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Abstract : The main goal of this paper is the investigation of the generalized
Hyers-Ulam stability theorem of the following Euler-Lagrange type quadratic func-
tional equation

f(ax+ by) + af(x− by) = (a+ 1)b2f(y) + a(a+ 1)f(x),

in random normed spaces under arbitrary t-norms, where a, b are fixed integer
numbers such that a 6= −1, 0, 1 and b 6=0.
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1 Introduction

In 1940, Ulam [1] gave a talk before the Mathematics Club of the University
of Wisconsin in which he discussed a number of unsolved problems. Among these
was the following question concerning the stability of homomorphisms (see also
[2, 3, 4]).
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Let E1 and E2 be real vector spaces. A function f : E1 −→ E2 is called a
quadratic function if and only if f is a solution of the quadratic functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y). (1.1)

It is well known that a function f between real vector spaces is quadratic
if and only if there exists a unique symmetric bi-additive function B such that
f(x) = B(x, x) for all x, where the mapping B is given by B(x, y) = (1/4)(f(x+
y) − f(x − y)). The Hyers-Ulam stability of the quadratic functional equation
(1.1) was first proved by Skof [5] for function f : E1 −→ E2, where E1 is a normed
space and E2 is a Banach space. Cholewa [6] demonstrated that Skof’s theorem
is also valid if E1 is replaced by an Abelian group G. Assume that a function
f : G −→ E satisfies the inequality

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ δ, (1.2)

for some δ ≥ 0 and for all x, y ∈ G. Then there exists a unique quadratic function
Q : G −→ E such that

‖f(x)−Q(x)‖ ≤
δ

2
, (1.3)

for all x ∈ G. Czerwik [7] proved the Hyers-Ulam stability of quadratic functional
equation (1.1).
J.M. Rassias investigated the stability of Ulam for the Euler-Lagrange functional
equation

f(ax+ by) + f(bx− ay) = (a2 + b2)[f(x) + f(y)], (1.4)

in [8]. Gordji and Khodaei investigated the generalized Hyers-Ulam stability of
other Euler-Lagrange quadratic functional equations [9]. Jun et al. [10] introduced
a new quadratic Euler-Lagrange functional equation

f(ax+ y) + af(x− y) = (a+ 1)f(y) + a(a+ 1)f(x), (1.5)

for any fixed a ∈ Z with a 6= 0,−1, 1, which was a modified and instrumental
equation for [11], and solved the generalized stability of (1.5). Now, we improve
the functional equation (1.5) to the following functional equations:

f(ax+ by) + af(x− by) = (a+ 1)f(by) + a(a+ 1)f(x), (1.6)

and

f(ax+ by) + af(x− by) = (a+ 1)b2f(y) + a(a+ 1)f(x), (1.7)

for any fixed numbers a, b ∈ Z with a 6= 0,−1, 1 and b 6=0 which are generalized
versions of (1.5). In this paper, we prove the generalized Hyers-Ulam stability of
(1.7).
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2 Preliminaries

In this section, we recall some definitions and results which will be used later
on in the article (see [12] for more details).

Throughout this paper, the space of all probability distribution functions is
denoted by

△+ = {F : R
⋃

{−∞,+∞} −→ [0, 1] : F is left− continuous

and nondecreasing on R and f(0) = o, f(+∞) = 1},

and the subset D+ ⊆ △+ is the set D+ = {F ∈ △+ : l−F (+∞) = 1}, where
l−f(x) denotes the left limit of the function f at the point x. The space △+ is
partially ordered by the usual pointwise ordering of functions, that is, F ≤ G if
and only if F (t) ≤ G(t) for all t ∈ R. The maximal element for △+ in this order
is the distribution function given by

ε0(t) =

{

0

1

if t ≤ 0

if t > 0,

Definition 2.1. A function T : [0, 1]× [0, 1] −→ [0, 1] is a continuous triangular

norm (briefly, a t-norm) if T satisfies the following conditions:
(a) T is commutative and associative;
(b) T is continuous;
(c) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].
Three typical examples of continuous t-norms are T (a, b) = ab, T (a, b) = max(a+
b− 1, 0) and T (a, b) = min(a, b).

A t-norm T can be extended (by associativity) in a unique way to an n-array
operation taking for (x1, . . . , xn) ∈ [0, 1]n the value T (x1, . . . , xn) defined by

T0
i=1xi = 1,Tn

i=1xi = T (Tn−1
i=1 xi, xn) = T (x1, . . . , xn).

T can also be extended to a countable operation taking for any sequence
(xn)n∈N in [0, 1] the value

T∞
i=1xi = lim

n→∞
Tn

i=1xi. (2.1)

The limit on the right side of (2.1) exists since the sequence {Tn
i=1xi}n∈N is non-

increasing and bounded from below.

Definition 2.2. A random normed space (briefly, RN-space) is a triple (X,µ, T ),
where X is a vector space, T is a continuous t-norm and µ is a mapping from X
into D+ such that the following conditions hold:
(PN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;
(PN2) µαx(t) = µx(t/|α|) for all x in X , α 6= 0 and t ≥ 0;
(PN3) µx+y(t+ s) ≥ T (µx(t), µy(s)) for all x, y ∈ X and t, s ≥ 0.
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Definition 2.3. Let (X,µ, T ) be an RN-space.
(1) A sequence {xn} in X is said to be convergent to x in X if, for every ǫ > 0

and t > 0, there exists a positive integer N such that µxn−x(t) > 1 − ǫ whenever
n ≥ N .

