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1 Introduction

A kind of approximation, called best coapproximation by Papini and Singer [1],
was introduced in 1972 by Franchetti and Furi to characterize real Hilbert spaces
among real reflexive Banach spaces. As in the case of best approximation, the
theory of best coapproximation has been developed to a large extent in normed
linear spaces and in Hilbert spaces by C. Franchetti and M. Furi, L. Hetzelt, H.
Mazaheri, T.D. Narang, P.L. Papini and I. Singer, Geetha S. Rao and her students,
and by many others (see e.g. [1–9] and references cited therein). The situation in
case of metric linear spaces and metric spaces is somewhat different. Although,
some attempts have been made to develop the theory of best coapproximation in
such spaces (see e.g. [10,11] but this theory is very less developed as compared to
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theory of best approximation. The present paper is a step in this direction. This
paper deals with some characterizations of proximinal, coproximinal, Chebyshev
and co-Chebyshev subspaces. We also discuss continuity properties of the metric
projection, metric coprojection and related maps in this paper.

2 Preliminaries

In this section, we give some definitions and basic facts concerning best ap-
proximation and best coappproximation.

Given a subset G of a metric space (X, d), an element g0 ∈ G is called a best
approximation (best coapproximation) to x ∈ X if

d(x, g0) ≤ d(x, g) (d(g0, g) ≤ d(x, g))

for all g ∈ G. The set of all such g0 ∈ G is denoted by PG(x)(RG(x)). The set G
is called proximinal (coproximinal) if PG(x) (RG(x)) contains at least one element
for every x ∈ X . If for each x ∈ X , PG(x)(RG(x)) has exactly one element, then
the set G is called Chebyshev (co-Chebyshev).

We shall denote the set {x ∈ X : PG(x) 6= φ} ({x ∈ X : RG(x) 6= φ}) by
D(PG) (D(RG)) and the set {x ∈ X : g0 ∈ PG(x)} ({x ∈ X : g0 ∈ RG(x)}) by
P−1
G (g0) (R

−1
G (g0)).

For a proximinal (coproximinal) subset G of X , a mapping PG(RG) : X →
2G(≡ the collection of all subsets of G) defined by PG(x)(RG(x)) = {g0 ∈ G :
d(x, g0) ≤ d(x, g) for every g ∈ G} ({g0 ∈ G : d(g0, g) ≤ d(x, g) for every g ∈ G})
is called metric projection (metric coprojection).

Remarks 2.1.

1. A proximinal subset of a metric space need not be coproximinal:
Let X = R

2 and G = {(x, y) ∈ R
2 : x2+y2 = 1}, then G is a compact subset

of R2 and hence proximinal. However, G is not coproximinal as (0, 0) ∈ R
2

does not have any best coapproximation in G.

2. A coproximinal subset of a metric space need not be proximinal:
Let X = R−{1} and M = (1, 2], then M is a coproximinal subset of X but
is not proximinal.

3. A Chebyshev subset of a metric space need not be co-Chebyshev:
Let X = R and G = [1, 2], then G is Chebyshev but not co-Chebyshev.

4. A co-Chebyshev subset of a metric space need not be Chebyshev:
Let X = R2 with the metric d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2| and
G = {(x, y) ∈ R2 : x = y}. Then, X is a real Banach space and G is a
proximinal subspace of X. We have PG(x, y) = {α(x, x) + (1 − α)(y, y) :
0 ≤ α ≤ 1} i.e. G is not Chebyshev, but RG(x, y) = {(x+y

2 , x+y

2 )} i.e. G is
co-Chebyshev.

5. The set PG(x) (RG(x)) is closed if G is closed.
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6. Every proximinal (coproximinal) set is closed.

7. The set P−1
G (g0)(R

−1
G (g0)) is a closed set for every g0 ∈ G.

