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Abstract : This paper aims at applying a recent new approach to predicting
the growth rate of Thailand GDP. The new approach will provide uncertainty
about predicted values solely from observed data without the need to supply some
subjective prior distribution on unknown model parameters. This is achieved by
building a belief function (i.e., a distribution of a random set) from the likelihood
function given the observed data, and use it to assess prediction uncertainty. With
our sampling model as an autoregressive time series model, we demonstrate em-
pirically that this approach can provide a reliable confidence interval for predicted
values.
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1 Introduction

In the context of prediction, it is highly desirable to have predicted intervals for
predicted future quantities of interest to assess uncertainty about them. Usually,
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a Bayesian approach could be feasible, but the cost is the somewhat controversial
supply of subjective prior distributions for unknown parameters in the assumed
sampling model. The quest for a “Bayesian without priors” has led to an “em-
pirical Bayes”, i.e., supplying priors from data. Starting with Dempster [1] in the
1960’s (but see Dempster [2]), and further developed mainly by Martin and Liu
[3] (see also Martin and Liu [4]), as well as elaborated recently for some appli-
cations in Kanjanatarakul et al. [5], an approach to achieve predicted intervals
without calling upon the existence of prior distributions (of parameters) is based
on a mathematical theory of evidence (Shafer [6]) also known as theory of belief
functions.

In this paper, with the prediction of the growth rate of Thailand GDP in mind,
we will use as our sampling model an autoregressive model with Gaussian white
noise. Predictions of the growth rate will be investigated using our AR-Belief
model. Empirical results will be shown to illustrate the approach as well as an
application to a real situation in economics.

The remainder of this paper is organized as follows. The so-called belief func-
tion theory is reviewed in section 2. Section 3 describes the inferential model and
the steps in obtaining predictive random sets. In section 4, we apply the method-
ology to our autoregressive model with real data where empirical results will be
displayed. Section 5 concludes our empirical studies among other advantages. The
methodology used in this paper can provide exact confidence predicted intervals,
even for small sample sizes, i.e., does not need to consider asymptotics.

2 Belief Functions and Random Sets

We describe in this section an approach to providing a quantitative measure of
uncertainty, in parameter estimation or in prediction of future values of variables,
originated from Dempster’s early works.

The fundamental question in using statistics to make inferences in any situa-
tion is how to quantify epistemic uncertainty involved? This is so since we need
to specify our uncertainty on any conclusions we draw (on numerical estimates,
predicted values, hypotheses about parameters,...); without it, our conclusions are
“incomplete”. Usually, confidence regions require asymptotics, and Bayesian ap-
proach requires priors to fulfill this need, the approach we are going to elaborate
(in the next section) seems useful for any sample sizes, and does not require a prior.
It is based upon on the concept known as belief functions (Shafer, [6]) inspired
from Dempster’s early works.

First, for simplicity, consider a finite set Θ where we are interested in quanti-
fying epistemic uncertainties in it, such as “what is our uncertainty about whether
a “hypothesis”, represented as a subset A of Θ, is true”. A probability measure
on Θ (prior or posterior) P is additive, so that it cannot be used to describe “ig-
norance”. Weakening additivity of set functions on the power set of Θ, denoted
as 2Θ, could achieve this requirement. Thus,

Definition 2.1. A belief function Bel(.) on Θ is a map from 2Θ to the unit interval
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[0, 1], such that

1. Bel(∅) = 0, Bel(Θ) = 1,

2. for any k ≥ 1, and A1, A2, ..., Ak subsets of Θ,

Bel(∪ki=1Ai) ≥
∑

∅ 6=I⊆{1,2,...,k}

(−1)|I|+1Bel(∩i∈IAi)

where |I| denotes the cardinality of the set I.

For A1 = A ⊆ Θ, and A2 = Ac (the set complement of A), we have

Bel(A ∪Ac) = Bel(Θ) = 1 ≥ Bel(A) +Bel(Ac)

so that the interval [Bel(A), P l(A)], where the “plausibility” of A is defined as
Pl(A) = 1 − Bel(Ac), can be used to express the uncertainty about A, including
the case of ignorance.

Now, for the case of finite Θ, any belief function can be written as

Bel(A) =
∑
B⊆A

m(B)

where m(.) : 2Θ → [0, 1] and
∑
A⊆Θm(A) = 1, i.e., the set function m(.) is

a bona fide probability density function, not on Θ, but on 2Θ. It is given by the
Mobius inverse of Bel(.) :

m(A) =
∑
B⊆A

(−1)|A\B|F (B).

