Generalized Stability of Euler-Lagrange Quadratic Functional Equation in Random Normed Spaces under Arbitrary t-Norms

Z. Baderi and R. Saadat ${ }^{1}$
Department of Mathematics, Iran University of Science and Technology, Tehran, Iran e-mail: z.baderi@b-iust.ac.ir (Z. Baderi) rsaadati@iust.ac.ir (R. Saadati)

Abstract

The main goal of this paper is the investigation of the generalized Hyers-Ulam stability theorem of the following Euler-Lagrange type quadratic functional equation $$
f(a x+b y)+a f(x-b y)=(a+1) b^{2} f(y)+a(a+1) f(x)
$$ in random normed spaces under arbitrary t-norms, where a, b are fixed integer numbers such that $a \neq-1,0,1$ and $b \neq 0$.

Keywords : generalized Hyers-Ulam stability; quadratic functional equation; random normed space.
2010 Mathematics Subject Classification : 47B48; 47L60; 46L05.

1 Introduction

In 1940, Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms (see also [2, (3, 4]).

[^0]Let E_{1} and E_{2} be real vector spaces. A function $f: E_{1} \longrightarrow E_{2}$ is called a quadratic function if and only if f is a solution of the quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.1}
\end{equation*}
$$

It is well known that a function f between real vector spaces is quadratic if and only if there exists a unique symmetric bi-additive function B such that $f(x)=B(x, x)$ for all x, where the mapping B is given by $B(x, y)=(1 / 4)(f(x+$ $y)-f(x-y))$. The Hyers-Ulam stability of the quadratic functional equation (1.1) was first proved by Skof [5] for function $f: E_{1} \longrightarrow E_{2}$, where E_{1} is a normed space and E_{2} is a Banach space. Cholewa [6] demonstrated that Skof's theorem is also valid if E_{1} is replaced by an Abelian group G. Assume that a function $f: G \longrightarrow E$ satisfies the inequality

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \delta \tag{1.2}
\end{equation*}
$$

for some $\delta \geq 0$ and for all $x, y \in G$. Then there exists a unique quadratic function $Q: G \longrightarrow E$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{\delta}{2} \tag{1.3}
\end{equation*}
$$

for all $x \in G$. Czerwik 7 proved the Hyers-Ulam stability of quadratic functional equation (1.1).
J.M. Rassias investigated the stability of Ulam for the Euler-Lagrange functional equation

$$
\begin{equation*}
f(a x+b y)+f(b x-a y)=\left(a^{2}+b^{2}\right)[f(x)+f(y)], \tag{1.4}
\end{equation*}
$$

in [8]. Gordji and Khodaei investigated the generalized Hyers-Ulam stability of other Euler-Lagrange quadratic functional equations (9). Jun et al. 10 introduced a new quadratic Euler-Lagrange functional equation

$$
\begin{equation*}
f(a x+y)+a f(x-y)=(a+1) f(y)+a(a+1) f(x) \tag{1.5}
\end{equation*}
$$

for any fixed $a \in \mathbb{Z}$ with $a \neq 0,-1,1$, which was a modified and instrumental equation for [11], and solved the generalized stability of (1.5). Now, we improve the functional equation (1.5) to the following functional equations:

$$
\begin{equation*}
f(a x+b y)+a f(x-b y)=(a+1) f(b y)+a(a+1) f(x) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
f(a x+b y)+a f(x-b y)=(a+1) b^{2} f(y)+a(a+1) f(x) \tag{1.7}
\end{equation*}
$$

for any fixed numbers $a, b \in \mathbb{Z}$ with $a \neq 0,-1,1$ and $b \neq 0$ which are generalized versions of (1.5). In this paper, we prove the generalized Hyers-Ulam stability of (1.7).

2 Preliminaries

In this section, we recall some definitions and results which will be used later on in the article (see 12 for more details).

