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1 Introduction

Ekeland’s variational principle was first expressed by Ekeland [1, 2] which
is developed by many authors and researchers. This principle occurs in many
problems like optimization, nonlinear equations, dynamical systems (see [3, 4, 5]).
In recent years, many authors have made an effort to generalize this problem. For
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example in [6] and [7], the authors introduced the equilibrium version of Ekeland’s
variational principle to get some existence results for equilibrium problems in both
compact and noncompact domains. Afterwards, Bianchi et al. [8] considered
a vector version of Ekeland’s principle for equilibrium problems. They studied
bifunctions defined on complete metric spaces with values in locally convex spaces
ordered by closed convex cones and obtained some existence results for vector
equilibria in compact and noncompact domains. Recently, Ansari [9] studied a
vectorial form of equilibrium version of Ekeland-type variational principle in the
setting of complete quasi-metric spaces with a w-distance. He also survived Caristi
Kirk fixed point theorem for multi-valued maps. In [10], an Ekeland’s variational
principle for set-valued mappings is investigated by Zeng and Li. They obtained
some existence results in equilibrium problems and fixed point theory. In our work,
we consider a generalization of vectorial form of Ekeland’s variational principle for
set-valued mapping in complete metric spaces. We first introduce some basic
definitions and concepts in section 2 and then in section 3, we state our main
results regarding the vectorial form of Ekeland’s variational principle for set-valued
mapping. Finally, in section 4, we obtain some existence results for equilibrium
problems in both compact and noncompact spaces.

2 Main Definitions

Throughout this paper, let (X, d) be a complete metric space, Y a topological
vector space and C a pointed convex cone in X . There is a partial order on X
given by x ≺ y if and only if y− x ∈ C, for x, y ∈ X . Assume that intC 6= ∅, that
is interior of C, and e ∈ intC.

Lemma 2.1 ([11]). Let {sn} be a sequence of real numbers. Let E be the set
of numbers x (in the extended real number system) such that snk

→ x, for some
subsequences {snk

}. Then, inf E = lim infn→∞ sn and lim infn→∞ sn ∈ E.

Definition 2.2 ([12]). Let (X, d) be a metric space. Then, a function w : X×X →
R+ is called the w-distance on X if satisfies the following conditions:

1. w(x, z) ≤ w(x, y) + w(y, z), ∀x, y, z ∈ X ,

2. w is lower semicontinuous in its second variable,

3. for each ε > 0, there exists δ > 0 such that w(z, x) ≤ δ and w(z, y) ≤ δ
imply d(x, y) ≤ ε.

Definition 2.3 ([13]). Let X and Y be two topological spaces. A set-valued
mapping F : X → 2Y is called lower semicontinuous (l.s.c) at x ∈ X if for each
open set V with F (x) ∩ V 6= ∅, there is an open set U containing x such that for
each t ∈ U , F (t) ∩ V 6= ∅. We say F is l.s.c. on X if it is l.s.c. at all x ∈ X .

Definition 2.4 ([13]). Let X and Y be two topological spaces. A set-valued
mapping F : X → 2Y is called upper semicontinuous (u.s.c) at x ∈ X if for each
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open set V containing F (x), there is an open set U containing x such that for each
t ∈ U , F (t) ⊂ V . We say F is u.s.c. on X if it is u.s.c. at all x ∈ X .

Proposition 2.5 ([14]). Let X and Y be topological spaces, and F : X → 2Y

be a set-valued mapping. Then, F is l.s.c. at x0 ∈ X if and only if for any net
{xα} ⊂ X with xα → x0 and any y0 ∈ F (x0), there exists yα ∈ F (xα) such that
yα → y0.

Proposition 2.6 ([14]). Let X and Y be topological spaces, and F : X → 2Y be a
set-valued mapping. If F has compact values (i.e., F(x) is a compact set for each
x ∈ X), then F is u.s.c. at x0 ∈ X if and only if for any net {xα} ⊂ X with
xα → x0 and for any yα ∈ F (xα), there exists y0 ∈ F (x0) and a subnet {yβ} of
{yα} such that yβ → y0.