As such, there exists a random set S with values in 2Θ admitting precisely
m(.) as its probability density function, and Bel(.) as its “distribution function”,
in the sense that m(A) = P (S = A), and Bel(A) = P (S ⊆ A). For details, see
Nguyen [7].

This interpretation (first pointed out in Nguyen [8], 1978) is essential for “up-
to-day” developments of new statistics (see the recent book by Martin and Liu
[4]).

In our subsequent econometric application, we are facing the case where Θ is
our parameter space and which is a subset of Euclidean space. Thus, it suffices to
define belief functions on (infinite) Hausdorff, locally compact and second count-
able topological spaces. In fact, by duality, it suffices to consider plausibility (set)
functions which play the role of “distributions” of random closed sets (random
sets taking values as closed subsets) in an analogy with distributions of random
vectors via Lebesgue-Stieltje’s theorem in real analysis.

An example of plausibility functions which is used in our subsequent analysis
is this. Let ϕ : Rd → [0, 1] be an upper semi continuous (usc) function (i.e., for
any s ∈ R, the level sets {x ∈ Rd : ϕ(x) ≥ s} are closed subsets). Then the set
function Y : K(Rd) (compact subsets)→ [0, 1], defined by Y (K) = maxx∈K ϕ(x)
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is a plausibility function, characterizing a random closed set S, i.e., Y (K) =
P (S ∩ K 6= ∅), via Choquet ’s theorem. Indeed, let (Ω,A, P ) be a probability
space, and let α(.) : Ω → [0, 1] be a uniformly distributed random variable, then
the random (closed) set

S(ω) = {x ∈ Rd : ϕ(x) ≥ α(ω)}

has Y (K) = maxx∈K ϕ(x) as its distribution. Note that the random set S is
obtained by randomizing the level sets of the function ϕ (i.e., choosing its level
sets as random). Moreover, this random set is “nested”, i.e., for ω 6= ω′, either
S(ω) ⊆ S(ω′) or S(ω) ⊇ S(ω′).

The point is this. In order to quantify an epistemic uncertainty on Θ, it suffices
to create an appropriate random set S (possibly a function of observed data) on it,
and use the interval (Bel, P l), where Pl(.) is the “capacity functional” Y (.) and
Bel(A) = 1 − Pl(Ac). As we will see in the next section, in statistical inference,
the important point is that such a random set is data-dependent (data driven),
i.e., constructed from data and not a sort of “generalized Bayesian prior”. The
probabilistic inference involved is a posterior analysis but without priors. One
interesting (and important) observation is this. While belief functions were de-
veloped (by Shafer [6]) to provide a sort of generalized priors (a belief function is
a generalization of a probability measure/a conventional prior), axiomatic defini-
tions made them bona fide distributions of random sets (as pointed out by Nguyen
[8]). This interpretation turns out to be, not just a formal connection, an essen-
tial view of how to construct belief functions (from data): knowing that belief
functions are distributions of random sets, one proceeds to obtain belief functions
(for use in quantifying epistemic uncertainty) by simply constructing random sets
and then take their distributions as desired belief functions. That is why it looks
like the theory of random sets suffices for the statistical framework which we will
elaborate next.

3 Inferential Models and Associated Inference

We describe, in this section, the recent advances on probabilistic inference
without priors (Martin and liu [3,4]). Note that the frame work is parametric to
start out. It is the basis for any further inference such as prediction. The crucial
idea is the use of random sets in the analysis. Recall that previous attempts to han-
dle situations such as small sample sizes, subjective priors, and exact confidence
levels (of regions) seem to fail because of lack of innovative models and proba-
bilistic new tools, such as random sets and their distributions. While random
sets appeared early in the history of statistics, random sets are sampling designs:
Hajek [9], Kendall [10], Robbins [11], it was not until 1975 when Matheron [12]
provided a rigorous theory that random sets became bona fide random elements,
from which some issues in classical statistics such as confidence regions, coarse
data can be formulated properly. For a contemporary literature, see Molchanov
[13]. For a more down-to-earth text, see Nguyen [7].
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It could be said that belief functions viewed as distributions of random sets
(pointed out by Nguyen [8] is crucial for statistics). The point of view is every-
thing! This is somewhat similar to the situation of local time (occupation time) of
Brownian motion (or more generally, for diffusion processes): While the concept of
local time (since Paul Levy) is important in probability theory (e.g. for investigat-
ing sample path of Brownian motion and stochastic integral), it is only well-known
in probability. It was Nguyen and Pham who pointed out first (Nguyen and Pham
[14]) its possible use in statistics of stochastic processes, triggering follow-up re-
search making local time an important ingredient in statistical analysis ever since.

