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Abstract : Suzuki’s fixed point results from [T. Suzuki, A generalized Banach
contraction principle that characterizes metric completeness, Proc. Amer. Math.
Soc. 136 (2008) 1861-1869] and [T. Suzuki, A new type of fixed point theorem in
metric spaces, Nonlinear Anal. TMA, 71 (2009) 5313-5317] are extended to the
case of Hausdorff uniform space. Examples are given to distinguish our results
from the known ones. Some more general results are also obtained in Hausdorff
uniform space.
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1 Introduction and Preliminaries

Let X be a nonempty set and let ϑ be a nonempty family of subsets of X×X .
The pair (X,ϑ) is called a uniform space if it satisfies the following properties:

(i) if G is in ϑ, then G contains the diagonal {(x, x)|x ∈ X};

(ii) if G is in ϑ and H is a subset of X ×X which contains G, then H is in ϑ;
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(iii) if G and H are in ϑ, then G ∩H is in ϑ;

(iv) if G is in ϑ, then there exists H in ϑ, such that, whenever (x, y) and (y,
z) are in H, then (x, z) is in G;

(v) if G is in ϑ, then {(y, x)|(x, y) ∈ G} is also in ϑ.

ϑ is called the uniform structure of X and its elements are called entourages
or neighbourhoods or surroundings. In Bourbaki [1] and Zeidler [2], (X,ϑ) is called
a quasiuniform space if property (v) is omitted. Some authors such as Berinde
[3, 4], Jachymski [5], Kada et al [6], Kang [7], Rhoades [8]], Rus [9, 10], Wang [11]
and Zeidler [2], Sintunavarat et al [12, 13, 14, 15] studied the theory of fixed point
or common fixed point for contractive selfmappings in complete metric spaces or
Banach spaces in general.

Later, Aamri and El Moutawakil [16] proved some common fixed point theo-
rems for some new contractive or expansive maps in uniform spaces by introducing
the notions of an A-distance and an E-distance. Diagonal uniformity introduced
by Weil, this approach was largely developed and pursued by Bourbaki [1].

For any set X, the diagonal {(x, x)|x ∈ X} will be denoted by ∆ where confu-
sion might occur. If V,W ∈ X ×X , then V ◦W = {(x, y)| there exists z ∈
X : (x, z) ∈ W and (z, y) ∈ V } and V −1 = {(x, y)|(y, x) ∈ V }.

If V ∈ ϑ and (x, y) ∈ V, (y, x) ∈ V , x and y are said to be V -close, and
a sequence {xn} in X is a Cauchy sequence for ϑ, if for any V ∈ ϑ, there exists
N ≥ 1 such that xn and xm are V -close for n,m ≥ N . A uniformity ϑ defines
a unique topology τ(ϑ) on X for which the neighborhoods of x ∈ X are the sets
V (x) = {y ∈ X |(x, y) ∈ V } when V runs over ϑ.

A sequence {xn} in X is convergent to x for ϑ, if for any V ∈ ϑ, there exists
n0 ∈ N such that xn ∈ V (x) for every n ≥ n0 and denote by limn→∞ xn = x. A
uniform space (X,ϑ) is said to be Hausdorff if and only if the intersection of all
the V ∈ ϑ reduces to the diagonal ∆ of X, i.e., if (x, y) ∈ V for all V ∈ ϑ implies
x = y. This guarantees the uniqueness of limits of sequences. V ∈ ϑ is said to be
symmetrical if V = V −1. Since each V ∈ ϑ contains a symmetrical W ∈ ϑ and
if (x, y) ∈ W then x and y are both W and V -close, then for our purpose, we
assume that each V ∈ ϑ is symmetrical. When topological concepts are mentioned
in the context of a uniform space (X,ϑ), they always refer to the topological space
(X, τ(ϑ)).

2 Main Result

Now, we introduce the concept of A-distance, E-distance and prove many fixed
point theorem in these uniform spaces which are a nice generalization of the known
results in metric spaces.

Definition 2.1. Let (X,ϑ) be a uniform space. A function p : X ×X −→ R
+ is

said to be an A-distance if for any V ∈ ϑ there exists δ > 0 such that if p(z, x) ≤ δ

and p(z, y) ≤ δ for some z ∈ X , then (x, y) ∈ V .
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Definition 2.2. Let (X,ϑ) be a uniform space. A function p : X ×X −→ R
+ is

said to be an E-distance if

(p1) p is an A-distance,

(p2) p(x, y) ≤ p(x, z) + p(z, y). ∀x, y, z ∈ X.

Example 2.3. Let us give some examples of A and E-distance.