Throughout this paper, the space of all probability distribution functions is denoted by

$$
\begin{aligned}
\triangle^{+}=\{ & F: \mathbb{R} \bigcup\{-\infty,+\infty\} \longrightarrow[0,1]: F \text { is left }- \text { continuous } \\
& \text { and nondecreasing on } \mathbb{R} \text { and } f(0)=o, f(+\infty)=1\},
\end{aligned}
$$

and the subset $D^{+} \subseteq \triangle^{+}$is the set $D^{+}=\left\{F \in \Delta^{+}: l^{-} F(+\infty)=1\right\}$, where $l^{-} f(x)$ denotes the left limit of the function f at the point x . The space Δ^{+}is partially ordered by the usual pointwise ordering of functions, that is, $F \leq G$ if and only if $F(t) \leq G(t)$ for all $t \in \mathbb{R}$. The maximal element for Δ^{+}in this order is the distribution function given by

$$
\varepsilon_{0}(t)= \begin{cases}0 & \text { if } t \leq 0 \\ 1 & \text { if } t>0\end{cases}
$$

Definition 2.1. A function $T:[0,1] \times[0,1] \longrightarrow[0,1]$ is a continuous triangular norm (briefly, a t-norm) if T satisfies the following conditions:
(a) T is commutative and associative;
(b) T is continuous;
(c) $T(a, b) \leq T(c, d)$ whenever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in[0,1]$.

Three typical examples of continuous t-norms are $T(a, b)=a b, T(a, b)=\max (a+$ $b-1,0)$ and $T(a, b)=\min (a, b)$.

A t-norm T can be extended (by associativity) in a unique way to an n-array operation taking for $\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n}$ the value $T\left(x_{1}, \ldots, x_{n}\right)$ defined by

$$
\mathrm{T}_{i=1}^{0} x_{i}=1, \mathrm{~T}_{i=1}^{n} x_{i}=T\left(\mathrm{~T}_{i=1}^{n-1} x_{i}, x_{n}\right)=T\left(x_{1}, \ldots, x_{n}\right)
$$

T can also be extended to a countable operation taking for any sequence $\left(x_{n}\right)_{n \in N}$ in $[0,1]$ the value

$$
\begin{equation*}
\mathrm{T}_{i=1}^{\infty} x_{i}=\lim _{n \rightarrow \infty} \mathrm{~T}_{i=1}^{n} x_{i} . \tag{2.1}
\end{equation*}
$$

The limit on the right side of (2.1) exists since the sequence $\left\{\mathrm{T}_{i=1}^{n} x_{i}\right\}_{n \in \mathbb{N}}$ is nonincreasing and bounded from below.

Definition 2.2. A random normed space (briefly, RN -space) is a triple (X, μ, T), where X is a vector space, T is a continuous t-norm and μ is a mapping from X into D^{+}such that the following conditions hold:
(PN1) $\mu_{x}(t)=\varepsilon_{0}(t)$ for all $t>0$ if and only if $x=0$;
(PN2) $\mu_{\alpha x}(t)=\mu_{x}(t /|\alpha|)$ for all x in $X, \alpha \neq 0$ and $t \geq 0$;
(PN3) $\mu_{x+y}(t+s) \geq T\left(\mu_{x}(t), \mu_{y}(s)\right)$ for all $x, y \in X$ and $t, s \geq 0$.

Definition 2.3. Let (X, μ, T) be an RN-space.
(1) A sequence $\left\{x_{n}\right\}$ in X is said to be convergent to x in X if, for every $\epsilon>0$ and $t>0$, there exists a positive integer N such that $\mu_{x_{n}-x}(t)>1-\epsilon$ whenever $n \geq N$.
(2) A sequence $\left\{x_{n}\right\}$ in X is called Cauchy if, for every $\epsilon>0$ and $t>0$, there exists a positive integer N such that $\mu_{x_{n}-x_{m}}(t)>1-\epsilon$ whenever $n \geq m \geq N$.
(3) An RN-space (X, μ, T) is said to be complete if every Cauchy sequence in X is convergent to a point in X.

3 Stability of (1.7)

For convenience, we use the following abbreviation, for any fixed integer numbers a and b with $a \neq-1,0,1$ and $b \neq 0$,

$$
\begin{equation*}
D f(x, y):=f(a x+b y)+a f(x-b y)-(a+1) b^{2} f(y)-a(a+1) f(x) \tag{3.1}
\end{equation*}
$$

for all $x, y \in X$.
Theorem 3.1. Let X be a linear space and (Y, μ, T) be a complete $R N$-space and $\left(\mathbb{R}, \mu^{\prime}, T\right)$ be an $R N$-space. Let $\varphi: X \times X \longrightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \mu_{\varphi\left(a^{n} x, a^{n} y\right)}^{\prime}\left(|a|^{2 n} t\right)=1 \tag{3.2}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. Suppose that a function $f: X \longrightarrow Y$ with $f(0)=0$ satisfies