Specifically, if a belief function is needed for some reasons, the question is: How
to construct it? Now, since a belief function is the distribution of some random
set, it suffices to look for a random set and take its distribution. This is precisely
the framework of inferential models that we are describing now.

Consider a parametric sampling model to start out. Suppose we “believe” that
our observed data X = x is generated by a model f(x|θ), θ ∈ Θ. Of course, the
observed data x does provide some information about the localization of the true
parameter θo in the parameter space Θ, just like in the spirit of the maximum
likelihood principle. We could get more if we realize that there exists a specific
relation between X and θ. Indeed, if Fθ(.) denotes the distribution of X, under θ,
thenX = F−1

θ (U), where F−1
θ (.) is the quantile function ofX, and U is the random

variable, uniformly distributed on [0, 1]. But unlike the setting of simulations
(where knowing a distribution, we wish to generate simulated data from it, by
sample U), here U is unobservable (the observable is X instead). However, such
a relation provides a link between data and parameters like in an equation. This
situation could be formulated in general as follows. Let Y (X) be our statistic of
interest, then Y = a(θ, U) where U is an unobservable random variable with the
known distribution, say, PU . Clearly, if U = u is observed then we could locate
θ in the set Θy(u) = {θ : y = a(θ, u)}. But in fact, U is not observed, so that
given the observed Y = y, we need to predict the unobservable u, a draw from U ,
by a (predictive) random set S on the range of U . Then a random set on Θ is
constructed as Θy(S) = ∪u∈SΘy(u) which is the (random) set of candidates for θ.
Thus, for any (measurable) A ⊆ Θ, P (Θy(S) ⊆ A) represents our belief that θ is in
A, whereas P (Θy(S)∩A 6= ∅) is the plausibility that θ is in A. In the application
section which will follow, the predictive random set S will be constructed as a
nested random set whose distribution is obtained from a coverage function.

4 An Application to Forecasting Growth Rate of
Thailand GDP

4.1 AR(p) - Belief Approach

This paper follows the belief function approach and some notation used in
Kanjanatarakul et al. [5]. The AR model will be employed in this study. The
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AR(p) model may be written as the following.

Xt = c+

p∑
i=1

φiXt−i + εt, (4.1)

where {Xt, t = 1, 2, ....., T}, i=1,2,...,p, c and φi are parameters of the model,
εt ∼ N (0, σ2), and the parameter θ = (c, φ1, φ2, ...., φp, σ

2).
The log likelihood function for the AR model is denoted by L(θ;x) for a sample

size of T, and may be written as Lee [15],

L(θ;x) = logfX1
(x1; θ) +

T∑
t=2

logfXt|Xt−1
(xt|xt−1; θ). (4.2)

However, the likelihood approach needs the large sample properties while the belief
function approach does not. The belief function does not need the prior density
function as usually needed in the Bayesian approach. The belief function ap-
proach, therefore, has several advantages compared with the frequentist and also
the Bayesian approaches (Kanjanatarakul et al.[5]).

Shafer[6] proposed an intuitive approach in which a belief function is built
(see Kanjanatarakul et al. [5]). The likelihood-based belief function BelΘx on Θ is
induced by x of which the contour function (plx(θ)) could be specified as:

plx(θ) = ϕ(θ;x) =
L(θ;x)

supθ′∈ΘLx(θ′)
, (4.3)

The corresponding plausibility function can be computed from plx by an expression
as:

PlΘx (A) = sup
θ∈A

ϕ(θ;x) =
supθ∈A L(θ;x)

supθ′∈Θ L(θ′;x)
, (4.4)

where PlΘx is the plausibility function and ∀A ⊆ Θ.
The focal sets (which are random and closed) of BelΘx are the level sets of the

contour function ϕ(θ;x) defined as follows:

S(ω;x) = {θ ∈ Θ|ϕ(θ;x) ≥ ω}

where ω ∈ [0, 1].
By Demspter [2] using the sampling model for inference to forecast the prob-

lem, the random variable of interest Y is the function of parameter θ. The unob-
served auxiliary variable is U ∈ q which has the known probability distribution
PU independent from θ. An inference model can be written as:

Y = a(θ, U), (4.5)

where Y is continuous and some random quantity Y ∈ Υ. U has a normal
distribution. After observing a value x of random quantities X ∼ fθ(x), fθ(x) is
specified for the probability mass or density function. a(·) is defined in such a way
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that the distribution of Y fixed θ (see Kanjanatarakul et al. [5]) is a conditional
distribution hx,θ(y). Consequently, the inference model can be obtained as Y =
F−1
x,θ (U) in which Fx,θ is the conditional cdf of Y given X = x.

