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Abstract : The theory of reproducing kernel Hilbert space (RKHS) has recently
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the learning problem is to determine a functional which best describes given data.
Recently, we have extended the hypercircle inequality to data error in two ways:
First, we have extended it to circumstance for which all data is known within
error. Second, we have extended it to partially-corrupted data. That is, data set
contains both accurate and inaccurate data. In this paper, we report on further
computational experiments by using the material from both previous work.
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1 Introduction

The theory of reproducing kernel Hilbert space (RKHS) has recently appeared
as a powerful framework for the learning problem. The principal goal of the learn-
ing problem is to determine a functional which best describes given data. Specifi-
cally, Hypercircle inequality (Hi) has been applied to kernel-based machine leaning
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[1]. Unfortunately, the material on Hi only applies to circumstance for which data
is accurate data. Recently, we have extended the hypercircle inequality to data
error in two ways: First, we have extended it to circumstance for which all data is
known within error [2, 3]. Second, we have extended it to partially-corrupted data
[4]. That is, data set contains both accurate and inaccurate data. In this paper,
we report on further computational experiments by using the available material
from from both previous work.

Let T = {tj : j ∈ Nn} ⊆ T be finite set of points where T is prescribed
and we use the notation Nn = {1, 2, ..., n}. Let d = (dj : j ∈ Nn) ∈ R

n be an
inaccurate data representation of f(tj) where f : T −→ R is the functional in the
a hypothesis space H which is assumed to be a reproducing kernel Hilbert space
over the real numbers (RKHS). That is, for all t ∈ T and f ∈ H, the reproducing
kernel K : T × T −→ R is defined by

f(t) = 〈K(t, ·), f〉.

The Aronszajn-Moore theorem, [5], states that K is a reproducing kernel for some
RKHS if and only if for any inputs T = {tj : j ∈ Nn} the n× n matrix (K(ti, tj) :
i, j ∈ Nn) is positive semi-definite.

Given t−2, t−1, t0 ∈ T , we want to estimate f(t−2), f(t−1) and f(t0) knowing
that ‖ f ‖K≤ 1 and the data error vector e := (dj − f(tj) : j ∈ Nn) has the
Euclidean norm | · |2≤ ε where ε is any positive number. In our case, we still
consider the method of regularization for learning the values f(t−2), f(t−1) and
f(t0). That is, we choose the function which minimizes from the functional Rρ

defined for f ∈ H as

Rρ(f) :=| d− If |22 +ρ ‖ f ‖2K (1.1)

where If := (f(tj) : j ∈ Nn) and ρ is any positive number. The Representer
Theorem say that the learned function has the form

fρ(t) =
∑

j∈Nn

cjK(tj , t), t ∈ T (1.2)

for some real vector c = (cj : j ∈ Nn) which is determined by minimizing
(1.1) over all functions of the form (1.2); see for example [6, 7] We then choose
fρ(t−2), fρ(t−1), fρ(t0) as regularization estimators. Our goal is to estimate the
values of f(t−2), f(t−1) and f(t0) by using the material from Hypercircle inequality
for data error and compare the result to the regularization estimator.

The remainder of this paper is presented as follows. In section II, we briefly
describe the extension of hypercircle inequality to inaccurate data and partially-
corrupted data respectively. Section III contains some results of numerical exper-
iments, discussion of learning the value of a function in a RKHS by our proposed
midpoint algorithm.
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2 Preliminaries

In this section we briefly review the extension of hypercircle inequality to
inaccurate data and partially-corrupted data respectively.

2.1 Hypercircle Inequality for Data Error

Let H be the Hilbert space over the real numbers with inner product 〈·, ·〉.
Given a finite set of linearly independent vectors X = {xj : j ∈ Nn} in H, we

define M :=
{

∑

j∈Nn
ajxj : (aj : j ∈ Nn) ∈ R

n
}

which is the n−dimensional

linear subspace of H spanned by the vectors in X . Let Q : H −→ R
n be a linear

operator H onto R
n which is defined for x ∈ H as

Qx = (〈x, xj〉 : j ∈ Nn). (2.1)

Consequently, the adjoint map QT : Rn −→ H is given at a = (aj : j ∈ Nn) ∈ R
n

as

QTa =
∑

j∈Nn

ajxj (2.2)

and the Gram matrix of the vectors in X is

G = QQT = (〈xj , xl〉 : j, l ∈ Nn). (2.3)

Moreover, G is positive definite matrix. For each d ∈ R
n, it is well-known that

there exist a unique vector x(d) ∈ M such that

x(d) := QT (G−1d) := argmin{||x|| : x ∈ H,Qx = d} (2.4)

and ||x(d)|| =
√

(d,G−1d). Consequently, let us recall the definition of hypercircle
as follows

H(d) := {x : ||x|| ≤ 1, Q(x) = d}.