$$
\begin{equation*}
\mu_{D f(x, y)}(t) \geq \mu_{\varphi(x, y)}^{\prime}(t) \tag{3.3}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. Then there exists a unique quadratic function Q : $X \longrightarrow Y$ satisfying

$$
\begin{equation*}
\mu_{f(x)-Q(x)}(t) \geq T_{i=1}^{\infty}\left(\mu_{\varphi\left(a^{i-1} x, 0\right)}^{\prime}\left(|a|^{i} t\right)\right) \tag{3.4}
\end{equation*}
$$

for all $x \in X$ and $t>0$. The function Q is given by

$$
\begin{equation*}
Q(x)=\lim _{k \longrightarrow \infty} \frac{1}{a^{2 n}} f\left(a^{n} x\right) \tag{3.5}
\end{equation*}
$$

for all $x \in X$ and

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} T_{i=1}^{\infty}\left(\mu_{\varphi\left(a^{n+i-1} x\right)}^{\prime}\left(|a|^{2 n+i} t\right)\right)=1 \tag{3.6}
\end{equation*}
$$

Proof Letting y by 0 in (3.3), we get

$$
\begin{equation*}
\mu_{f(a x)-a^{2} f(x)}(t) \geq \mu_{\varphi(x, 0)}^{\prime}(t) \tag{3.7}
\end{equation*}
$$

and then

$$
\begin{equation*}
\mu_{\frac{1}{a^{2}} f(a x)-f(x)}(t) \geq \mu_{\frac{1}{a^{2}} \varphi(x, 0)}^{\prime}(t) \tag{3.8}
\end{equation*}
$$

for all $x \in X$ and $t>0$. Replacing x by $a^{n} x$ in (3.8), we get

$$
\begin{equation*}
\mu_{\frac{1}{|a|^{2(n+1)}} f\left(a^{n+1} x\right)-\frac{1}{|a|^{2 n}} f\left(a^{n} x\right)}\left(\frac{t}{|a|^{n+1}}\right) \geq \mu_{\varphi\left(a^{n} x, 0\right)}^{\prime}\left(|a|^{(n+1)} t\right) . \tag{3.9}
\end{equation*}
$$

Now, since, $\frac{1}{|a|^{2 n}} f\left(a^{n} x\right)-f(x)=\sum_{k=0}^{n-1} \frac{1}{|a|^{2(k+1)}} f\left(a^{k+1} x\right)-\frac{1}{|a|^{2 k}} f\left(a^{k} x\right)$ and $t \geq \sum_{k=0}^{n-1} \frac{t}{|a|^{k+1}}$ we have

$$
\begin{align*}
\mu_{\frac{1}{|a|^{2 n}} f\left(a^{n} x\right)-f(x)}(t) & \geq T_{k=0}^{n-1}\left(\mu_{\frac{1}{|a|^{2(k+1)}} f\left(a^{k+1} x\right)-\frac{1}{|a|^{2 k}} f\left(a^{k} x\right)}\left(\frac{t}{|a|^{k+1}}\right)\right) 3 . \\
& \geq T_{k=0}^{n-1} \mu_{\varphi\left(a^{k} x, 0\right)}^{\prime}\left(|a|^{k+1} t\right) \\
& \geq T_{i=1}^{n} \mu_{\varphi\left(a^{i-1} x, 0\right)}^{\prime}\left(|a|^{i} t\right) .
\end{align*}
$$

Now, we prove that, the sequence $\left\{\left(1 / a^{2 n}\right) f\left(a^{n} x\right)\right\}$ is convergence. Replacing x by $a^{m} x$ in (3.10), we get

$$
\begin{equation*}
\mu_{\frac{\left.f\left(a a^{2}+m\right) x\right)}{|a|^{2(n+m)}}-\frac{f\left(a^{m_{x x}}\right)}{a^{2 m}}}(t) \geq T_{i=1}^{n} \mu_{\varphi\left(a^{i+m-1} x, 0\right)}^{\prime}\left(|a|^{2 m+i} t\right) . \tag{3.11}
\end{equation*}
$$