8. If G is subspace of a metric linear space (X, d), then g0 ∈ PG(x) (g0 ∈
RG(x)) if and only if x− g0 ∈ P−1

G (0) (R−1
G (0)) and PG(x + g) = PG(x) +

g (RG(x + g) = RG(x) + g) for every g ∈ G.

9. If G is subspace of a metric linear space (X, d), then d(g, 0) = d(g,R−1
G (0))

for every g ∈ G.

For metric spaces X and Y , a mapping u : X → 2Y is called

1. upper (K)-semi-continuous (u.(K)-s.c.) if xn → x, yn ∈ u(xn), yn → y
imply y ∈ u(x),

2. lower (K)-semi-continuous (l.(K)-s.c.) if xn → x, y ∈ u(x) imply the
existence of a sequence {yn} such that yn ∈ u(xn) and yn → y,

3. upper semi-continuous (lower semi-continuous) if the set

H = {x ∈ X : u(x)
⋂

N 6= φ}

is closed(open) for every closed(open) subset N ⊆ Y .

For a closed linear subspace G of a metric linear space (X, d), the canonical
mapping wG of X onto X/G is defined as wG(x) = x+G, x ∈ X. It is easy to see
that the mapping wG is linear, continuous and open.

3 Characterizations of Proximinal, Coproximinal,

Chebyshev and Co-Chebyshev Subspaces

In this section, we discuss characterizations of proximinal, coproximinal, Cheby-
shev and co-Chebyshev subspaces in metric linear spaces and normed linear spaces.
We start with a characterization of Chebyshev subspaces proved in [12] (see
also [13]):

Theorem 3.1. Let G be a proximinal subspace of a normed linear space X, then
the following statements are equivalent:
(i) PG is one-valued and linear.
(ii) P−1

G (0) is a closed linear subspace of X.
(iii) P−1

G (0) is a convex subset of X.

Motivated by this result of Holmes and Kripke [12], we prove the following
characterization of Chebyshev subspaces in metric linear spaces:

Theorem 3.2. Let G be a proximinal linear subspace of a metric linear space
(X, d), then the following are equivalent:
(i) PG is one-valued and additive.
(ii) P−1

G (0) is a closed additive subgroup of X.
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Proof. (i)⇒ (ii) It is known that P−1
G (0) is closed. Let x, y ∈ P−1

G (0), then PG(x) =
{0} and PG(y) = {0}. Since PG is additive PG(x + y) = PG(x) + PG(y) = 0
implies that x+ y ∈ P−1

G (0). Since x ∈ P−1
G (0), we have d(x, 0) = infg∈G d(x, g) =

infg∈G d(−g,−x) = d(−x,G). This implies that d(−x, 0) = d(−x,G) i.e. −x ∈
P−1
G (0). Hence P−1

G (0) is additive subgroup of X .
(ii)⇒(i) Let g1, g2 ∈ PG(x). Then x − g1, x − g2 ∈ P−1

G (0). Since P−1
G (0) is

additive subgroup, we have (x − g1) − (x − g2) ∈ P−1
G (0) i.e. g2 − g1 ∈ P−1

G (0).
Also g2 − g1 ∈ G. Therefore, g2 − g1 ∈ P−1

G (0)
⋂
G = {0}. This gives g1 = g2.

Hence PG is single-valued.
Let x, y ∈ X, g1 ∈ PG(x) and g2 ∈ PG(y) i.e. x − g1 ∈ P−1

G (0) and y − g2 ∈
P−1
G (0). Since P−1

G (0) is additive subgroup of X , we have (x − g1) + (y − g2)) ∈
P−1
G (0) i.e. (x + y) − (g1 + g2) ∈ P−1

G (0). Consider, PG(x + y) − (g1 + g2) =
PG(x+y− (g1+g2)) = 0, as PG is single-valued. This gives PG(x+y) = g1+g2 =
PG(x) + PG(y). Hence PG is additive.