We remark that H(d) 6= ∅ if and only if ||x(d)|| =
√

(d,G−1d) ≤ 1. If H 6= M
then H(d) consists of exactly one point if and only if ||x(d)|| = 1. In particular,
the Hypercircle inequality is given by the following.

Theorem 2.1. If x(d) ∈ H(d) and x0 ∈ H then for any x ∈ H(d)

|〈x(d), x0〉 − 〈x, x0〉| ≤ dist(x0,M)
√

1− ||x(d)||2,

where dist (x0,M) := min
{

||x0 − y|| : y ∈ M
}

.

Alternatively, the value of 〈x(d), x0〉 is the best estimator to estimate 〈x, x0〉
when x ∈ H(d). Geometrically speaking, the best estimator 〈x(d), x0〉 is the mid-
point of the interval of uncertainty which is defined by I(x0, d) := {〈x, x0〉 : x ∈
H(d)}.
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Now let us review basic fact about Hypercircle inequality for data error and
discuss what we need for section 3. We begin with E2 = {e : e ∈ R

n, |e|2 ≤ ε},
where | · |2 : Rn → R+ is the Euclidean norm on R

n and ε > 0. For each d ∈ R
n,

the definition of the hyperellipse is given by

H(d|E2) := {x : x ∈ B,Q(x)− d ∈ E2}.

Therfore, the Hypercircle inequality for data error becomes in the following way.

Theorem 2.2. If x0 ∈ H and H(d|E2) 6= ∅ then there is a e0 ∈ E2 such that for

any x ∈ H(d|E2)

|〈x(d + e0), x0〉 − 〈x, x0〉| ≤
1

2

(

m+(x0, d|E2)−m−(x0, d|E2)
)

,

where x(d+e0) = QT
(

G−1(d+e0)
)

∈ H(d|E2), m+(x0, d|E2) := max
{

〈x, x0〉 : x ∈

H(d|E2)
}

and m−(x0, d|E2) := min
{

〈x, x0〉 : x ∈ H(d|E2)
}

= −m+(x0,−d|E2)
respectively.

Similarly, the best estimator to estimate 〈x, x0〉 is the midpoint of the following
uncertainty interval I(x0, d|E2) := {〈x, x0〉 : x ∈ H(d|E2)}. To find the best
predictor, we provided the useful duality formula for the right hand endpoint of
the uncertainty interval. We then define the convex function V : Rn −→ R defined
for c ∈ R

n

V (c) := ||x0 −QT (c)||+ ε|c|2 + (d, c),

The result state as the following.

Theorem 2.3. If H(d) 6= ∅ then

m+(x0, d|E) = min
{

V (c) : c ∈ R
n
}

. (2.5)

Moreover, 0 = argmin{V (c) : c ∈ R
n} if and only if

x0

||x0||
∈ H(d|E).

The detailed proof will appear in [2, 8, 9]. Alternatively, to find the best
predictor, we only need evaluate the two numbers m+(x0,±d|E) and then com-
pute 1

2 (m+(x0, d|E2)−m+(x0,−d|E2)). We provided a possible iterative method
to solve the minimum vector c∗ proceeds in the following manner, [3]. Let us
introduce two positive constants given ρk := |ck|2 and τk := ||x0 − QT ck||. Next,
we choose an initial vector c0 6= 0 and then successively define ck, k ∈ N, by the
formula

ck+1 = (ρkG+ ετkI)
−1(ρkQx0 − ρkτkd). (2.6)

Our computation experience indicates that this iteration converges if the vector
Qx0 and d are linearly independent in R

n. However, this has not been proved.
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2.2 Hypercircle Inequality for Partially-Corrupted Data

Let I ⊆ Nn which contains m elements (m < n). Consequently, we use the
notations X