The definition of mapping can be illustrated according to Kanjanatarakul et
al. [5]. We composed the original multi-valued mapping Sx : [0, 1]→ 2Θ with a(·)
to get the new multi-valued mapping S

′

x from [0, 1]×q to 2Υ. It can be described

that S
′

x : [0, 1]×q → 2Υ, so (ω, u)→ a
(
Sx(ω), u

)
. The function a(·) draws each

(θ0, u) to y0 = a(θ0, u). The set S
′

x(ω, u) = a
(
Sx(ω), u

)
is therefore the set of

every value a(θ0, u) for θ0 in Sx(ω).
The distribution of U is independent of θ. U and ω relative to BelΘx are also

independent. The belief function BelΘx is influenced by the Lebesgue measure λ
on [0,1] and the multi-valued mapping Sx from [0,1] to 2Θ. Thus, the product
measure (λ⊗ PU ) on [0, 1]×q and the multi-valued mapping S

′

x cause predictive
belief functions and predictive plausibility functions on Υ as follows:

BelΥx (A) = (λ⊗ PU )
(

(ω, u)|a(Sx(ω), u) ⊆ A
)
, (4.6)

PlΥx (A) = (λ⊗ PU )
(

(ω, u)|a(Sx(ω), u) ∩A 6= ∅
)
, (4.7)

where A ⊆ Υ, particularly Υ is the real line. It will be used to define the lower
and upper predictive cdfs of Y as following:

F `x(y) = BelΥx ((−∞, y]), (4.8)

F℘x (y) = PlΥx ((−∞, y]), (4.9)

where y ∈ R, F `x is a lower predictive cdf, and F℘x is an upper predictive cdf.
Eq.(4.6)-Eq.(4.9) can be analytically estimated by Monte Carlo (MC) simulation.

Example 4.1. Considering, Xt is growth rate of the GDP. {Xt, t = 1, 2, . . . ,T}
has a normal distribution N(µ, σ2). The contour function on θ = (µ, σ2) given a
value x of X is:

plx(µ, σ2) =

(2πσ2)−T/2exp
(
− 1

2σ2

) T∑
t=1

(xt − µ)2

(2πσ̂2)−T/2exp
(
− 1

2σ̂2

) T∑
t=1

(xt − x̄)2

. (4.10)

Resulting in,

plx(µ, σ2) =
( σ̂2

σ2

)
exp
(T

2
− 1

2σ2

T∑
t=1

(xt − µ)2
)
, (4.11)

where x̄ and σ̂2 are the sample mean and the sample variance, respectively.
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Then, Y ∼ N(µ, σ2) is the predicted dataset which is not yet observed data
and has the same distribution. The predicted data can be expressed as

Y = a(θ, U) = µ+ σU, (4.12)

where U ∼ N [0, 1].

Incorporating the set of parameters θ = (c, φ, σ2) and the distribution of U
into Eq.(4.12), Y can be forecasted in the future. From the AR(1) model, thus,
the objective function in estimation can be written as:

Yq = c+ φYq−1 + σu. (4.13)

For any (ω, u) in [0, 1]×R, the set a
(
Sx(ω), u

)
is the interval

[
y`(ω, u), y℘(ω, u)

]
defined by the lower and upper bounds for the values in the future. Specifying a
set of random variables (ωq, uq), they are independent in a simulation “q” times

which q > t. Hence, the lower and upper boundary is
[
y`q(ωq, uq), y

℘
q (ωq, uq)

]
.