1. Let (X,ϑ) be a uniform space and let d be a distance on X : Clearly (X,ϑd)
is a uniform space where ϑd is the set of all subsets of X ×X containing a
“band” Bǫ = {(x, y) ∈ X2|d(x, y) < ǫ} for some ǫ > 0. Moreover, if ϑ ⊆ ϑd,
then d is an E-distance on (X,ϑ).

2. Recently, J.R. Montes and J.A. Charris introduced the concept ofW -distance
on uniform spaces. Every W -distance p is an E-distance since it satisfies
(p1), (p2) and the following condition: for all x ∈ X , the function p(x, .)
is lower semi-continuous. That is, if there exist a sequence {yn} in X such
that yn −→ y ∈ X this implies that p(x, y) ≤ lim inf

n−→∞
p(x, yn).

3. Let X = [0,∞) and d(x, y) = |x−y| the usual metric. Consider the function
p defined as follows

p(x, y) =

{

y if y ∈ [0, 1),
2y. if y ∈ [1,∞)

It is easy to see that the function p is an E-distance on (X,ϑd) but it is not
an W -distance on (X,ϑd) since the function p(x, .) : X −→ R

+ is not lower
semi-continuous at 1.

The following Lemma contain some useful properties of A-distances. It is
stated in [6] for metric spaces and in [17] for uniform spaces. The proof is straight-
forward.

Lemma 2.4. Let (X,ϑ) be a Hausdorff uniform space and p be an A-distance
on X. Let {xn} and {yn} be sequences in X and {αn} , {βn} be sequences in R

+

converging to 0. Then, for x, y, z ∈ X, the following holds:

(a) If p(xn, y) ≤ αn and p(xn, z) ≤ βn for all n ∈ N, then y = z. In particular,
if p(x, y) = 0 and p(x, z) = 0, then y = z,

(b) if p(xn, yn) ≤ αn and p(xn, z) ≤ βn for all n ∈ N, then {yn} converges to
z,

(c) if p(xn, xm) ≤ αn for all n,m ∈ N with m > n, then {xn} is a Cauchy
sequence in (X,ϑ).

Let (X,ϑ) be a uniform space with an A-distance p. A sequence in X is p-
Cauchy if it satisfies the usual metric condition. That is, for every ǫ > 0 there
exists n0 ∈ N such that p(xn, xm) < ǫ for all n,m ≥ n0. There are several concepts
of completeness in this setting

Definition 2.5. Let (X,ϑ) be a uniform space and p be an A-distance on X .
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(1) X is S-complete if every p-Cauchy sequence {xn}, there exists x in X with
limn→∞ p(xn, x) = 0.

(2) X is p-Cauchy complete if every p-Cauchy sequence {xn}, there exists x in
X with limn→∞ xn = x with respect to τ(ϑ) .

Remark 2.6. Let (X,ϑ) be a Hausdorff uniform space and let {xn} be a p-
Cauchy sequence. Suppose that X is S-complete, then there exists x ∈ X such
that limn→∞ p(xn, x) = 0. Lemma 2.4(b) then gives limn→∞ xn = x with respect
to the topology τ(ϑ). Therefore S-completeness implies p-Cauchy completeness.

Definition 2.7. Let (X,ϑ) be a Hausdorff uniform space and p be an A-distance
on X . Two selfmappings f and g of X are said to be weak compatible if they
commute at their coincidence points, that is, fx = gx implies that fgx = gfx.

Theorem 2.8. Let (X,ϑ) be a S-complete Hausdorff uniform space such that p
be an E-distance and continuous on X. Let T : X −→ X be a selfmap and
θ =: [0, 1) −→ (1

2
, 1] be defined by

θ(r) =



























1, 0 ≤ r ≤
√
5−1

2

1−r

r2
,

√
5−1

2
≤ r ≤ 1√

2

1

1+r
, 1√

2
≤ r < 1.

(2.1)

If there exists r ∈ [0, 1) such that for each x, y ∈ X, satisfying the condition

θ(r)min{p(x, Tx), p(Tx, x)} ≤ max{p(x, y), p(y, x)}

=⇒ max{p(Tx, T y), p(Ty, Tx)} ≤ rmin{p(x, y), p(y, x)}. (2.2)

Then T has a unique fixed point z ∈ X and for each x ∈ X, the sequence {T nx}
converges to z.

