Semigroups of Full Transformations with Restriction on the Fixed Set is Bijective

Ekkachai Laysirikul
Department of Mathematics, Faculty of Science, Naresuan
University, Phitsanulok, 65000, Thailand
e-mail : ekkachail@nu.ac.th

Abstract : Let $T(X)$ be the full transformation semigroup of the set X and let $S(X, Y)=\{\alpha \in T(X): Y \alpha \subseteq Y\}$ where Y is a nonempty subset of X. Then $S(X, Y)$ is a subsemigroup of $T(X)$. In this paper, for a fixed nonempty subset Y of X, let

$$
P G_{Y}(X)=\left\{\alpha \in T(X):\left.\alpha\right|_{Y} \in G(Y)\right\}
$$

where $G(Y)$ is the permutation group on Y. Then $P G_{Y}(X)$ is a subsemigroup of $S(X, Y)$. Some relationships between $P G_{Y}(X)$ it's subsemigroup and $S(X, Y)$ are considered. Moreover, it is shown that $P G_{Y}(X)$ is regular and characterizations of left regularity, right regularity, and completely regularity of elements of $P G_{Y}(X)$ are also described.

Keywords : transformation semigroup; regularity; left regularity; right regularity; completely regularity.
2010 Mathematics Subject Classification : 20M20; 20 M 17.
1

1 Introduction

Let X be a nonempty set and let $T(X)$ denote the semigroup of the full transformations from X into itself under composition of mappings. This semigroup is an important object in semigroup theory, combinatorics, many-valued logic, etc. It is known that $T(X)$ is a regular semigroup, that is, for every $\alpha \in T(X), \alpha=\alpha \beta \alpha$

[^0]for some $\beta \in T(X)$. For a fixed nonempty subset Y of X, we denote
$$
S(X, Y)=\{\alpha \in T(X): Y \alpha \subseteq Y\}
$$

Then $S(X, Y)$ is a semigroup of full transformations on X which leave Y invariant. In 1966, Magill [1 introduced and studied this semigroups. Later, many classical notions of this semigroup have been investigated, see [2] , 3] and [4.

In [3], Nenthein, Youngkhong and Kemprasit showed that $S(X, Y)$ is regular if and only if $X=Y$ or Y contains exactly one element.

In 1994, Umar [5] constructed a subsemigroup of $T(X)$ as follows:

$$
F_{Y}(X)=\left\{\alpha \in T(X): C(\alpha) \alpha \subseteq Y=Y \alpha \text { and }\left.\alpha\right|_{Y} \text { is injective }\right\}
$$

where

$$
C(\alpha)=\bigcup\left\{y \alpha^{-1}: y \in X \alpha \text { and }\left|y \alpha^{-1}\right| \geq 2\right\}
$$

$F_{Y}(X)$ is called an Umar semigroup. He proved that $F_{Y}(X)$ is a regular semigroup and considered the Green's relations on this semigroup. It is clear that $F_{Y}(X)$ is a subsemigroup of $S(X, Y)$.

Later, Sanwong and Sommanee [6] investigated regularity and Green's relations on a subsemigroup of $S(X, Y)$ which defined by

$$
T(X, Y)=\{\alpha \in T(X): X \alpha \subseteq Y\}
$$

Recently, a subsemigroup of $S(X, Y)$ defined by $F(X, Y)=\{\alpha \in T(X, Y): X \alpha \subseteq$ $Y \alpha\}$ was studied by Sanwong [7].

It is the aim of the paper to introduce a new subsemigroup of $S(X, Y)$ which is defined as follows:

$$
P G_{Y}(X)=\left\{\alpha \in T(X):\left.\alpha\right|_{Y} \in G(Y)\right\}
$$

where $G(Y)$ is the permutation group on a nonempty subset Y of X. Some algebraic properties of $P G_{Y}(X)$ are studied. For examples, $P G_{Y}(X)$ is a regular semigroup, $T(X)$ can be embeddable into $P G_{Y}(Z)$ for some set Z and relationships between $P G_{Y}(X)$, it's subsemigroup and $S(X, Y)$ are given. In the last section, left regularity, right regularity, and completely regularity of elements of $P G_{Y}(X)$ are determined.