Therefore, the lower boundary and the upper boundary corresponding to
Eq.(4.10)-Eq.(4.11) may be expressed as:

y`q(ωq, uq) = min
θ

[c+ φyq−1 + σuq]]subject to[plx(θ) ≥ ωq] (4.14)

and,

y℘q (ωq, uq) = max
θ

[c+ φyq−1 + σuq]]subject to[plx(θ) ≥ ωq]. (4.15)

We draw 10,000 pairs of (ωq, uq) independently and obtain 10,000 intervals

of
[
y`q(ωq, uq), y

℘
q (ωq, uq)

]
. Consequently, the quantities BelΥx (A) and PlΥx (A) are

defined by predictive belief and plausibility functions on Υ, such that,

B̂el
Υ

x (A) =
1

10, 000
]

{[
q ∈ {1, ..., 10, 000}]|[y`q(ωq, uq), y℘q (ωq, uq)] ⊆ A

}
, (4.16)

P̂ l
Υ

x (A) =
1

10, 000
]

{[
q ∈ {1, ..., 10, 000}]|[y`q(ωq, uq), y℘q (ωq, uq)] ∩A 6= ∅

}
.

(4.17)
We may also define the lower and upper predictive quantiles at level α for any
α ∈ (0, 1) as:

q`α = (F℘x )−1(α), (4.18)

q℘α = (F `x)−1(α). (4.19)

Finally, the two cdfs of the belief and plausibility functions describe the knowledge
of Y , given the observed data x completely.
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4.2 Empirical Results

This study aims at forecasting the Thailand GDP growth rate using AR-based
belief function model. First, we used the linear AR(p) model to analyse the past
behavior of Thailand GDP growth rate, and the order p was decided in terms
of AIC and BIC. Thereafter, the AR-based belief function model was applied to
forecast Thailand GDP growth rate from 2015 to 2020. All the data, GDP annual
growth rate in Thailand, are from the National Economic and Social Development
(NESDB), and cover the period of 1952 to 2014.

The Thailand GDP growth rate is illustrated in Fig. 1. The GDP growth
rates are all positive but a few. The Asian Financial Crisis in 1997 led to negative
growth of Thailand GDP. Table 1 provides summary statistics on Thailand GDP
Growth Rate. We found that the average of Thailand GDP Growth Rate is about
5.7%, and has a negative skewness (-0.3789). However, the result of the Jarque-
Bera test statistic was not significant, thereby implying that Thailand GDP annual
growth rate is normally distributed. Table 2 shows the results of AIC and BIC
for AR(p) where p = 1, ..., 5. The results show that the AR(1) model has a better
performance than the candidate models due to minimum value of AIC and BIC.

Figure 1: Thailand’s growth rate form 1952-2014.
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Table 1: Summary statistics for Thailand GDP Annual Growth Rate

Statistic Value GDP growth rate

Mean 0.057454
Median 0.055223
Maximum 0.155751
Minimum -0.074973
Std. Dev. 0.042079
Skewness -0.378945
Kurtosis 3.694852
Jarque-Bera 2.775191
Probability 0.249675
Sum 3.619617
Sum Sq. Dev. 0.109778
Observations 63

Note: Computation at the confidential interval 90%.

Table 2: Akaike information criterion (AIC) and Bayesian information cri-
terion (BIC)

AR(1) AR(2) AR(3) AR(4) AR(5)

AIC -230.6654 -228.7273 -226.7275 -225.9599 -224.0337
BIC -224.2360 -220.1547 -216.0118 -213.1011 -209.0317

Table 3 presents the estimated results of AR(1) model. All the parameters
are statistically significant at a 99% level of confidence. As expected, the first lag
of the growth rate of Thailand GDP has a positive effect in domestic economic
growth. The estimated φ equals to 0.4657, which implies Thailand GDP growth
rates as having strong autocorrelation. The residuals of the model are consistent
with the white noise series with εt ∼ N (0, 0.001407), such that σ is equal to
0.03751. These results show that the AR(1) process with normal distribution is
the appropriate model in this study.

Table 3: Estimation of the selected AR(1) model for the GDP growth rate
of the year 1952-2014

Parameter value std. error z-test p-value

c 0.05669 0.00859 6.59840 <0.0001***
φ 0.46565 0.11150 4.17600 <0.0001***

Note: “***” is the significance level at 0.01.
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Now, we turn to the prediction of growth rates using AR(1)-belief approach.
There are two steps in the prediction. First, the recursive method was used to esti-
mate the mean values of growth rates, and then we computed α-quantile intervals
of prediction and the predictive cdfs of belief and plausibility.

Fig.2.1 - Fig.2.3 show the forecasts of growth rates ranging from year 2015 to
2020 at the confidence level 90%. They exhibit the predictive lower and upper cdfs
of Y or F `x(y) and F℘x (y). From the figures, for example, Fig.2.1(b) illustrates that
the growth rate range of year 2016 will have the quantile range of the plausibility
and belief equal to (0.045878-0.058995) at α = 0.05. On the above level, the
growth rate range is equal to (0.057229-0.070374) at α = 0.95. Other figures of
growth rate intervals are interpreted similar to the year 2016.