Proof. Putting y = Tx in (2.2). Hence from

θ(r)min{p(x, Tx), p(Tx, x)} ≤ max{p(x, Tx), p(Tx, x)},

it follows

max{p(Tx, T 2x), p(T 2x, Tx)} ≤ rmin{p(x, Tx), p(Tx, x)} (2.3)

for every x ∈ X . Thus,
p(Tx, T 2x) ≤ rp(x, Tx). (2.4)

Let x0 ∈ X be arbitrary and form the sequence {xn} by x1 = Tx0 and xn+1 = Txn

for n ∈ N ∪ {0}. By (2.4), we have

p(xn, xn+1) = p(Txn−1, T
2xn−1)

≤ rp(xn−1, T xn−1)

...

≤ rnp(x0, x1) −→ 0.



Suzuki-Type Fixed Point Results for E-Contractive Maps in Uniform Spaces 579

Also, by definition E-distance, we have

p(xn, xm) ≤ p(xn, xn+1) + p(xn+1, xn+2) + · · ·+ p(xm−1, xm)

≤ rnp(x0, x1) + rn+1p(x0, x1) + · · ·+ rm−1p(x0, x1)

=
rn − rm

1− r
p(x0, x1)

<
rn

1− r
p(x0, x1) −→ 0.

Hence, {xn} is a p-Cauchy sequence.
Since X is S-complete, there exists z ∈ X such that xn → z, as n → ∞. That is,

lim
n→∞

p(xn+1, z) = lim
n→∞

p(Txn, z) = 0. (2.5)

Putting x = T n−1z in (2.3), we get that

max{p(T nz, T n+1z), p(T n+1z), T nz}

≤ rmin{p(T n−1z, T nz), p(T nz, T n−1z)}

≤ rmax{p(T n−1z, T nz), p(T nz, T n−1z)}

...

≤ rn min{p(Tz, z), p(z, T z)}, (2.6)

holds for each n ∈ N (where T 0z = z). It follows by induction that

p(T nz, T n+1z) ≤ rnp(z, T z). (2.7)

Let us prove now that

max{p(z, Tx), p(Tx, z)} ≤ rmin{p(z, x), p(x, z)}, (2.8)

holds for each x 6= z. First, since x 6= z we have
max{p(x, z), p(z, x)} 6= 0 and

0 < max{p(x, z), p(z, x)} = lim
n→∞

max{p(xn, x), p(x, xn)}

= max{ lim
n→∞

p(xn, x), lim
n→∞

p(x, xn)}.

On the other hand we have

lim
n→∞

min{p(xn, T xn), p(Txn, xn)} = 0,

it follows that there exists a n0 ∈ N such that

θ(r)min{p(xn, T xn), p(Txn, xn)} ≤ max{p(xn, x), p(x, xn)},

holds for every n ≥ n0. Assumption (2.2) implies that for such n

max{p(Txn, T x), p(Tx, Txn) ≤ rmin{p(xn, x), p(x, xn)},
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thus as n → ∞ (and continuity of p), we get that

max{p(z, Tx), p(Tx, z)} ≤ rmin{p(z, x), p(x, z)}.

We will prove that
p(T nz, z) ≤ p(Tz, z), (2.9)

for each n ∈ N. For n = 1 this relation is obvious. Suppose that it holds for some
m ∈ N. If Tmz = z, then Tm+1z = Tz and p(Tm+1z, z) = p(Tz, z) ≤ p(Tz, z). If
Tmz 6= z, then we can apply (2.8) and the induction hypothesis, we get that

p(Tm+1z, z) ≤ max{p(Tm+1z, z), p(z, Tm+1z)}

≤ rmin{p(Tmz, z), p(z, Tmz)}

≤ rp(Tmz, z) ≤ rp(Tz, z) ≤ p(Tz, z),

and similarly we have p(z, T nz) ≤ p(z, T z). Hence (2.9) is proved by induction.
We consider two possible cases.
Case I. 0 ≤ r < 1√

2
(and hence θ(r) ≤ 1−r

r2
). We will prove first that

max{p(Tz, T nz), p(T nz, T z)}) ≤ rmin{p(z, T z), p(Tz, z)} (2.10)

for n ≥ 2. For n = 2 it follows from (2.7). Suppose that (2.10) holds for some
n > 2. Then we prove that

max{p(Tz, T n+1z), p(T n+1z, T z)} ≤ rmin{p(z, T z), p(Tz, z).