I
= {xi : i ∈ I} ⊂ X and X

J
= {xi : i ∈ J} ⊂ X , where we

denote J = Nn\I. For each e = (e1, ..., en) ∈ R
n, we also use the notations

e
I
= (ei : i ∈ I) ∈ R

m and e
J
= (ei : i ∈ J) ∈ R

n−m respectively. We choose
||| · |||2 : Rn−m −→ R+ is the Euclidean norm on R

n−m and define E2 = {e : e ∈
R

n : e
I
= 0, |||e

J
||| ≤ ε}, where ε is some positive number. For each d ∈ R

n, we
define the partial hyperellipse as follows

H(d|E2) :=
{

x : x ∈ H, ||x|| ≤ 1, Q(x)− d ∈ E2

}

. (2.7)

In this case, we also provided the existence of the best estimator which still

has the form of linear combination of vectors in X and the results follows by
the same method as in [2]. Again, we provided the useful duality formula for
the right hand endpoint of the uncertainty interval and the midpoint is given by
1
2

(

m+(x0, d|E) −m+(x0,−d|E)
)

. The result state as the following.

Theorem 2.4. If H(d|E2) contains more than one element then

m+(x0, d|E2) = min
{

||x0 −QT (c)||+ ε|||c
J
|||2 + (d, c) : c ∈ R

n
}

, (2.8)

Moreover, we provided the necessary and sufficient condition on H(d|E2) such
that the minimum vector c∗ achieves with c∗J = 0 which is useful for practice. To
this end, let us define the convex function V : Rn −→ R defined for c ∈ R

n

V(c) := ||x0 −QT (c)||+ ε|||c
J
|||2 + (d, c).

Theorem 2.5. If x0 /∈ M
I
:=

{

QT
I
(a) : a ∈ R

m
}

and H(d
I
) contain more than

one point then c∗ = arg min{V(c) : c ∈ R
n} with c∗

J
= 0 if and only if

x0 −QT
I
(a∗)

||x0 −QT
I
(a∗)||

∈ H(d|E)

where the vector

x0 −QT
I
(a∗)

||x0 −QT
I
(a∗)||

:= argmin{〈x, x0〉 : x ∈ H(d
I
)}.

The detailed proof will appear in [4]. As we already said, we going to apply
the results in this section in learning problem. We then provide a possible iterative
method to solve the minimum vector c∗ on the right hand side in equation (2.8)
when data error is measured with square loss. We choose an initial vector c0 6= 0
with c0

J
6= 0 and then successively define ck, k ∈ N, by the formula

ck+1 = (G+ τkDk)−1(Qx0 − τkd) (2.9)



522 Thai J. Math. 14 (2016)/ K. Khompurngson and S. Suantai

where τk := ||x0 −QT ck|| and the matrix Dk is an n× n diagonal matrix and we
define the elements on diagonal by

dkii =











0, if i ∈ I

ε

ρkJ
, if i ∈ J

(2.10)

where ρkJ := |||ckJ |||2.

3 Computation

In this section, we shall apply the material from previous section to the problem
of learning the values of a function in a reproducing kernel Hilbert space(RKHS).
They have an origin in the theory of reproducing kernel in the classical paper of
Golomb and Weinberger [5, 10]. Specifically, we choose the gaussian kernel on R

2,
that is

K(x, y) := e−|x−y|22, x, y ∈ R
2.

In our example, we choose the value of T = {tj : j ∈ N20} on a ellipse curve
surrounding the origin. Consequently, we have a finite set of linearly independent
elements {Ktj : j ∈ N20} in H where Ktj (t) := K(tj , t), j ∈ Nn and t ∈ R

2.
Therefore, the vectors {xj : j ∈ N20} appearing in previous section are identified
with the function {Ktj : j ∈ N20}. These vectors determine a linear operator
Q : H −→ R

n defined for f ∈ H as

Qf =
(

〈f,Ktj〉 = f(tj) : j ∈ N20

)

.

Moreover, the Gram matrix of the {Ktj : j ∈ N20} is given by

G := (K(ti, tj) : i, j ∈ N20).

Next, we choose the exact function is given by the formula

g(t) = 3.5K(1,1)(t) + 1.75K(1,−1)(t) + 3.25K(−1,−1)(t)− 3.5K(−1,1)(t), t ∈ R
2

and compute the vector d := (g(tj) : j ∈ N20). Given t−2, t−1, t0 ∈ R
2, we want to

estimate f(t−2), f(t−1), f(t0) knowing that ||f ||K ≤ δ and the data error vector
e := (dj −f(tj)) : j ∈ N20 has Euclidean norm ≤ ε and δ are prescribed. However,
with no effort at all the observations we made so far extend to the case that the
unit ball B is replaced by δB where δ is any positive number. In addition, we shall
compare the midpoint estimator discussed in previous section to the regulariza-
tion estimator which is the stand method for learning problem. The computational
steps are organized in the following steps:
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Figure 1. Point on a ellipse curve and estimating points.