Analogous to Theorem 3.2, we have the following characterization of the co-
Chebyshev subspaces:

Theorem 3.3. Let G be a coproximinal subspace of a metric linear space (X, d),
then the following are equivalent:
(i) RG is one-valued and additive.
(ii) R−1

G (0) is a closed additive subgroup of X.

Proof. (i)⇒ (ii) It is known that R−1
G (0) is a closed set. Let x, y ∈ R−1

G (0), then
RG(x) = {0} and RG(y) = {0}. Since RG is additive, we have RG(x + y) =
RG(x) + RG(y) = 0. This implies that x + y ∈ R−1

G (0). As x ∈ R−1
G (0), we have

d(0, g) ≤ d(x, g) for every g ∈ G. This gives d(0,−g) ≤ d(−x,−g) for every g ∈ G
i.e. −x ∈ R−1

G (0). Hence R−1
G (0) is additive subgroup of X .

(ii)⇒ (i) Let g1, g2 ∈ RG(x). This gives x − g1, x− g2 ∈ R−1
G (0). Since R−1

G (0) is
additive subgroup, we have (x − g1) − (x − g2) ∈ R−1

G (0) i.e. g2 − g1 ∈ R−1
G (0).

This gives g2 − g1 ∈ R−1
G (0)

⋂
G = {0} and so g1 = g2. Hence RG is one-valued.

Let x, y ∈ X be such that g1 ∈ RG(x) and g2 ∈ RG(y). This gives x− g1, y−
g2 ∈ R−1

G (0). Since R−1
G (0) is additive subgroup, we have (x − g1) + (y − g2) ∈

R−1
G (0) i.e. (x+y)−(g1+g2) ∈ R−1

G (0). Now, RG(x+y)−(g1+g2) = RG(x+y−(g1+
g2) = 0, as RG is single-valued. Hence RG(x+ y) = g1+ g2 = RG(x)+RG(y).

Before proving the next result, we prove the following lemma:

Lemma 3.4. Let G be a linear subspace of a metric linear space (X, d) then the
following statements are equivalent:
(i) G is co-proximinal.
(ii) X = G+R−1

G (0).

Proof. (i)⇒ (ii) Let x ∈ X be arbitrary and g0 ∈ RG(x). Since g0 ∈ RG(x), we
have x− g0 ∈ R−1

G (0). Then x = g0 +(x− g0) ∈ G+R−1
G (0) i.e. X ⊆ G+R−1

G (0)
and consequently

X = G+R−1
G (0).
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(ii)⇒ (i) Let x ∈ X be arbitrary, then x = g0 + y for some g0 ∈ G, y ∈ R−1
G (0).

Since y ∈ R−1
G (0), 0 ∈ RG(y) i.e. 0 ∈ RG(x − g0) i.e. x − g0 ∈ R−1

G (0) and so
g0 ∈ RG(x). Hence G is co-proximinal.

Remarks 3.5. 1. For normed linear spaces the above lemma was proved in [4].
2. For best approximation, analogous results were proved for normed linear spaces
in [14] and for metric linear spaces in [15].

Using above lemma, we prove the following characterization of the co-Chebyshev
subspaces:

Theorem 3.6. For a closed linear subspace G of a metric linear space (X, d), the
following are equivalent:
(i) G is co-Chebyshev.
(ii) X = G

⊕
R−1

G (0), where
⊕

means that the sum decomposition of each x ∈ X
is unique.
(iii) G is co-proximinal and [R−1

G (0)−R−1
G (0)]

⋂
G = {0}.

(iv) G is co-proximinal and the restriction map wG |R−1

G
(0) is one to one.