Throughout of the paper, the symbol $\pi(\alpha)$ will denote the partition of X induced by $\alpha \in T(X)$ namely,

$$
\pi(\alpha)=\left\{y \alpha^{-1}: y \in X \alpha\right\}
$$

The set X can be finite or infinite. The cardinality of a set A is denoted by $|A|$.

2 Preliminaries

Let X be an arbitrary set and Y a nonempty subset of X. Define a subset of $T(X)$ as follows:

$$
P G_{Y}(X)=\left\{\alpha \in T(X):\left.\alpha\right|_{Y} \in G(Y)\right\}
$$

where $G(Y)$ is the permutation group on Y. Note that $i d_{X}$, the identity mapping on X, belongs to $P G_{Y}(X)$.
Remark 2.1. We note that $P G_{Y}(X)=G(X)$ if $Y=X$. For arbitrary singleton subset Y of X, we obtain that $S(X, Y)=P G_{Y}(X)$. Moreover, if $|X|=2$, then we have $S(X, Y)=P G_{Y}(X)=F_{Y}(X)$.

Theorem 2.2. $P G_{Y}(X)$ is a regular semigroup.
Proof. To prove that $P G_{Y}(X)$ is a subsemigroup of $T(X)$, let $\alpha, \beta \in P G_{Y}(X)$. Then we have $\left.\alpha\right|_{Y},\left.\beta\right|_{Y} \in G(Y)$ whence $\left.\alpha \beta\right|_{Y} \in T(Y)$. It is easy to verify that $\left.\alpha \beta\right|_{Y} \in G(Y)$. To show $P G_{Y}(X)$ is regular, let $\alpha \in P G_{Y}(X)$. We obtain via $Y \alpha=Y$ that $X \alpha=Y \cup(X \alpha \backslash Y)$. For each $x \in Y$, there exists a unique $x^{\prime} \in Y$ such that $x^{\prime} \alpha=x$ since $\left.\alpha\right|_{Y} \in G(Y)$. For $x \in X \alpha \backslash Y$, we choose $x^{\prime} \in x \alpha^{-1}$. Define $\beta: X \rightarrow X$ by

$$
x \beta= \begin{cases}x^{\prime}, & \text { if } x \in X \alpha, \\ x, & \text { otherwise }\end{cases}
$$

Obviously, $\left.\beta\right|_{Y}: Y \rightarrow Y$ is bijective, that is $\beta \in P G_{Y}(X)$. Let $x \in X$. Then $x \alpha \beta \alpha=(x \alpha)^{\prime} \alpha=x \alpha$. This means that $\alpha=\alpha \beta \alpha$ whence $P G_{Y}(X)$ is a regular semigroup.

From the definition of $P G_{Y}(X)$ and Theorem 2.2, we conclude that $F_{Y}(X)$ is a subsemigroup of $P G_{Y}(X)$ and $P G_{Y}(X)$ is a subsemigroup of $S(X, Y)$. Next, the conditions under which the semigroups coincide are given.
Theorem 2.3. $F_{Y}(X)=P G_{Y}(X)$ if and only if $|X \backslash Y| \leq 1$.
Proof. Assume that $|X \backslash Y| \geq 2$. There exist $a, b \in X \backslash Y$ such that $a \neq b$. We define $\alpha: X \rightarrow X$ by

$$
x \alpha= \begin{cases}a, & \text { if } x=b \\ x, & \text { otherwise }\end{cases}
$$

We obtain that $\left.\alpha\right|_{Y}$ is the identity mapping on Y, that is $\alpha \in P G_{Y}(X)$. Since $a \alpha^{-1}=\{a, b\}$, we have $a \in C(\alpha) \alpha$ whence $C(\alpha) \alpha \nsubseteq Y$. This implies that $\alpha \notin$ $F_{Y}(X)$ and then $F_{Y}(X) \neq P G_{Y}(X)$.

