2.9 in [16], $f(X-U) \subseteq Int^*(Y-A) = Y - Cl^*(A)$. Thus, $f^{-1}(Cl^*(A)) \subseteq U$. Since f is I_{rw} -continuous, $f^{-1}(Cl^*(A))$ is I_{rw} -closed. Therefore, $Cl^*(f^{-1}(Cl^*(A))) \subseteq U$ and hence $Cl^*(f^{-1}(A)) \subseteq Cl^*(f^{-1}(Cl^*(A))) \subseteq U$ which proves that $f^{-1}(A)$ is I_{rw} -closed and therefore f is I_{rw} -irresolute.

Definition 2.10. A function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be almost I_{rw} continuous if $f^{-1}(A)$ is I_{rw} -closed in (X, τ, I) for every $A \in RC(Y)$.

Example 2.11. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}, I = \{\phi, \{c\}\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Let $f : (X, \tau, I) \to (Y, \sigma)$ be the identity map. Then f is almost I_{rw} -continuous.

Theorem 2.12. For a function $f : (X, \tau, I) \to (Y, \sigma)$, the following are equivalent. 1. f is almost I_{rw} -continuous.

2. $f^{-1}(A) \in IRWO(X)$ for every $A \in RO(Y)$.

3. $f^{-1}(Int(Cl(A))) \in IRWO(X)$ for every $A \in \sigma$.

4. $f^{-1}(Cl(Int(A))) \in IRWC(X)$ for every closed set A of Y.

Proof. (1) ⇔ (2) Obvious. (2) ⇔ (3) Suppose $A \in RO(Y)$, we have A = Int(Cl(A)) and $f^{-1}(Int(Cl(A))) \in IRWO(X)$. Conversely, suppose $A \in \sigma$, we have $Int(Cl(A)) \in RO(Y)$ and $f^{-1}(Int(Cl(A))) \in IRWO(X)$. (3) ⇔ (4) Let A be a closed set in Y. Then $Y - A \in \sigma$. We have $f^{-1}(Int(Cl(Y - A))) = f^{-1}(Y - (Cl(Int(A)))) = X - f^{-1}(Cl(Int(A))) \in IRWO(X)$. Hence, $f^{-1}(Int(Cl(A))) \in IRWC(X)$. Converse can be obtained similarly. \Box

Theorem 2.13. The following hold for the functions $f : (X, \tau, I) \to (Y, \sigma, J)$ and $g : (Y, \sigma, J) \to (Z, \mu)$. Then

- 1. gof is I_{rw} -continuous, if f is almost I_{rw} -continuous and g is completely continuous.
- 2. gof is I_{rw} -continuous, if f is I_{rw} -continuous and g is continuous.
- 3. gof is I_{rw} -continuous, if f is I_{rw} -irresolute and g is I_{rw} -continuous.
- 4. gof is almost I_{rw} -continuous, if f is almost I_{rw} -continuous and g is R-map.
- 5. gof is almost I_{rw} -continuous, if f is I_{rw} -irresolute and g is almost I_{rw} continuous.

Definition 2.14. A function $f: (X, \tau, I) \to (Y, \sigma)$ is said to be \wp_I -rw-continuous if $f^{-1}(A)$ is \wp_I -rw-set in (X, τ, I) for every closed set A of Y.

Theorem 2.15. A function $f : (X, \tau, I) \to (Y, \sigma)$ is *-continuous if and only if it is \wp_I -rw-continuous and I_{rw} -continuous.

Proof. This is an immediate consequence of Theorem 2.14. in [16].

Remark 2.16. The notions of \wp_I -rw-continuity and I_{rw} -continuity are independent as shown in the following example.

Example 2.17. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, \sigma = \{\phi, \{c\}, \{a, b\}, X\}, \gamma = \{\phi, \{b\}\}$ and $I = \{\phi, \{c\}\}$. Then

- 1. The identity function $f: (X, \tau, I) \to (X, \gamma)$ is \wp_I -rw-continuous but not I_{rw} -continuous.
- 2. The identity function $g: (X, \tau, I) \to (X, \sigma)$ is I_{rw} -continuous but not \wp_{I} rw-continuous.

3 Quasi *-*rs*-Normal Spaces

Definition 3.1. A space (X, τ, I) is said to be *quasi* *-*rs*-normal if for any two disjoint regular semiclosed sets A and B in (X, τ) , there exist disjoint *-open sets U, V such that $A \subseteq U$ and $B \subseteq V$.

Example 3.2. Let $X = \{a, b, c\}, \tau = \{\phi, \{c\}, \{a, b\}, X\}$ and $I = \{\phi, \{c\}\}$. Then regular semiopen sets are $\phi, \{c\}, \{a, b\}, X$ and *-open sets are $\phi, \{c\}, \{a, b\}, X$. Let $A = \{c\}$ and $B = \{a, b\}$. Clearly, the space (X, τ, I) is quasi *-rs-normal.