Proof. (i)⇒ (ii) Since G is co-proximinal, we have X = G + R−1
G (0). Now it is

sufficient to show that this sum decomposition is unique. Let x ∈ X be such
that x = g1 + y1 = g2 + y2, where g1, g2 ∈ G and y1, y2 ∈ R−1

G (0). This gives
g1 − g2 = y2 − y1. Now, y1 ∈ R−1

G (0) implies that g1 ∈ RG(y1 + g1) = RG(x).
Similarly, g2 ∈ RG(y2+g2) = RG(x) i.e. g1, g2 ∈ RG(x). Since G is co-Chebyshev,
we have g1 = g2. Hence y1 = y2 and so the representation is unique. Therefore,
X = G

⊕
R−1

G (0).
(ii)⇒(iii) Since X = G

⊕
R−1

G (0), G is co–proximianl. Suppose 0 6= y ∈ [R−1
G (0)−

R−1
G (0)]

⋂
G. Then y = y1 − y2, y1, y2 ∈ R−1

G (0) and y1 6= y2. So, 0 ∈ RG(y1)
and 0 ∈ RG(y2). Now, y1, y2 ∈ R−1

G (0), y1 − y2 ∈ G\{0} and y1 = 0 + y1 =
(y1 − y2) + y2 i.e. y1 ∈ X has two distinct representations, a contradiction. Hence
[R−1

G (0)−R−1
G (0)]

⋂
G = {0}.

(iii)⇒(iv) Suppose wG |R−1

G
(0) is not one to one i.e. there exist y1, y2 ∈ R−1

G (0), y1 6=

y2 such that wG(y1) = wG(y2) i.e. y1 +G = y2 +G. This implies that y1 − y2 ∈
G, y1 − y2 6= 0. Then 0 6= y1 − y2 ∈ [R−1

G (0)−R−1
G (0)]

⋂
G, a contradiction.

Hence wG |
R

−1

G
(0) is one to one.

(iv)⇒(i) Suppose x ∈ X has two distinct best coapproximation in G, say g1 and
g2 i.e. g1, g2 ∈ RG(x). This gives x− g1, x− g2 ∈ R−1

G (0). Since g1 6= g2, x− g1 6=
x − g2 and wG(x − g1) = x + G = wG(x − g2), a contradiction. Hence G is
co-Chebyshev.

Remarks 3.7. 1. For normed linear spaces the equivalence of (i) and (ii) was
proved in [4].
2. For best approximation analogous results were proved for normed linear spaces
in [14] and for metric linear spaces in [15].

Using above theorem, we have the following:
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Theorem 3.8. Let G be a coproximinal subspace of a metric linear space (X, d).
If R−1

G (0) is an additive subgroup, then R−1
G (0) is a proximinal subset of X.

Proof. Since R−1
G (0) is additive subgroup, using Theorem 3.3 we have RG is

one valued and so G is co-Chebyshev in X . Therefore by Theorem 3.6, X =
G
⊕

R−1
G (0). Let x ∈ X\R−1

G (0) be arbitrary then x = g1 + g2 where g1 ∈ G
and g2 ∈ R−1

G (0). Consider d(x, g2) = d(x − g2, 0) = d(g1, 0) = d(g1, R
−1
G (0)) i.e.

d(x, g2) = d(x − g2, R
−1
G (0)) = d(x, g2 + R−1

G (0)) = d(x,R−1
G (0)) (as R−1

G (0) is
additive subgroup). Hence R−1

G (0) is proximinal in X .

Taking R−1
G (0) to be a closed linear subspace, we have the following result in

normed linear spaces.

Theorem 3.9. Let G be a coproximinal subspace of a normed linear space X,
then the following statements are equivalent:
(i) RG is one-valued and linear.
(ii) R−1

G (0) is a closed linear subspace of X.
(iii) R−1

G (0) is a convex subset of X.