Figure 2.1: The predictive lower and upper cdfs of the plausibility and
belief function: 2.1(a) year 2015 and 2.1(b) year 2016
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Figure 2.2: The predictive lower and upper cdfs of the plausibility and
belief function: 2.2(c) year 2017 and 2.2(d) year 2018

Figure 2.3: The predictive lower and upper cdfs of the plausibility and
belief function: 2.3(e) year 2019 and 2.3(f) year 2020
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Table 4 thoroughly indicates lower and upper predictive intervals which are
collected from Fig.2.1-Fig.2.3. The table can be explained as follows. Given
q`α = (F℘x )−1(α) and q℘α = (F `x)−1(α) be the lower and upper predictive quan-
tiles at level α for any α ∈ (0, 1). The predictive plausibility function is thus
PlΥx ((−∞, q`α]) = α and PlΥx ((−∞, q`1−α]) = 1− α. The predictive belief function
is also BelΥx ((−∞, q℘α]) = α and BelΥx ((−∞, q℘1−α]) = 1− α.

Table 4: The α-quantile predictions of growth rates based on belief and
plausibility functions

Cumulative Predictive growth rate (years)
Plausibility \ Belief 2015 2016 2017

PlΥx ((−∞, q`α]) 0.01220 0.04590 0.05590
PlΥx ((−∞, q`1−α]) 0.02990 0.05720 0.06890
BelΥx ((−∞, q℘α]) 0.03410 0.05900 0.07140
BelΥx ((−∞, q℘1−α]) 0.05190 0.07040 0.08440

Cumulative Predictive growth rate (years)
Plausibility \ Belief 2018 2019 2020

PlΥx ((−∞, q`α]) 0.06040 0.06300 0.06460
PlΥx ((−∞, q`1−α]) 0.07470 0.07790 0.07980
BelΥx ((−∞, q℘α]) 0.07780 0.08120 0.08320
BelΥx ((−∞, q℘1−α]) 0.09190 0.09600 0.09840

Note: the confidence level 90% and α = 0.05.

Taking year 2015, for instance, we have quantile predictive ranges (0.01220-
0.03410) and (0.02990-0.05190) at the confidence interval 90%, as well as other
years. Concisely, the growth rate ranges for 6 years (2015-2020) will grow (1.22-
5.19%), (4.59-7.04%), (5.59-8.44%), (6.04-9.19%), (6.30-9.60%), and (6.46-9.84%)
subsequently.

5 Conclusion

In this paper, we proposed the standard AR(1) model with belief function
framework for the GDP growth rate of Thailand. The reason is the AR(1) model
is the best fit by the minimum value of AIC and BIC criteria for model selection.
The uncertainty in this research was associated with the Dempster-Shafer belief
function theory. The statistical forecasting relied on the historical data and the
econometric model. There were some main steps in approximation. Firstly, the
AR(1) model was used to extract the set of the parameter θ applied to the belief
function built from the normalized likelihood-based function. Secondly, in the
prediction step, the variable of interest Y was used to forecast as a function of the
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parameter θ and an auxiliary random variable U with the known distribution PU .
Lastly, the modified approach AR(p)-belief to predict the growth rate intervals
obtained unobserved data in each year.

The statistical AR(1)-belief function is an alternative approach with several
assumptions free to forecast the random variable of interest: the growth rate
of Thailand in this study. The approach is more flexible than the conventional
method (the AR model) because a number of real data does not matter for the
computation. In other words, it can generate the small sample size to the large
data by MC simulation to estimate the predictive cdfs of Y. The results show
the predictive economic growth by those intervals between the lower and upper
predictive boundary. We also illustrate step by step in predictions from year 2015
to 2020 displayed by Fig.2.1-Fig.2.3 and Table 4. The growth rate range of the
lower and the upper anticipated bound is summarized as the range (1.22-9.84%)
forecast from 2015 to 2020.

The outcomes from the belief function approach will be definitely extended in
the future. We will apply a more efficient model with the belief function approach
to predict a growth rate of GDP by ARMA(1,1)-beliefs with a related economic
variable as the future work. The approach may be extended to include expert
opinions from several government and private institutions into the advanced belief
function.
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