Conversely, assume that $|X \backslash Y| \leq 1$. It is enough to show that $P G_{Y}(X) \subseteq$ $F_{Y}(X)$. Let $\alpha \in P G_{Y}(X)$ and $x \in C(\alpha)$. Then we get $\left.\alpha\right|_{Y} \in G(Y)$ and $x \in y \alpha^{-1}$ for some $y \in X$ and $\left|y \alpha^{-1}\right| \geq 2$. To verify that $y=x \alpha \in Y$, suppose that $y \notin Y$. Since $Y \alpha=Y$, we have $x \notin Y$. By the assumption, we conclude that $x=y$. This means that $y \alpha^{-1}=\{y\}$ which is a contradiction. Hence $y \in Y$ and so $C(\alpha) \alpha \subseteq Y$. It is clear that $\left.\alpha\right|_{Y}$ is injective. Therefore $\alpha \in F_{Y}(X)$ whence $F_{Y}(X)=P G_{Y}(X)$.

Theorem 2.4. $P G_{Y}(X)=S(X, Y)$ if and only if $|Y|=1$.
Proof. Assume that $|Y|>1$. Let $a, b \in Y$ be such that $a \neq b$ and define $\alpha: X \rightarrow X$ by

$$
x \alpha= \begin{cases}a, & \text { if } x=b \\ x, & \text { otherwise }\end{cases}
$$

It is easy to verify that $Y \alpha \subseteq Y$ and $\left.\alpha\right|_{Y}$ is not injective. Hence $\alpha \in S(X, Y)$ and $\alpha \notin P G_{Y}(X)$.

The converse follows from Remark 2.1.
Theorem 2.5. If $P G_{Y}(X)$ is an inverse semigroup, then $|X \backslash Y| \leq 1$.
Proof. Suppose that $|X \backslash Y| \geq 2$. Then there exist $a, b \in X \backslash Y$ such that $a \neq b$. Choose $c \in Y$ and define $\alpha, \beta: X \rightarrow X$ by

$$
x \alpha= \begin{cases}c, & \text { if } x=b \\ x, & \text { otherwise }\end{cases}
$$

and

$$
x \beta= \begin{cases}a, & \text { if } x=b \\ x, & \text { otherwise }\end{cases}
$$

We note that $\left.\alpha\right|_{Y}$ and $\left.\beta\right|_{Y}$ are the identity mapping. Thus $\alpha, \beta \in P G_{Y}(X)$. Moreover, we obtain that $\alpha=\alpha \beta \alpha, \beta=\beta \alpha \beta$ and $\alpha^{2}=\alpha$. Hence $\alpha, \beta \in V(\alpha)$. Consequently, $P G_{Y}(X)$ is not an inverse semigroup.

Corollary 2.6. $P G_{Y}(X)$ is an inverse semigroup if and only if $|X| \leq 2$ or $Y=X$.
Proof. Assume that $|X|>2$ and $Y \neq X$. If $|X \backslash Y|>1$, then we have $P G_{Y}(X)$ is not an inverse semigroup by Theorem 2.5. Suppose that $|X \backslash Y|=1$. Let $a, b \in Y$ be such that $a \neq b$ and $X \backslash Y=\{c\}$. Define $\alpha, \beta: X \rightarrow X$ by

$$
x \alpha= \begin{cases}a, & \text { if } x=c \\ x, & \text { otherwise }\end{cases}
$$

and

$$
x \beta= \begin{cases}b, & \text { if } x=c \\ x, & \text { otherwise }\end{cases}
$$

Since $\left.\alpha\right|_{Y},\left.\beta\right|_{Y}$ are the identity mappings, we deduce $\alpha, \beta \in P G_{Y}(X)$. Note that $\alpha=\alpha \beta \alpha, \beta=\beta \alpha \beta$ and $\alpha^{2}=\alpha$ whence $\alpha, \beta \in V(\alpha)$. Therefore $P G_{Y}(X)$ is not an inverse semigroup.