Proof. (i)⇒ (ii) It is known that R−1
G (0) is a closed set. Let x, y ∈ R−1

G (0) and
α, β be scalars. Then RG(x) = {0} and RG(y) = {0}. Since RG is linear, we
have RG(αx+ βy) = αRG(x)+ βRG(y) = 0. This implies that αx+ βy ∈ R−1

G (0).
Hence R−1

G (0) is a subspace of X .
(ii)⇒(iii) is obvious.
(iii)⇒ (i) Let g1, g2 ∈ RG(x). This gives x − g1, x − g2 ∈ R−1

G (0). Since x −
g2 ∈ R−1

G (0), we have g2 − x ∈ R−1
G (0). Since R−1

G (0) is a convex set, we have
1
2 (x− g1) +

1
2 (g2 − x) ∈ R−1

G (0) i.e. 1
2 (g2 − g1) ∈ R−1

G (0). This gives 1
2 (g2 − g1) ∈

R−1
G (0)

⋂
G = {0} and so g1 = g2. Hence RG is one-valued.

Let x, y ∈ X be such that g1 ∈ RG(x) and g2 ∈ RG(y). This gives x− g1, y−
g2 ∈ R−1

G (0). Since R−1
G (0) is a convex set, we have 1

2 (x−g1)+
1
2 (y−g2) ∈ R−1

G (0)

i.e. 1
2 (x+y)− 1

2 (g1+g2) ∈ R−1
G (0) i.e. ‖g‖ ≤ ‖ 1

2 (x+y)− 1
2 (g1+g2)−g‖ for every g ∈

G i.e. (x+y)− (g1+g2) ∈ R−1
G (0). Now, RG(x+y)− (g1+g2) = RG(x+y− (g1+

g2)) = 0 i.e. RG(x + y) = g1 + g2 = RG(x) + RG(x). Since g1 ∈ RG(x), we have
‖g1 − g‖ ≤ ‖x− g‖ for every g ∈ G i.e. ‖αg1 − αg‖ ≤ ‖αx− αg‖ for every g ∈ G
and for every scalar α. This implies that αg1 ∈ RG(αx) i.e. αRG(x) ⊆ RG(αx).
Let g1 ∈ RG(αx) then

‖g1 − g‖ ≤ ‖αx− g‖ for every g ∈ G

⇒ ‖
g1
α

−
g

α
‖ ≤ ‖x−

g

α
‖ for every g ∈ G

i.e. g1
α

∈ RG(x) and so g1 ∈ αRG(x). This gives RG(αx) ⊆ αRG(x). Consequently
RG(αx) = αRG(x) and hence RG is linear.

Remarks 3.10. The corresponding results for the map PG were proved in [12]
(see also [13]).
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The following theorem characterizes the coproximinality of hyperplanes in
normed linear spaces:

Theorem 3.11. A closed hyperplane G in a normed linear space X is coproximinal
if and only if there exist an element z ∈ X\{0} such that 0 ∈ RG(z).

Proof. Let G be coproximinal in X , x ∈ X\G and g0 ∈ RG(x). Since g0 ∈ RG(x),
we have x− g0 ∈ R−1

G (0) i.e. 0 ∈ RG(x− g0), x− g0 6= 0.
Conversly, if 0 ∈ RG(z) then ‖g‖ ≤ ‖z − g‖ for every g ∈ G implies that

‖αg‖ ≤ ‖αz − αg‖ for every g ∈ G and scalar α. This gives 0 ∈ RG(αz). Let
x ∈ X\G. Since G is a closed hyperplane in X , we have x − αz ∈ G for some
suitable α 6= 0. Since 0 ∈ RG(αz), we have ‖g‖ ≤ ‖αz − g‖ for every g ∈ G i.e.

‖(x− αz)− (x− αz + g)‖ ≤ ‖αz − (x− αz) + (x− αz)− g ‖

i.e. ‖(x− αz)− (x − αz + g)‖ ≤ ‖x− (x − αz + g)‖ for every g ∈ G

i.e. ‖(x− αz)− g′‖ ≤ ‖x− g′‖ for every g′ ∈ G

i.e. x− αz ∈ RG(x). Hence G is coproximinal in X .

Remarks 3.12. A similar result for best approximation was proved in [13].