594

Regular Weakly Continuous Functions in Ideal Topological Spaces

Theorem 3.3. Let (X, τ, I) be an ideal space. Then the following are equivalent.

- 1. (X, τ, I) is quasi *-rs-normal.
- 2. For every pair of disjoint regular semiclosed sets A and B, there exist disjoint I_q -open sets U, V such that $A \subseteq U$ and $B \subseteq V$.
- 3. For every pair of disjoint regular semiclosed sets A and B, there exist disjoint I_{rw} -open sets U, V such that $A \subseteq U$ and $B \subseteq V$.
- 4. For each regular semiclosed set A and for each regular semiopen set V containing A, there exists an I_{rw} -open set U such that $A \subseteq U \subseteq Cl^*(U) \subseteq V$.
- 5. For each rw-closed set A and for each rw-open set V containing A, there exists an *-open set U such that $A \subseteq U \subseteq Cl^*(U) \subseteq V$.

Proof. It is obvious that $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$. $(3) \Rightarrow (4)$: Suppose that A is regular semiclosed and V is a regular semiopen set containing A. Then $A \cap V^c = \phi$. By assumption, there exist I_{rw} -open sets U and W such that $A \subseteq U$, $V^c \subseteq W$. Since V^c is regular semiclosed and W is I_{rw} -open, by Theorem 2.9 in [16], $V^c \subseteq Int^*(W)$ and so $(Int^*(W))^c \subseteq V$. Again, $U \cap W = \phi$ implies that $U \cap Int^*(W) = \phi$ and so $Cl^*(U) \subseteq (Int^*(W))^c \subseteq V$. Hence, U is the required I_{rw} -open set such that $A \subseteq U \subseteq Cl^*(U) \subseteq V$.

 $(4) \Rightarrow (5)$: Let A be a regular semiclosed set and V be a regular semiopen set such that $A \subseteq V$. By hypothesis, there exist I_{rw} -open set W such that $A \subseteq W \subseteq$ $Cl^*(W) \subseteq V$. By Theorem 2.9 in [16], $A \subseteq Int^*(W)$. If $U = Int^*(W)$, then U is a *-open set and $A \subseteq U \subseteq Cl^*(U) \subseteq Cl^*(W) \subseteq V$. Therefore, $A \subseteq U \subseteq Cl^*(U) \subseteq V$.

 $(5) \Rightarrow (1)$: Let A and B be disjoint regular semiclosed sets. Then B^c is a regular semiopen set containing A. By assumption, there exists an *-open set U such that $A \subseteq U \subseteq Cl^*(U) \subseteq B^c$. If $V = (Cl^*(U))^c$, then U and V are disjoint *-open sets such that $A \subseteq U$ and $B \subseteq V$.

Definition 3.4. A function $f : (X, \tau, I) \to (Y, \sigma, I)$ is said to be I_{rw}^* -continuous if $f^{-1}(A)$ is I_{rw} -closed in (X, τ, I) for every *-closed set A of (Y, σ, I) .

Example 3.5. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $I = \{\phi, \{c\}\}$. Let $f : (X, \tau, I) \to (X, \tau, I)$ be the identity map. Then f is I_{rw}^* -continuous.

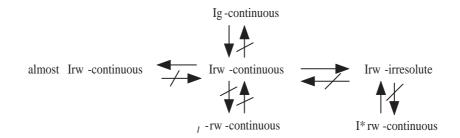
Theorem 3.6. Let $f : (X, \tau, I) \to (Y, \sigma, I)$ be a I_{rw}^* -continuous quasi regular semiclosed injection and Y is quasi *-rs-normal, then X is quasi *-rs-normal.

Proof. Let A and B are disjoint regular semiclosed sets of X. Since f is quasi regular semiclosed injection, f(A) and f(B) are disjoint regular semiclosed sets of Y. By the quasi *-rs-normality of Y, there exist disjoint *-open sets U and V of Y such that $f(A) \subseteq U$ and $f(B) \subseteq V$. Since f is I_{rw}^* -continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint I_{rw} -open sets containing A and B respectively. It follows from Theorem 3.3 that X is quasi *-rs-normal.

Definition 3.7. A function $f : (X, \tau, I) \to (Y, \sigma, I)$ is said to be I_{rw}^* -closed if f(A) is I_{rw} -closed in (Y, σ, I) for every *-closed set A of X.

Example 3.8. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, I = \{\phi, \{c\}\}$ and $\sigma = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Let $f : (X, \tau, I) \to (Y, \sigma, I)$ be the identity map. Then f is I_{rw}^* -closed.

Remark 3.9. From the above definition and some types of continuous functions in ideal topological spaces, we have the following diagram:



Theorem 3.10. Let $f : (X, \tau, I) \to (Y, \sigma, I)$ is a regular semicontinuous (resp. continuous) I_{rw}^* -closed surjection and X is a quasi *-rs-normal (resp. *-normal), then Y is *-rs-normal.