Since the right hand side of the inequality tends to 1 as m, n tend to ∞, then $\left\{\left(1 / a^{2 n}\right) f\left(a^{n} x\right)\right\}$ is a Cauchy sequence in Y. Since Y is a complete RN-space, this sequence converges for all $x \in X$. Therefore, we can define a mapping $Q: X \longrightarrow Y$ by

$$
\begin{equation*}
Q(x)=\lim _{k \longrightarrow \infty} \frac{1}{a^{2 k}} f\left(a^{k} x\right) \tag{3.12}
\end{equation*}
$$

for all $x \in X$. Replacing x, y with $2^{n} x$ and $2^{n} y$, respectively, in (3.3) and by (3.2), it follows that

$$
\begin{aligned}
\mu_{D Q(x, y)}(t) & =\lim _{n \longrightarrow \infty} \mu \frac{1}{|a|^{2} n} D f\left(a^{n} x, a^{n} y\right) \\
& \geq \lim _{n \longrightarrow \infty} \mu \frac{1}{|a|^{2 n}} \varphi\left(a^{n} x, a^{n} y\right) \\
& =1,
\end{aligned}
$$

for all $x, y \in X$ and $t>0$, therefore Q satisfies (3.1), and so the function Q is quadratic. Finally, to prove the uniqueness of the quadratic function Q, let us assume that there exists a quadratic function $Q^{\prime}: X \longrightarrow Y$ which satisfying the inequality (3.4). Since $Q^{\prime}\left(a^{n} x\right)=|a|^{2 n} Q^{\prime}(x)$ and $Q\left(a^{n} x\right)=|a|^{2 n} Q(x)$. Then we have

$$
\begin{aligned}
\mu_{Q(x)-Q^{\prime}(x)}(2 t) & :=\mu_{\left.Q\left(a^{n} x\right)-Q^{\prime}\left(a^{n} x\right)\right)}\left(|a|^{2 n} t\right) \\
& \geq T\left(\mu_{Q\left(a^{n} x\right)-f\left(a^{n} x\right)}\left(|a|^{2 n} t\right), \mu_{Q^{\prime}\left(a^{n} x\right)-f\left(a^{n} x\right)}\left(|a|^{2 n} t\right)\right) \\
& \left.\geq T\left(T_{i=1}^{\infty} \mu_{\varphi\left(a^{i+n-1} x, 0\right)}^{\prime}\left(|a|^{2 n+i} t\right), T_{i=1}^{n} \mu_{\varphi\left(a^{i+n-1} x, 0\right)}^{\prime}\left(|a|^{2 n+i} t\right)\right)\right)
\end{aligned}
$$

for all $x \in X, t>0$ and $n \in \mathbb{N}$. Therefore, $Q(x)-Q^{\prime}(x)=0$ for all $x \in X$ when $n \longrightarrow \infty$.

Acknowledgements : The authors are grateful for the reviewers for the careful reading of the paper and for the suggestions which improved the quality of this work.

References

[1] S.M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8 Interscience Publishers, New YorkLondon, 1960.
[2] J. Aczél, J. Dhombres, Functional equations in several variables, With applications to mathematics, information theory and to the natural and social sciences. Encyclopedia of Mathematics and its Applications, 31. Cambridge University Press, Cambridge, 1989.
[3] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941) 222-224.
[4] D.H. Hyers, Th.M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (2-3) (1992) 125-153.
[5] F. Skof, Local properties and approximation of operators, (Italian) Geometry of Banach spaces and related topics (Italian) (Milan, 1983), Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
[6] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1-2) (1984) 76-86.
[7] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg. 62 (1992) 59-64.
[8] J.M. Rassias, On the stability of the Euler-Lagrange functional equation, Chinese J. Math. 20 (2) (1992) 185-190.
[9] M.E. Gordji, H. Khodaei, On the generalized Hyers-Ulam-Rassias stability of quadratic functional equations, Abstr. Appl. Anal. 2009 Art. ID 923476.
[10] K. Jun, H. Kim, J. Son, Generalized Hyers-Ulam stability of a quadratic functional equation, Functional equations in mathematical analysis, 153-164, Springer Optim. Appl., 52, Springer, New York, 2012.
[11] K.-W. Jun, H.-M. Kim, Ulam stability problem for generalized A-quadratic mappings, J. Math. Anal. Appl. 305 (2) (2005) 466-476.
[12] C. Zaharia, On the probabilistic stability of the monomial functional equation, J. Nonlinear Sci. Appl. 6 (2013) 51-59.
(Received 15 November 2013)
(Accepted 5 April 2015)
Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright © 2016 by the Mathematical Association of Thailand. All rights reserved.