A set G in a metric space (X, d) is said to be very non-proximinal if G is closed
and no element x ∈ X\G has an element of best approximation in G i.e. if G = G
and PG(x) = φ for every x ∈ X\G. Concerning the very non-proximinality of G,
we have

Theorem 3.13. A linear subspace G of a metric linear space (X, d) is very non-
proximinal if and only if there is no element z ∈ X\{0} such that 0 ∈ PG(z).

Proof. Suppose there exist z ∈ X\{0} such that 0 ∈ PG(z), then d(z, 0) = d(z,G)
implies that d(z + g, g) = d(z + g,G) i.e. g ∈ PG(z + g) and so G is not very
non-proximinal, a contradiction.

Conversly, suppose that there exist x ∈ X\G such that g0 ∈ PG(x) i.e.
d(x, g0) = d(x,G) i.e. d(x− g0, 0) = d(x− g0, G) i.e. 0 ∈ PG(x− g0), x− g0 6= 0,
a contradiction. Hence the result follows.

Remarks 3.14. The above theorem extends the corresponding result proved in [13]
for normed linear spaces. Analogously, we now characterize the non-coproximinality
of G.

A set G in a metric space (X, d) is said to be very non-coproximinal if no
element x ∈ X\G has an element of best coapproximation in G i.e. RG(x) = φ
for every x ∈ X\G.

Concerning the very non-coproximinality of G, we have

Theorem 3.15. A linear subspace G of a metric linear space (X, d) is very non-
coproximinal if and only if there is no element z ∈ X\{0} such that 0 ∈ RG(z).
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Proof. Suppose there exist z ∈ X\{0} such that 0 ∈ RG(z), then d(0, g) ≤ d(z, g)
for every g ∈ G. This implies that d(g′, g+g′) ≤ d(z+g′, g+g′) for every g ∈ G i.e.
g′ ∈ RG(z+g′). This implies that G is not very non-coproximinal, a contradiction.

Conversly, assume that there exist no element z ∈ X\{0} such that 0 ∈ RG(z).
Suppose there exist x ∈ X\G such that g0 ∈ RG(x), then x− g0 ∈ R−1

G (0) and so
0 ∈ RG(x− g0), x− g0 6= 0, a contradiction.

4 Continuity Properties of Metric Projection, Met-

ric Co-Projection and Related Maps

One of the main problem in the theory of approximation is the characterization
of those Chebyshev (co-Chebyshev) subspaces for which PG (RG) is continuous.
To discuss this problem, we start with the following:

Theorem 4.1. For a co-Chebyshev subspace G of a metric linear space (X, d) the
metric coprojection RG is continuous if and only if the restriction w = wG |R−1

G
(0)

of the canonical mapping wG : X → X/G to the set R−1
G (0) is a homeomorphism

of R−1
G (0) onto X/G.

Proof. We prove this result using the commuting diagram drawn below:

X
wG

//

I−RG ""❊
❊

❊

❊

❊

❊

❊

❊

❊

X/G

w−1

��

R−1
G (0)

Assume w is a homeomorphism then so is w−1. Since (I − RG) = w−1wG, and
wG is continuous, (I −RG) is also continuous and so RG is continuous.

Conversly, let RG be continuous then so is I − RG. Let U be an open set in
R−1

G (0), then (I − RG)
−1(U) is open set in X and since wG is an open mapping,

wG[(I−RG)
−1(U)] is open in X/G. Hence w−1 is continuous. Since wG is contin-

uous and onto(see [16]), and w = wG |R−1

G
(0), we have w is continuous and onto.

Moreover, it is one to one (Theorem 3.6). Hence w is a homeomorphism.

Remarks 4.2. An analogous result for best approximation map was proved in [17]
for normed linear spaces.