Definition 2.7 ([10]). Let X and Y be Banach spaces and C a pointed convex
cone in Y . We say that a set-valued mapping F : X −→ 2Y is quasi lower
semicontinuous at x0 ∈ X if for every b ∈ Y and F (x0) * b − C, there exists a
neighborhood U of x0 in X such that F (x) * b − C, for each x ∈ U . F is quasi
lower semicontinuous if and only if F is quasi lower semicontinuous at each point
x ∈ X .

Definition 2.8 ([15]). A set-valued mapping F : X ×X → 2Y is bounded from
below on X ×X if there exists z ∈ Y such that F (x, y) ⊆ z + C, for all x, y ∈ X .

Definition 2.9 ([16]). Given a fixed e ∈ intC and a ∈ X . The function ξe,a :
X −→ R defined by

ξe,a(z) = min{t ∈ R | z ∈ a+ te− C} (2.1)

is called a nonlinear (separating) scalarization function.

Proposition 2.10 ([16]). The function ξe,a is well-defined, that is, the minimum
in (2.1) is attained.

Proposition 2.11 ([16]). For any fixed e ∈ intC, z ∈ X and r ∈ R, we have

ξe,0(z) ≤ r ⇔ z ∈ re − C

Sometimes, we denote ξe,0 by ξe.

Definition 2.12 ([17]). Let S : X −→ 2X be a dynamical system. x∗ ∈ X is
called a critical point of S if and only if S(x∗) = {x∗}.

Theorem 2.13 ([18]). Let (X, d) be a complete metric space and S : X −→ 2X

be a set-valued mapping satisfying the following conditions:

(i) x ∈ S(x), for all x ∈ X,

(ii) S(x) is a closed set, for all x ∈ X,
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(iii) x2 ∈ S(x1) =⇒ S(x2) ⊆ S(x1), for all x1, x2 ∈ X,

(iv) If {xn} is any sequence in X such that xn+1 ∈ S(xn), for all n ∈ N , then
limn−→∞ d(xn, xn+1) = 0.

Then, the set-valued mapping S has a critical point x∗ in X, that is S(x∗) = {x∗}.
Moreover, for all x0 ∈ X , there is a critical point of S in S(x0).

3 Main Results

In this section, we state the new version of Ekeland’s variational principle
which was surveyed by Zeng and Li [10].

Theorem 3.1. Assume that (X, d) is a complete metric space, and the set-valued
mapping F : X ×X −→ 2Y is quasi lower semicontinuous in the second variable
and bounded from below on X ×X. Moreover, suppose that F meets the following
condition:

F (x, y) ⊆ F (x, z) + F (z, y)− C, ∀x, y, z ∈ X. (3.1)

Then, for all ε > 0 and x0 ∈ X, there exists x ∈ X such that
{

F (x0, x) + εw(x0, x)e ⊆ −C,
F (x, x) + εw(x, x)e 6⊆ −C, ∀x ∈ X, x 6= x.

Proof. We choose ε = 1 and define the set-valued mapping S : X −→ 2X by

S(x) = {y ∈ X | F (x, y) + w(x, y)e ⊆ −C} ∪ {x}

S(x) is nonempty, because x ∈ S(x), for all x ∈ X . We prove that S(x) is
closed, for all x ∈ X . Consider any sequence {yn} in S(x) such that yn → y0.
We must show that F (x, y0) + w(x, y0)e ⊆ −C. Suppose by contradiction that
F (x, y0) + w(x, y0)e * −C, hence F (x, y0) * −w(x, y0)e − C. In regard to the
quasi lower semicontinuous of F at y0 ∈ X , there exists a neighborhood U of y0
in X such that F (x, y) * −w(x, y)e − C, for all y ∈ U . Since yn → y0, then
there exists N0 ∈ N such that F (x, yn) * −w(x, yn)e − C, for all n > N0. Thus,
F (x, yn) + w(x, yn)e * −C, for all n > N0 which is a contradiction. It is easy to
prove that if y ∈ S(x), then S(y) ⊆ S(x). In this regard, let z ∈ S(y), then