From Remark 2.1 we obtain the converse.
Let $P(X)$ be the partial transformation semigroup on X. We note that $T(X)$ is a subsemigroup of $P(X)$. The following theorem shows that each full transformations semigroup can be embedded into $P G_{Y}(X)$ for some set X.

Theorem 2.7. Let $0 \notin X$. Then $P(X)$ is isomorphic to $P G_{\{0\}}(X \cup\{0\})$.
Proof. Let $\alpha \in P(X)$. Then $\operatorname{dom}(\alpha) \subseteq X$. We let $\bar{\alpha}: X \cup\{0\} \rightarrow X \cup\{0\}$ be defined by

$$
x \bar{\alpha}= \begin{cases}x \alpha, & \text { if } x \in \operatorname{dom}(\alpha) \\ 0, & \text { otherwise }\end{cases}
$$

Obviously, $\left.\bar{\alpha}\right|_{\{0\}} \in G(\{0\})$ whence $\bar{\alpha} \in P G_{\{0\}}(X \cup\{0\})$. We claim that $\bar{\alpha} \bar{\beta}=\overline{\alpha \beta}$ for each $\alpha, \beta \in P(X)$. Let $\alpha, \beta \in P(X)$ and $x \in X \cup\{0\}$.

Case 1. $x \bar{\alpha} \notin \operatorname{dom}(\beta)$. If $x \in \operatorname{dom}(\alpha)$ then $x \alpha \notin \operatorname{dom}(\beta)$ which implies $x \notin \operatorname{dom}(\alpha \beta)$. If $x \notin \operatorname{dom}(\alpha)$ then $x \notin \operatorname{dom}(\alpha \beta)$ since $\operatorname{dom}(\alpha \beta) \subseteq \operatorname{dom}(\alpha)$. Consequently, $x \bar{\alpha} \bar{\beta}=0=x \overline{\alpha \beta}$.

Case 2. $x \bar{\alpha} \in \operatorname{dom}(\beta)$. Then $x \alpha=x \bar{\alpha}$ and we conclude that $x \in \operatorname{dom}(\alpha \beta)$. Hence $x \bar{\alpha} \bar{\beta}=x \alpha \bar{\beta}=x \alpha \beta=x \overline{\alpha \beta}$.

These imply that $\bar{\alpha} \bar{\beta}=\overline{\alpha \beta}$ for all $\alpha, \beta \in P(X)$. It follows that the mapping $\varphi: P(X) \rightarrow P G_{\{0\}}(X \cup\{0\})$ defined by $\alpha \varphi=\bar{\alpha}$ is a homomorphism.

To verify injectivity of φ, let $\alpha, \beta \in P(X)$ be such that $\bar{\alpha}=\bar{\beta}$. Let $D=$ $\{x \in X: x \bar{\alpha} \neq 0\}$. Obviously, $\operatorname{dom}(\alpha)=D=\operatorname{dom}(\beta)$. Moreover, we obtain that $x \alpha=x \beta$ for all $x \in D$ which implies $\alpha=\beta$. Finally, let $\beta \in P G_{\{0\}}(X \cup\{0\})$. Then define $\alpha \in P(X)$ by $x \alpha=x \beta$ for all $x \in\{x \in X: x \beta \neq 0\}$. Clearly, $\bar{\alpha}=\beta$. Hence $P(X)$ is isomorphic to $P G_{\{0\}}(X \cup\{0\})$.

Immediately, we obtain the following corollary.
Corollary 2.8. Let $0 \notin X$. Then $T(X)$ can be embedded into $P G_{\{0\}}(X \cup\{0\})$.