Proof. Let A and B are disjoint closed sets of Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint regular semiclosed (resp. closed) sets of X. Since X is quasi *-rs-normal (resp. *-normal), there exist disjoint *-open sets U and V such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. Now, we set K = Y - f(X - U) and L = Y - f(X - V). Then K and L are I_{rw} -open sets of Y such that $A \subseteq K$, $B \subseteq L$, Since A, B are disjoint closed sets and K and L are I_{rw} -open. We have $A \subseteq Int^*(K)$ and $B \subseteq Int^*(L)$ [13], Theorem 2.10.] and $Int^*(K) \cap Int^*(L) = \phi$. Hence, Y is *-rs-normal. □

Theorem 3.11. Let (X, τ, I) be an ideal space and I is completely codense. Then (X, τ, I) is quasi-normal if and only if it is quasi *-rs-normal.

Proof. Suppose that A and B are disjoint π -closed sets. Since X is quasi-normal, there exist disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$. But every open (resp. π -closed) set is *-open (resp. regular semiclosed) set and hence, quasi *-*rs*-normal.

Conversely, suppose that A and B are disjoint π -closed sets of X. Then there exist disjoint *-open sets U and V such that $A \subseteq U$ and $B \subseteq V$. Since I is completely codense. By Lemma 1.1, $\tau^* \subseteq \tau^{\alpha}$ and so U, $V \in \tau^{\alpha}$. Hence, $A \subseteq U \subseteq Int(Cl(Int(U))) = G$ and $B \subseteq V \subseteq Int(Cl(Int(V))) = H$. Therefore, G and H are disjoint open sets containing A and B respectively. Therefore, X is quasi-normal.

Corollary 3.12. Let (X, τ, I) be an ideal space, where I is completely codense. Then the following are equivalent.

596

Regular Weakly Continuous Functions in Ideal Topological Spaces

- 1. (X, τ, I) is quasi normal.
- 2. For every pair of disjoint regular semiclosed sets A and B, there exist disjoint I_{rw} -open sets U, V such that $A \subseteq U$ and $B \subseteq V$.
- 3. For each regular semiclosed set A and for each regular semiopen set V containing A, there exists an I_{rw} -open set U such that $A \subseteq U \subseteq Cl^*(U) \subseteq V$.
- 4. For each regular semiclosed set A and for each regular semiopen set V containing A, there exists an *-open set U such that $A \subseteq U \subseteq Cl^*(U) \subseteq V$.
- 5. For every pair of disjoint regular semiclosed sets A and B, there exist disjoint *-open sets U, V such that $A \subseteq U$ and $B \subseteq V$.

References

- [1] K. Kuratowski, Topology, Vol. I. Academic press, New York, 1966.
- [2] R. Vaidyanathaswamy, Set topology, Chelsea Publishing Company, New York, 1960.
- [3] M.H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math, Soc. 41 (1937) 375-481.
- [4] O. Njastad. On some classes of nearly open sets. Pascific J. Math. 15 (1965) 961-970.
- [5] V. Zaitsev, On certian classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR. 178 (1968) 778-779.
- [6] D.E. Cameron, Properties of s-closed spaces, Proc. Amer. Math. Soc. 72 (1978) 581-586.
- [7] R.S. Wali, Some Topics in General and Fuzzy Topological Spaces, Ph. D., Thesis, Karnatak University, Karnataka, 2006.
- [8] D. Caranahan, Some properties related to compactness in topological spaces, Ph.D Thesis, Univ. of Arkansas, 1973.
- [9] S.P. Arya, R. Gupta, On strongly continuous mappings, Kyungpook Math. J. 14 (1974) 131-143.
- [10] E. Hayashi, Topologies defined by local properties, Math. Ann. 156 (1964) 205-215.
- [11] D. Jankovic, T.R. Hamlet, New topologies from old via ideals, Amer. Math. Monthly. 97 (1990) 295-310.
- [12] J. Dontchev, M. Ganster, T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japan. 49 (1999) 395-401.
- [13] M. Navaneethakrishnan, J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math, Hungar. 119 (2008) 365-371.

- [14] V. Renuka Devi, D. Sivaraj, T. Tamizh Chelvam, Codense and completely codense ideals, Acta Math, Hungar. 108 (2005) 197-205.
- [15] M. Rajamani, V. Inthumathi, S. Krishnaprakash, Strongly-I-locally closed sets and decompositions of *-continuity, Acta Math, Hungar. 130 (4) (2010) 358-362.
- [16] A. Vadivel, M. Navuluri, Regular weakly closed sets in ideal topological spaces, International Journal of Pure and Applied Mathematics 86 (4) (2013) 607-619.
- [17] J. Dontchev, M. Ganster, D. Rose, Ideal resolvability, Topology and its Applications 93 (1999) 1-16.

(Received 12 October 2012) (Accepted 10 October 2015)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th