F (y, z) + w(y, z)e ⊆ −C. (3.2)

On the other hand, since y ∈ S(x), we have

F (x, y) + w(x, y)e ⊆ −C. (3.3)

By (3.1), (3.2), (3.3) and condition 1. of Definition 2.2, we obtain F (x, z) +
w(x, z)e ⊆ −C implying that z ∈ S(x). It just reminds to verify (iv) of Theorem
2.13. On this subject, let {xn}n∈N be any sequence in X such that xn+1 ∈ S(xn),
for all n ∈ N with any x1 ∈ X . Thus, we have

F (xn, xn+1) + w(xn, xn+1)e ⊆ −C.
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Since C is a convex cone, then

n
∑

i=1

F (xi, xi+1) +
n
∑

i=1

w(xi, xi+1)e ⊆ −C. (3.4)

Regarding to relations (3.1) and (3.4), we obtain

F (x1, xn+1) +

n
∑

i=1

w(xi, xi+1)e ⊆
n
∑

i=1

F (xi, xi+1) +

n
∑

i=1

w(xi, xi+1)e − C ⊆ −C.

Hence,

n
∑

i=1

w(xi, xi+1)e ∈ −F (x1, xn+1)− C. (3.5)

Since F is below bounded on X ×X , there exists z ∈ Y such that

F (x1, xn+1) ⊆ z + C. (3.6)

Relations (3.5) and (3.6) imply that
∑n

i=1 w(xi, xi+1)e ∈ −z − C. Consequently,
z ∈ −

∑n
i=1 w(xi, xi+1)e−C. With reference to Proposition 2.11, we have ξe(z) ≤

−
∑n

i=1 w(xi, xi+1). Thus,

n
∑

i=1

w(xi, xi+1) ≤ −ξe(z)

Set Tn =
∑n

i=1 w(xi, xi+1). Obviously, {Tn} is an increasing and bounded from
above sequence which implies that {Tn} is a convergent sequence. Hence, w(xi, xi+1)
→ 0. As we see, all assumptions of Theorem 2.13 hold. Therefore, for all x0 ∈ X ,
there exists x ∈ S(x0) such that S(x) = {x}, that is

F (x0, x) + w(x0, x)e ⊆ −C,

and

F (x, x) + w(x, x)e 6⊆ −C, ∀x ∈ X, x 6= x.

This completes the proof.

Remark 3.2. Suppose that F (x, x) = 0Y , for all x ∈ X. Then, from Theorem
3.1, we conclude that

F (x, x) + w(x, x)e 6⊆ −intC, ∀x ∈ X.

Indeed, Theorem 3.1 implies that

F (x, x) + w(x, x)e 6⊆ −intC, ∀x ∈ X, x 6= x

Assume that F (x, x) + w(x, x)e ⊆ −intC. Since w(x, x) ≥ 0 and e ∈ intC,
convexity of C imply that w(x, x)e ∈ C. Therefore, F (x, x) + w(x, x)e ⊆ C which
is a contradiction.
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4 Existence Results for Equilibrium Problems

Let (X, d) be a complete metric space and C a proper closed convex cone of
X with intC 6= ∅. Let F : X ×X → 2Y be a set-valued mapping. An equilibrium
problem is finding x ∈ X such that F (x, y) * −intC, for all y ∈ X . We may
abbreviate this problem with EP from now on. In this section, we intend to
provide sufficient conditions to solve the mentioned EP using the new version of
Ekeland’s variational principle.

Theorem 4.1. Assume that all the assumptions of Theorem 3.1 hold. Moreover,
suppose that X is a compact space, F is upper semicontinuous in the first variable
and F (x, x) = 0Y , for all x ∈ X. Then, EP has at least one solution.

Proof. Consider ε = 1/n. By Theorem 3.1 and Remark 3.2, for all n ∈ N , there
exists xn ∈ X such that

F (xn, y) +
1

n
w(xn, y)e 6⊆ −intC, ∀y ∈ X. (4.1)

By the compactness of X , {xn} has a convergent subsequence in X , say {xnk
}.