3 Regularity

Recall that an element x in a semigroup S is called left [right] regular if $x=y x^{2}$ [$x=x^{2} y$] for some $y \in S$ and x is completely regular if $x=x y x$ and $x y=y x$ for some $y \in S$. In this section, the left regularity, right regularity, and completely regularity of elements in $P G_{Y}(X)$ are studied.

Theorem 3.1. Let $\alpha \in P G_{Y}(X)$. Then α is a right regular element if and only if $\left.\alpha\right|_{X \alpha}$ is injective.
Proof. Assume that $\alpha=\alpha^{2} \beta$ for some $\beta \in P G_{Y}(X)$. Let $x, y \in X \alpha$ be such that $x \alpha=y \alpha$. Thus $x=x^{\prime} \alpha$ and $y=y^{\prime} \alpha$ for some $x^{\prime}, y^{\prime} \in X$. It follows that

$$
x=x^{\prime} \alpha=x^{\prime} \alpha^{2} \beta=x \alpha \beta=y \alpha \beta=y^{\prime} \alpha^{2} \beta=y^{\prime} \alpha=y .
$$

Hence $\left.\alpha\right|_{X \alpha}$ is injective.
Suppose that $\left.\alpha\right|_{X \alpha}$ is injective. We will construct $\beta \in P G_{Y}(X)$ satisfying $\alpha=\alpha^{2} \beta$. Let $x \in X \alpha^{2}$. Then by the assumption, we have $x^{\prime} \alpha=x$ for a unique $x^{\prime} \in X \alpha$. Define $\beta: X \rightarrow X$ by

$$
x \beta= \begin{cases}x^{\prime}, & \text { if } x \in X \alpha^{2} \\ x, & \text { otherwise }\end{cases}
$$

We conclude via $\left.\alpha\right|_{Y} \in G(Y)$ that $Y=Y \alpha=Y \alpha^{2}$. To verify $Y \beta=Y$, let $x \in Y$. Since $x \in Y=Y \alpha^{2}$ and by the uniqueness of x^{\prime}, we have $x^{\prime}=y \alpha$ for some $y \in Y$ whence $x \beta \in Y$. On the other hand, let $y \in Y$. Since $Y=Y \alpha$, we conclude that $y \alpha \in Y \alpha^{2}$ and hence $(y \alpha) \beta=(y \alpha)^{\prime}=y$. Thus $Y=Y \beta$. Let $x, y \in Y$ be such that $x \beta=y \beta$. Then $x, y \in Y=Y \alpha=Y \alpha^{2}$. By the uniqueness of x^{\prime} and y^{\prime}, we obtain $\left.\beta\right|_{Y}$ is injective. Hence $\beta \in P G_{Y}(X)$. Finally, let $x \in X$. Since $(x \alpha) \alpha=x \alpha^{2}$, we have $\left(x \alpha^{2}\right)^{\prime}=x \alpha$. That is $x \alpha^{2} \beta=\left(x \alpha^{2}\right)^{\prime}=x \alpha$.

Theorem 3.2. Let $\alpha \in P G_{Y}(X)$. Then α is a left regular element if and only if $X \alpha=X \alpha^{2}$.

Proof. Assume that $\alpha=\beta \alpha^{2}$ for some $\beta \in P G_{Y}(X)$. Clearly, $X \alpha^{2} \subseteq X \alpha$. Let $x \in X \alpha$. Then $x=x^{\prime} \alpha$ for some $x^{\prime} \in X$. Hence $x=x^{\prime} \alpha=x^{\prime} \beta \alpha^{2} \in X \alpha^{2}$ which implies that $X \alpha=X \alpha^{2}$.