Concerning the continuity of RG, we have the following:

Theorem 4.3. For a co-Chebyshev subspace G of a metric linear space (X, d),
the following statements are equivalent:
(i) The metric coprojection RG is continuous.
(ii) RG is continuous at each point of R−1

G (0).
(iii) The direct sum decomposition X = G⊕R−1

G (0) is topological (i.e. limn→∞ xn =
x if and only if limn→∞ RG(xn) = RG(x) and limn→∞[xn−RG(xn)] = x−RG(x)).
(iv) The functional φG(x) = d(RG(x), 0), x ∈ X is continuous.
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Proof. (i)⇒(ii) is obvious.
(ii)⇒(i) Suppose xn → x but RG(xn) 9 RG(x), then xn −RG(x) → x−RG(x) ∈
R−1

G (0), but RG(xn − RG(x)) = RG(xn) − RG(x) 9 0, a contradiction. Thus
(i)⇔(ii).
(i)⇒(iii) Let xn → x. Since RG is continuous, RG(xn) → RG(x) and so [xn −
RG(xn)] → x − RG(x). Conversly, let RG(xn) → RG(x) and [xn − RG(xn)] →
x−RG(x) then xn → x.
(iii)⇒(i) is obvious. Thus (i) ⇔ (iii).
(i)⇒ (iv) is obvious.
(iv)⇒ (i) Let xn → x ∈ R−1

G (0), then d(RG(xn), RG(x)) = d(RG(xn), 0) →
d(RG(x), 0) = 0 implies that RG(xn) → RG(x). This gives (iv)⇒ (ii). Since
(ii)⇒(i), we have (iv)⇒ (i). Thus (i)⇔ (iv) and hence the proof is complete.

Remarks 4.4. The corresponding result for the best approximation map is well
known for normed linear spaces (see [13]) and for metric linear spaces (see [18]).

The following result on the continuity of PG (RG) was proved in [19]( [11]):

Theorem 4.5. Let G be a Chebyshev (co-Chebyshev) subspace of a metric linear
space (X, d) such that P−1

G (0) (R−1
G (0)) is boundedly compact then PG (RG) is

continuous.

We now discuss the converse implications

Theorem 4.6. Let G be a Chebyshev subspace of a metric linear space (X, d) such
that every bounded sequence in X/G has a convergent subsequence. If the metric
projection PG onto G is continuous then P−1

G (0) is boundedly compact.

Proof. Suppose P−1
G (0) is not boundedly compact. Let {fn} be a bounded se-

quence in P−1
G (0) which has no convergent subsequence. Then {fn + G} is a

bounded sequence in X/G and by hypothesis, {fn +G} has a subsequence {fnk
+

G} → f +G. Now, fn ∈ P−1
G (0) i.e. d(fn, 0) = d(fn, G) and {fnk

+G} → f +G
implies that there exist a sequence {gnk

} in G such that {fnk
+gnk

} → f . Consider

d(PG(fnk
+ gnk

), PG(f)) = d(PG(fnk
) + gnk

, PG(f))

= d(gnk
, PG(f))

= d(fnk
+ gnk

, fnk
+ PG(f))

= d(fnk
+ gnk

− f, fnk
+ PG(f)− f)

≤ d(fnk
+ gnk

− f, 0) + d(fnk
+ PG(f)− f, 0) 9 0.

Hence d(PG(fnk
+gnk

), PG(f)) 9 0 a contradiction to the continuity of PG. Hence
our supposition is wrong and so P−1

G (0) is boundedly compact.

Theorem 4.7. Let G be a co-Chebyshev subspace of a metric linear space (X, d)
such that every bounded sequence in X/G has a convergent subsequence. If the
metric coprojection onto G is continuous then R−1

G (0) is boundedly compact.
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Proof. The proof runs on similar lines as that of Theorem 4.6.

A mapping u : X → Y is said to be Lipschitzian if there exist a constant k > 0
such that d(u(x), u(y)) ≤ kd(x, y) for all x, y ∈ X .