Hence, there exists x ∈ X such that xnk
→ x as k → ∞. We claim that x is a

solution of EP. Suppose not, therefore F (x, y) ⊆ −intC, for some y ∈ X . From
(4.1), we get

F (xnk
, y) +

1

nk

w(xnk
, y)e * −intC, ∀y ∈ X.

Thus,

∀k ∈ N ∃zk ∈ F (xnk
, y) +

1

nk

w(xnk
, y)e s.t zk 6∈ −intC (4.2)

Hence,

∀k ∈ N ∃yk ∈ F (xnk
, y) s.t zk = yk +

1

nk

w(xnk
, y)e (4.3)

According to Proposition 2.6, since F is upper semicontinuous in its first variable
there exist y ∈ F (x, y) and a subsequence {ykm

} of {yk} such that ykm
→ y. From

(4.3) and boundedness of w, we obtain

zkm
= ykm

+
1

nkm

w(xnkm
, y)e → y ∈ F (x, y) ⊆ −intC.

Therefore, there exists M0 ∈ N such that for all m > M0, zkm
∈ −intC which

contradicts with (4.2). This completes the proof.

Theorem 4.2. Assume that all the assumptions of Theorem 3.1 hold. Let F be
upper semicontinuous in the first variable, F (x, x) = 0Y and F (x, x) ⊆ −C, for
all x ∈ X. In addition, suppose that for any fixed point x0 ∈ X there is a compact
set K ⊆ X such that

∀x ∈ X −K ∃y ∈ X with w(y, x0) < w(x, x0) and F (x, y) ⊆ −C. (4.4)

Moreover, let the set
{

y ∈ X | w(y, x0) ≤ w(x, x0), F (x, y) ⊆ −C
}

is compact,
for all x ∈ X. Then, EP has at least one solution.
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Proof. We define S : X → 2Y by

S(x) =
{

y ∈ X | w(y, x0) ≤ w(x, x0), F (x, y) ⊆ −C
}

. (4.5)

Obviously, S(x) 6= ∅, for all x ∈ X . We first show that for any x, y ∈ X if y ∈ S(x),
then S(y) ⊆ S(x). Let t ∈ S(y), then w(t, x0) ≤ w(y, x0) and F (y, t) ⊆ −C. Since
y ∈ S(x), then w(y, x0) ≤ w(x, x0) and F (x, y) ⊆ −C. Thus, we have

w(t, x0) ≤ w(y, x0) ≤ w(x, x0) (4.6)

On the other hand, from (3.1), we have

F (x, t) ⊆ F (x, y) + F (y, t)− C ⊆ −C (4.7)

Thus, from (4.6) and (4.7), we get t ∈ S(x) and hence S(y) ⊆ S(x). Since K is a
compact set, then Theorem 4.1 grantees the existence of a point xk ∈ K such that

F (xk, y) * −C, ∀y ∈ K. (4.8)

We claim that xk is a solution of EP on X . Assume that this assertion is not true,
therefore

∃ x ∈ X such that F (xk, x) ⊆ −C (4.9)

set

a = min
y∈S(x)

w(y, x0). (4.10)

Based on the assumption of the theorem, the minimum is achieved. In this way,
there exists x1 ∈ S(x) such that w(x1, x0) = a. It is clear that x1 6∈ K. Because
otherwise, since x1 ∈ S(x), we have F (x, x1) ⊆ −C and according to (4.9), we
obtain

F (xk, x1) ⊆ F (xk, x) + F (x, x1)− C ⊆ −C

which contradicts (4.8). Now by (4.4), there exists y1 ∈ X such that w(y1, x0) <
w(x1, x0) and F (x1, y1) ⊆ −C. Therefore, y1 ∈ S(x1) ⊆ S(x). So, w(y1, x0) ≤
w(x1, x0) = a contradicting (4.10) since y1 ∈ S(x).

5 Conclusion

In the present paper, we study the vectorial form of Ekeland’s variational
principle for set-valued mapping in complete metric space. We obtained some
existence results for equilibrium problems in compact and noncompact spaces.
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