Suppose that $X \alpha=X \alpha^{2}$. We note from $\left.\alpha\right|_{Y} \in G(Y)$ that for each $x \in Y$, there exists a unique $x^{\prime} \in Y$ such that $x^{\prime} \alpha=x$ whence $x^{\prime} \alpha^{2}=x \alpha$. Let $x \in X \backslash Y$. Then by the assumption, we choose $x^{\prime} \in X$ such that $x^{\prime} \alpha^{2}=x \alpha$. We construct $\beta \in P G_{Y}(X)$ as follows: $x \beta=x^{\prime}$ for each $x \in X$. To verify $Y=Y \beta$, let $x \in Y$. By the definition of x^{\prime}, we deduce $x \beta=x^{\prime} \in Y$. Let $y \in Y$, then $y \alpha=x$ for some $x \in Y$ since $Y \alpha=Y$. By the uniqueness of x^{\prime}, we conclude that $x \beta=x^{\prime}=y$ which implies that $Y=Y \beta$. Assume that $x \beta=y \beta$ for some $x, y \in Y$. Then $x^{\prime}=y^{\prime}$ which implies $x=x^{\prime} \alpha=y^{\prime} \alpha=y$. Therefore $\left.\beta\right|_{Y} \in G(Y)$. Let $x \in X$. We conclude from the definition of x^{\prime} that $x \beta \alpha^{2}=x^{\prime} \alpha^{2}=x \alpha$.

Theorem 3.3. Let $\alpha \in P G_{Y}(X)$. Then α is a completely regular element if and only if $|P \cap X \alpha|=1$ for all $P \in \pi(\alpha)$.

Proof. Assume that $\alpha=\alpha \beta \alpha$ and $\alpha \beta=\beta \alpha$ for some $\beta \in P G_{Y}(X)$. Let $P \in$ $\pi(\alpha)$. Then $P=x \alpha^{-1}$ for some $x \in X \alpha$. Choose $x^{\prime} \in P$, we conclude that $x=x^{\prime} \alpha=x^{\prime} \alpha \beta \alpha=x \beta \alpha$ which implies $x \beta \in P$. Since $x \beta=x^{\prime} \alpha \beta=x^{\prime} \beta \alpha \in X \alpha$, we obtain $P \cap X \alpha \neq \emptyset$. To verify $|P \cap X \alpha|=1$, suppose that $a, b \in P \cap X \alpha$. Then $a=a^{\prime} \alpha, b=b^{\prime} \alpha$ for some $a^{\prime}, b^{\prime} \in X$ and $a \alpha=b \alpha$. It follows that

$$
a=a^{\prime} \alpha=a^{\prime} \alpha \beta \alpha=a \beta \alpha=a \alpha \beta=b \alpha \beta=b \beta \alpha=b^{\prime} \alpha \beta \alpha=b^{\prime} \alpha=b
$$

Assume that for each $P \in \pi(\alpha),|P \cap X \alpha|=1$. Let $P \in \pi(\alpha)$. By assumption, we denote $x_{P} \in P \cap X \alpha$. Let $P^{\prime}=x_{P} \alpha^{-1}$. Then $y \alpha=x_{P}$ for all $y \in P^{\prime}$. In particular, $x_{P^{\prime}} \alpha=x_{P}$. Define $\beta: X \rightarrow X$ by

$$
x \beta=x_{P^{\prime}} \text { if } x \in P \text { for some } P \in \pi(\alpha)
$$