(2) A sequence {xn} in X is called Cauchy if, for every ǫ > 0 and t > 0, there
exists a positive integer N such that µxn−xm

(t) > 1− ǫ whenever n ≥ m ≥ N .
(3) An RN-space (X,µ, T ) is said to be complete if every Cauchy sequence in

X is convergent to a point in X .

3 Stability of (1.7)

For convenience, we use the following abbreviation, for any fixed integer num-
bers a and b with a 6= −1, 0, 1 and b 6= 0,

Df(x, y) := f(ax+ by) + af(x− by)− (a+ 1)b2f(y)− a(a+ 1)f(x), (3.1)

for all x, y ∈ X .

Theorem 3.1. Let X be a linear space and (Y, µ, T ) be a complete RN-space and

(R, µ′, T ) be an RN-space. Let ϕ : X ×X −→ [0,∞) be a function such that

lim
n−→∞

µ′
ϕ(anx,any)(|a|

2nt) = 1, (3.2)

for all x, y ∈ X and t > 0. Suppose that a function f : X −→ Y with f(0) = 0
satisfies

µDf(x,y)(t) ≥ µ′
ϕ(x,y)(t), (3.3)

for all x, y ∈ X and t > 0. Then there exists a unique quadratic function Q :
X −→ Y satisfying

µf(x)−Q(x)(t) ≥ T∞
i=1(µ

′
ϕ(ai−1x,0)(|a|

it)), (3.4)

for all x ∈ X and t > 0. The function Q is given by

Q(x) = lim
k−→∞

1

a2n
f(anx), (3.5)

for all x ∈ X and

lim
n−→∞

T∞
i=1(µ

′
ϕ(an+i−1x)(|a|

2n+it)) = 1. (3.6)

Proof Letting y by 0 in (3.3), we get

µf(ax)−a2f(x)(t) ≥ µ′
ϕ(x,0)(t), (3.7)

and then
µ 1

a2 f(ax)−f(x)(t) ≥ µ′
1
a2 ϕ(x,0)(t), (3.8)
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for all x ∈ X and t > 0. Replacing x by anx in (3.8), we get

µ 1

|a|2(n+1)
f(an+1x)− 1

|a|2n
f(anx)

(

t

|a|n+1

)

≥ µ′
ϕ(anx,0)(|a|

(n+1)t). (3.9)

Now, since, 1
|a|2n f(a

nx) − f(x) =
∑n−1

k=0
1

|a|2(k+1) f(a
k+1x) − 1

|a|2k
f(akx) and

t ≥
∑n−1

k=0
t

|a|k+1 we have

µ 1
|a|2n

f(anx)−f(x)(t) ≥ T n−1
k=0

(

µ 1

|a|2(k+1)
f(ak+1x)− 1

|a|2k
f(akx)

(

t

|a|k+1

))

(3.10)

≥ T n−1
k=0 µ

′
ϕ(akx,0)(|a|

k+1t)

≥ T n
i=1µ

′
ϕ(ai−1x,0)(|a|

it).

Now, we prove that, the sequence {(1/a2n)f(anx)} is convergence. Replacing
x by amx in (3.10), we get

µ f(a(n+m)x)

|a|2(n+m)
− f(amx)

a2m

(t) ≥ T n
i=1µ

′
ϕ(ai+m−1x,0)(|a|

2m+it). (3.11)

Since the right hand side of the inequality tends to 1 as m,n tend to ∞, then
{(1/a2n)f(anx)} is a Cauchy sequence in Y . Since Y is a complete RN-space, this
sequence converges for all x ∈ X . Therefore, we can define a mapping Q : X −→ Y
by

Q(x) = lim
k−→∞

1

a2k
f(akx), (3.12)

for all x ∈ X . Replacing x, y with 2nx and 2ny, respectively, in (3.3) and by (3.2),
it follows that

µDQ(x,y)(t) = lim
n−→∞

µ 1
|a|2n

Df(anx,any)(t)

≥ lim
n−→∞

µ 1
|a|2n

ϕ(anx,any)(t)

= 1,

for all x, y ∈ X and t > 0, therefore Q satisfies (3.1), and so the function Q is
quadratic. Finally, to prove the uniqueness of the quadratic function Q, let us
assume that there exists a quadratic function Q′ : X −→ Y which satisfying the
inequality (3.4). Since Q′(anx) = |a|2nQ′(x) and Q(anx) = |a|2nQ(x). Then we
have

µQ(x)−Q′(x)(2t) := µQ(anx)−Q′(anx))(|a|
2nt)

≥ T
(

µQ(anx)−f(anx)(|a|
2nt), µQ′(anx)−f(anx)(|a|

2nt)
)

≥ T
(

T∞
i=1µ

′
ϕ(ai+n−1x,0)(|a|

2n+it), T n
i=1µ

′
ϕ(ai+n−1x,0)(|a|

2n+it))
)

,

for all x ∈ X , t > 0 and n ∈ N. Therefore, Q(x) −Q′(x) = 0 for all x ∈ X when
n −→ ∞.
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