Step 1. Given ρ > 0, we define the quadratic functional Rρ for f ∈ H as

Rρ(f) :=
n
∑

i=1

(

di − f(ti)
)2

+ ρ||f ||2K .

The Representer Theorem say that the unique function with minimizes Rρ has the
form

fρ(t) :=
∑

j∈Nn

cρ(j)K(ttj , t), t ∈ R
2

and cρ = (G+ ρI)−1d. Next, we introduce two functions of ρ given by the formula

ε(ρ) := |d−Qfρ|2, δ(ρ) := ||fρ||K (3.1)

and choose fρ(t−2), fρ(t−1), fρ(t0) as regularization estimators.

Step 2. To compare midpoint estimator and estimate f(t0), we need to identify
an hyperellipse which contains fρ. To this end, we define the hyperellipse as
follows H(d|δ(ρ)E) := {f : ||f ||K ≤ δ(ρ), Q(f) − d ∈ E} where E = {e : e ∈
R

n, |e| ≤ ε(ρ)}. Clearly, the regularization estimator fρ can be view as an element
in hyperelipse

Since hyperllipse H(d|δ(ρ)E) consists one point our strategy compare the reg-
ularization and midpoint estimator must consider a bigger hyperllipse. Conse-
quently, we then compute both the regularization estimator and midpoint estima-
tor corresponding to this hyperellipse H(d|δE) where δ = 3δ(ρ) and compare to
the true value of g at t0.

As explained earlier, the midpoint algorithm requires us to find numerically
the minimum of the function in (2.5) for d and −d. then our midpoint estimator is

given by m(t0) =
m+(t0,d|δE)−m+(t0,−d|δE)

2 . For the computation of m+(t0,±d|δE)
we use the program fminunc in the optimization toolbox of Matlab 7.3.0 and also
for comparison sake we use the iteration scheme (2.6) with an arbitrary chosen
non zero initial vector.

Step 3. To estimate f(t−1), we define the partial hyperellipse as follows

H(d|δE) := {f : ||f ||K ≤ δ, f(t0) = fρ(t0), Q(f)− d ∈ E}.
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Clearly, the regularization estimator fρ can be view as an element in H(d|δE).
Moreover, we define the quadratic functional as x ∈ H

Sρ(f) :=

n
∑

i=1

(

di − f(ti)
)2

+
(

fρ(t0)− f(t0)
)2

+ ρ||f ||2K .

It is easy to check that the function which minimize this functional overH is fρ(t).
That is, the regularization estimator is also given by fρ(t−1).

To obtain the midpoint, the algorithm requires us to find numerically the mini-
mum of the function in (2.8) for d and−d where the vector d := (dj : j ∈ N20∪{0}),
d0 = fρ(t0) and dj = dj for j ∈ N20. Our midpoint estimator is given by

m(t−1) =
m+(t−1,d|δE)−m+(t−1,−d|δE)

2 . For the computation of m+(t−1,±d|δE) we
use the program fminunc in the optimization toolbox of Matlab 7.3.0 and also for
comparison sake (2.9) with an arbitrary chosen non zero initial vector.

Step 4. To estimate f(t−2), we again define partial hyperellipse as follows

H(d|δE′) := {f : ||f ||K ≤ δ, f(t−1) = fρ(t−1), f(t0) = fρ(t0), Q(f)− d ∈ E}.

Clearly, the regularization estimator fρ can be view as an element in H(d|δE′) and
the regularization estimator is also given by fρ(t−2) which follows by the same
method as in step 3. Our midpoint estimator becomes as the following m(t−2) =
m+(t−2,d|δE

′)−m+(t−2,−d|δE′)
2 where the vector d := (dj : j ∈ N20 ∪ {0,−1}) where

d−1 = fρ(t−1),d0 = fρ(t0) and dj = dj for j ∈ N20.

The results of the computation are displayed below and at least for small values
of the regularization parameter, but away from zero, the midpoint algorithm is
better than regularization.
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Figure 2. The result of regularization and midpoint algorithm
at the point t0 and exact value is g(t0) = 0.6767
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Figure 3.The result of regularization and midpoint algorithm
at the point t−1 and exact value is g(t−1) = 1.927
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Figure 4.The result of regularization and midpoint algorithm
at the point t−2 and exact value is g(t−2) = −0.0566
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