Concerning the Lipschitzian property of the map RG, we have

Theorem 4.8. For a co-Chebyshev subspace G of a metric linear space (X, d), the
metric coprojection RG is Lipschitzian if and only if the mapping w−1

G : X/G →
R−1

G (0) is a Lipschitzian homeomorphism of R−1
G (0) onto X/G.

Proof. For any x+G ∈ X/G, we have x−RG(x) ∈ R−1
G (0) and wG(x−RG(x)) =

x+G.
Let w−1

G be a Lipschitzian homeomorphism. Consider

d(RG(x), RG(y)) = d(RG(x) − x+ x,RG(y)− y + y)

= d(−w−1
G (x+G) + x,−w−1

G (y +G) + y)

≤ d(w−1
G (y +G), w−1

G (x+G)) + d(x, y)

≤ kd(y +G, x+G) + d(x, y)

= k inf
g∈G

d(y − x, g) + d(x, y)

≤ kd(x, y) + d(x, y) = (1 + k)d(x, y) = k′d(x, y)

i.e. RG is Lipschitzian.
Conversly, suppose that RG is Lipschitzian. Consider

d(w−1
G (x+G), w−1

G (y +G)) = d(x−RG(x), y −RG(y))

= d(x−RG(x− g), y −RG(y − g)) for all g ∈ G

= d(x−RG(x) + g, y −RG(y − g)) for all g ∈ G

≤ d(x+ g, y) + d(RG(x), RG(y − g)) for all g ∈ G

≤ d(x, y − g) + k1d(x, y − g) for all g ∈ G.

Therefore,

d(w−1
G (x+G), w−1

G (y +G)) ≤ (1 + k1) inf
g∈G

d(x, y − g)

= (1 + k1)d(x +G, y +G)

= k′′d(x+G, y +G)

i.e. w−1
G is Lipschitzian.

Since RG is Lipschitzian, it is continuois and so Theorem 4.1 implies that
wG |R−1

G
(0) is a homeomorphism and therefore (wG |R−1

G
(0))

−1 is also a homeomor-

phism.Hence w−1
G is a Lipschitzian homeomorphism of R−1

G (0) onto X/G.

Remarks 4.9. For the map PG, the corresponding result was proved for normed
linear spaces in [17] and for metric linear spaces in [18].
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Let G be a set in a metric space (X, d). An element g0 ∈ G is said to be strongly
unique best approximation (see [13]) (strongly unique best coapproximation [9])
of an element x ∈ X if there exist a constant r = r(x,G) with 0 < r ≤ 1
such that d(x, g0) + rd(g0, g) ≤ d(x, g) (d(g0, g) + rd(x, g0) ≤ d(x, g)) for every
g ∈ G. A subspace having strongly unique best approximation (strongly unique
best coapproximation) for each x ∈ X is called strongly Chebyshev (strongly co-
Chebyshev).

Theorem 4.10. For a strongly Chebyshev subspace G of a metric linear space
(X, d), the metric projection PG is pointwise Lipschitzian i.e. for each x ∈ X
there exist a constant λ = λ(G, x) such that d(PG(x), PG(y)) ≤ λd(x, y)(y ∈ X).

Proof. If r = r(G, x) as in the definition of strongly Chebyshev, then putting
g0 = PG(x) and g = PG(y), we obtain

rd(PG(x), PG(y)) ≤ d(x, PG(y))− d(x, PG(x)

≤ d(x, y) + d(y, PG(y))− d(x, PG(x)

≤ d(x, y) + d(y, PG(x)) − d(x, PG(x))

≤ d(x, y) + d(y, x) + d(x, PG(x)) − d(x, PG(x)) = 2d(x, y)

This gives, d(PG(x), PG(y)) ≤
2
r
d(x, y) . So taking 2

r
= λ, we get the result.

Remarks 4.11. The converse of Theorem 4.10 is not true (see [13]): In X = l2,
the metric projection PG is pointwise Lipschitzian, but it has no strongly Chebyshev
subspace.

Can we prove an analogous result for strongly co-Chebyshev subspaces?
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