Since $\pi(\alpha)$ is a partition of X, β is well-defined. To show that $Y \beta=Y$, let $x \in Y$. Then $x \in P$ for some $P \in \pi(\alpha)$. We note from $Y=Y \alpha$ that $x \in P \cap X \alpha$ whence $x=x_{P}$. Since $Y=Y \alpha^{2}$, we have $x_{P}=y \alpha^{2}$ for some $y \in Y$. This means that $y \alpha \in x_{P} \alpha^{-1}=P^{\prime}$. Thus $y \alpha \in P^{\prime} \cap X \alpha$ which implies $y \alpha=x_{P^{\prime}}$. It follows that $x \beta=x_{P^{\prime}}=y \alpha \in Y \alpha=Y$. Hence $Y \beta \subseteq Y$. Let $y \in Y$. Then $y=y^{\prime} \alpha$ for some $y^{\prime} \in Y$ since $Y=Y \alpha$. From $\pi(\alpha)$ is a partition of X, we obtain that
$y^{\prime} \alpha^{2} \in P$ for some $P \in \pi(\alpha)$. Since $y^{\prime} \alpha^{2} \in P \cap X \alpha$, we have $y^{\prime} \alpha^{2}=x_{P}$. This implies that $y^{\prime} \alpha \in x_{P} \alpha^{-1}=P^{\prime}$ whence $y^{\prime} \alpha \in P^{\prime} \cap X \alpha$. Thus $y^{\prime} \alpha=x_{P^{\prime}}$. We conclude that $y^{\prime} \alpha^{2} \beta=x_{P^{\prime}}=y^{\prime} \alpha=y$ then we get $Y \beta=Y$. Next, let $x, y \in Y$ be such that $x \beta=y \beta$. By the definition of β, we have that $x \in P, y \in Q$ for some $P, Q \in \pi(\alpha)$ and $x \beta=x_{P^{\prime}}, y \beta=x_{Q^{\prime}}$ where $x_{P^{\prime}} \alpha=x_{P}$ and $x_{Q^{\prime}} \alpha=x_{Q}$. Thus $x_{P}=x_{P^{\prime}} \alpha=x \beta \alpha=y \beta \alpha=x_{Q^{\prime}} \alpha=x_{Q}$ whence $P \cap Q \neq \emptyset$. Since $\pi(\alpha)$ is a partition of X, we have $P=Q$. We note that $x, y \in Y=Y \alpha$ which implies $x=x_{P}=y$. Hence $\left.\beta\right|_{Y}$ is injective and so $\beta \in P G_{Y}(X)$.

To verify that $\alpha=\alpha \beta \alpha$ and $\alpha \beta=\beta \alpha$, let $x \in X$. We note that $x \alpha \in P$ for a unique $P \in \pi(\alpha)$. Then we obtain that $x \alpha=x_{P}$. Hence $x \alpha \beta \alpha=x_{P^{\prime}} \alpha=x_{P}=x \alpha$. Since $x \in x_{P} \alpha^{-1}=P^{\prime}$, we conclude that $x \beta \alpha=x_{P^{\prime \prime}} \alpha=x_{P^{\prime}}=x \alpha \beta$. Therefore, α is a completely regular element.

Acknowledgements : I would like to thank the referees for their comments and suggestions on the manuscript. This work was supported by faculty of Science Naresuan University.

References

[1] K.D. Magill Jr., Subsemigroups of $S(X)$, Math. Japon. 11 (1966) 109-115.
[2] P. Honyam, J. Sanwong, Semigroup of transformations with invariant set, J. Korean Math. Soc. 48 (2011) 289-300.
[3] S. Nenthein, P. Youngkhong, Y. Kemprasit, Regular elements of some transformation semigroups, Pure. Math. Appl. 16 (2005) 307-314.
[4] J.S.V. Symons, Some results concerning a transformation semigroup, J. Aust. Math. Soc. 19 (1975) 413-425.
[5] A. Umar, A class of quasi-adequate transformation semigroups, Port. Math. 51 (1994) 553-570.
[6] J. Sanwong, W. Sommanee, Regularity and Green's relations on a semigroup of transformations with restricted range, Int. J. Math. Math. Sci. 10 (2008) doi:10.1155/2008/794013.
[7] J. Sanwong, The regular part of a semigroup of transformations with restricted range, Semigroup Forum 83 (2011) 134-146.
(Received 29 June 2015)
(Accepted 31 July 2016)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: Copyright © 2016 by the Mathematical Association of Thailand. All rights reserved.