Then we can apply (2.6) and the induction hypothesis, we get that

θ(r)min{p(T nz, T n+1z), p(T n+1z, T nz)}

≤
1− r

rn
min{p(T nz, T n+1z), p(T n+1z, T nz)}

≤ (1− r)min{p(z, T z), p(Tz, z)}

≤ (1− r)p(Tz, z)

≤ max{p(z, T nz), p(T nz, z)},

the last inequality is hold, because

p(Tz, z) ≤ p(Tz, T nz) + p(T nz, z)

≤ rp(Tz, z) + p(T nz, z),

hence (1− r)p(Tz, z) ≤ p(T nz, z) ≤ max{p(T nz, z), p(z, T nz)}.
Assumption (2.2) implies that

max{p(Tz, T n+1z), p(T n+1z, T z)} ≤ rmin{p(z, T nz), p(T nz, z)}

≤ rmin{p(z, T z), p(Tz, z)},

that is relation (2.10) is proved by induction.
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Now, if Tz 6= z then (2.10) implies that T nz 6= z for each n ≥ 2. Hence, (2.6)
imply that

p(z, T n+1z) ≤ max{p(z, T n+1z), p(T n+1z, z)}

≤ rmin{p(z, T nz), p(T nz, z)}

≤ rp(z, T nz)

...

≤ rnp(z, T z) −→ 0.

Thus limn→∞ p(z, T n+1z) = 0 and limn→∞ p(z, z) = limn→∞ p(xn, xn+1) = 0,
implies that limn→∞ T n+1z = z. Again from (2.10), as n → ∞ we get that

max{p(Tz, z), p(z, T z)} ≤ rmin{p(z, T z), p(Tz, z)},

hence we have p(z, T z) ≤ rp(z, T z) which is a contradiction. Hence Tz = z.
Case II. 1√

2
≤ r < 1 (and so θ(r) = 1

1+r
). We will prove that there exists a

subsequence {xnk
} of {xn} such that

θ(r)min{p(xnk
, T xnk

), p(Txnk
, xnk

)} ≤ max{p(xnk
, z), p(z, xnk

)} (2.11)

holds for each k ∈ N. From (2.3) we know that

max{p(xn, xn+1), p(xn+1, xn)} ≤ rmin{p(xn−1, xn), p(xn, xn−1)}

holds for each n ∈ N. Suppose that

1

1 + r
min{p(xn−1, xn), p(xn, xn−1)} > max{p(xn−1, z), p(z, xn−1)},

and
1

1 + r
min{p(xn, xn+1), p(xn+1, xn)} > max{p(xn, z), p(z, xn)},

holds for some n ∈ N. Then

min{p(xn−1, xn), p(xn, xn−1)}

≤ min{p(xn−1, z) + p(z, xn), p(xn, z) + p(z, xn−1)

≤ max{p(xn−1, z), p(z, xn−1)}+max{p(xn, z), p(z, xn)}

<
1

1 + r
min{p(xn−1, xn), p(xn, xn−1)}+

1

1 + r
min{p(xn, xn+1), p(xn+1, xn)}

<
1

1 + r
min{p(xn−1, xn), p(xn, xn−1)}+

r

1 + r
min{p(xn, xn−1), p(xn−1, xn)}

= min{p(xn−1, xn), p(xn, xn−1)}

which is impossible. Hence one of the following holds for each n:

θ(r)min{p(xn−1, xn), p(xn, xn−1) ≤ max{p(xn−1, z), p(z, xn−1)},
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or

θ(r)min{p(xn, xn+1), p(xn+1, xn)} ≤ max{p(xn, z), p(z, xn)}.

In particular,

θ(r)min{p(x2n−1, x2n), p(x2n, x2n−1)} ≤ max{p(x2n−1, z), p(z, x2n−1)},

or

θ(r)min{p(x2n, x2n+1), p(x2n+1, x2n)} ≤ max{p(x2n, z), p(z, x2n)}.

In other words, there is a subsequence {xnk
} of {xn} such that (2.11) holds for

each k ∈ N. But then assumption (2.2) implies that

max{p(Txnk
, T z), p(Tz, Txnk

)} ≤ rmin{p(xnk
, z), p(z, xnk

)},

or

max{p(Txnk−1
, T z), p(Tz, Txnk−1

)} ≤ rmin{p(xnk−1
, z), p(z, xnk−1

)}.

Passing to the limit when k −→ ∞ we get that max{p(z, T z), p(Tz, z)} ≤ 0, which
is possible only if Tz = z.

Thus, we have proved that z is a fixed point of T. The uniqueness of the fixed
point follows easily from (2.2). Indeed, if y, z are two fixed points of T,

θ(r)min{p(z, y), p(y, z)} ≤ max{p(z, y), p(y, z)},

then (2.2) implies that

max{p(Tz, T y), p(Ty, T z)} ≤ rmin{p(z, y), p(y, x)},

that is p(z, y) ≤ max{p(z, y), p(y, z)} ≤ rmin{p(z, y), p(y, x)} < p(z, y), where-
form y = z.
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