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Abstract : Let T (X) be the full transformation semigroup of the set X and let
S(X,Y ) = {α ∈ T (X) : Y α ⊆ Y } where Y is a nonempty subset of X . Then
S(X,Y ) is a subsemigroup of T (X). In this paper, for a fixed nonempty subset Y
of X , let

PGY (X) = {α ∈ T (X) : α|Y ∈ G(Y )}

where G(Y ) is the permutation group on Y . Then PGY (X) is a subsemigroup of
S(X,Y ). Some relationships between PGY (X) it’s subsemigroup and S(X,Y ) are
considered. Moreover, it is shown that PGY (X) is regular and characterizations of
left regularity, right regularity, and completely regularity of elements of PGY (X)
are also described.
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1 Introduction

Let X be a nonempty set and let T (X) denote the semigroup of the full
transformations fromX into itself under composition of mappings. This semigroup
is an important object in semigroup theory, combinatorics, many-valued logic, etc.
It is known that T (X) is a regular semigroup, that is, for every α ∈ T (X), α = αβα
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for some β ∈ T (X). For a fixed nonempty subset Y of X , we denote

S(X,Y ) = {α ∈ T (X) : Y α ⊆ Y }.

Then S(X,Y ) is a semigroup of full transformations on X which leave Y

invariant. In 1966, Magill [1] introduced and studied this semigroups. Later,
many classical notions of this semigroup have been investigated, see [2], [3] and
[4].

In [3], Nenthein, Youngkhong and Kemprasit showed that S(X,Y ) is regular
if and only if X = Y or Y contains exactly one element.

In 1994, Umar [5] constructed a subsemigroup of T (X) as follows:

FY (X) = {α ∈ T (X) : C(α)α ⊆ Y = Y α and α|Y is injective}

where

C(α) =
⋃

{yα−1 : y ∈ Xα and |yα−1| ≥ 2}.

FY (X) is called an Umar semigroup. He proved that FY (X) is a regular
semigroup and considered the Green’s relations on this semigroup. It is clear that
FY (X) is a subsemigroup of S(X,Y ).

Later, Sanwong and Sommanee [6] investigated regularity and Green’s rela-
tions on a subsemigroup of S(X,Y ) which defined by

T (X,Y ) = {α ∈ T (X) : Xα ⊆ Y }.

Recently, a subsemigroup of S(X,Y ) defined by F (X,Y ) = {α ∈ T (X,Y ) : Xα ⊆
Y α} was studied by Sanwong [7].

It is the aim of the paper to introduce a new subsemigroup of S(X,Y ) which
is defined as follows:

PGY (X) = {α ∈ T (X) : α|Y ∈ G(Y )}

where G(Y ) is the permutation group on a nonempty subset Y of X . Some
algebraic properties of PGY (X) are studied. For examples, PGY (X) is a regular
semigroup, T (X) can be embeddable into PGY (Z) for some set Z and relationships
between PGY (X), it’s subsemigroup and S(X,Y ) are given. In the last section,
left regularity, right regularity, and completely regularity of elements of PGY (X)
are determined.

Throughout of the paper, the symbol π(α) will denote the partition of X

induced by α ∈ T (X) namely,

π(α) = {yα−1 : y ∈ Xα}.

The set X can be finite or infinite. The cardinality of a set A is denoted by
|A|.
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2 Preliminaries

Let X be an arbitrary set and Y a nonempty subset of X . Define a subset of
T (X) as follows:

PGY (X) = {α ∈ T (X) : α|Y ∈ G(Y )}

where G(Y ) is the permutation group on Y . Note that idX , the identity mapping
on X , belongs to PGY (X).

Remark 2.1. We note that PGY (X) = G(X) if Y = X. For arbitrary singleton

subset Y of X, we obtain that S(X,Y ) = PGY (X). Moreover, if |X | = 2, then
we have S(X,Y ) = PGY (X) = FY (X).

Theorem 2.2. PGY (X) is a regular semigroup.

Proof. To prove that PGY (X) is a subsemigroup of T (X), let α, β ∈ PGY (X).
Then we have α|Y , β|Y ∈ G(Y ) whence αβ|Y ∈ T (Y ). It is easy to verify that
αβ|Y ∈ G(Y ). To show PGY (X) is regular, let α ∈ PGY (X). We obtain via
Y α = Y that Xα = Y ∪ (Xα\Y ). For each x ∈ Y , there exists a unique x′ ∈ Y

such that x′α = x since α|Y ∈ G(Y ). For x ∈ Xα\Y , we choose x′ ∈ xα−1. Define
β : X → X by

xβ =

{

x′, if x ∈ Xα,

x, otherwise.

Obviously, β|Y : Y → Y is bijective, that is β ∈ PGY (X). Let x ∈ X . Then
xαβα = (xα)′α = xα. This means that α = αβα whence PGY (X) is a regular
semigroup.

From the definition of PGY (X) and Theorem 2.2, we conclude that FY (X) is
a subsemigroup of PGY (X) and PGY (X) is a subsemigroup of S(X,Y ). Next,
the conditions under which the semigroups coincide are given.

Theorem 2.3. FY (X) = PGY (X) if and only if |X\Y | ≤ 1.

Proof. Assume that |X\Y | ≥ 2. There exist a, b ∈ X\Y such that a 6= b. We
define α : X → X by

xα =

{

a, if x = b,

x, otherwise.

We obtain that α|Y is the identity mapping on Y , that is α ∈ PGY (X). Since
aα−1 = {a, b}, we have a ∈ C(α)α whence C(α)α 6⊆ Y . This implies that α 6∈
FY (X) and then FY (X) 6= PGY (X).

Conversely, assume that |X\Y | ≤ 1. It is enough to show that PGY (X) ⊆
FY (X). Let α ∈ PGY (X) and x ∈ C(α). Then we get α|Y ∈ G(Y ) and x ∈ yα−1

for some y ∈ X and |yα−1| ≥ 2. To verify that y = xα ∈ Y , suppose that
y 6∈ Y . Since Y α = Y , we have x 6∈ Y . By the assumption, we conclude that
x = y. This means that yα−1 = {y} which is a contradiction. Hence y ∈ Y and
so C(α)α ⊆ Y . It is clear that α|Y is injective. Therefore α ∈ FY (X) whence
FY (X) = PGY (X).
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Theorem 2.4. PGY (X) = S(X,Y ) if and only if |Y | = 1.

Proof. Assume that |Y | > 1. Let a, b ∈ Y be such that a 6= b and define α : X → X

by

xα =

{

a, if x = b,

x, otherwise.

It is easy to verify that Y α ⊆ Y and α|Y is not injective. Hence α ∈ S(X,Y ) and
α 6∈ PGY (X).

The converse follows from Remark 2.1.

Theorem 2.5. If PGY (X) is an inverse semigroup, then |X\Y | ≤ 1.

Proof. Suppose that |X\Y | ≥ 2. Then there exist a, b ∈ X\Y such that a 6= b.
Choose c ∈ Y and define α, β : X → X by

xα =

{

c, if x = b,

x, otherwise,

and

xβ =

{

a, if x = b,

x, otherwise.

We note that α|Y and β|Y are the identity mapping. Thus α, β ∈ PGY (X).
Moreover, we obtain that α = αβα, β = βαβ and α2 = α. Hence α, β ∈ V (α).
Consequently, PGY (X) is not an inverse semigroup.

Corollary 2.6. PGY (X) is an inverse semigroup if and only if |X | ≤ 2 or Y = X.

Proof. Assume that |X | > 2 and Y 6= X . If |X\Y | > 1, then we have PGY (X) is
not an inverse semigroup by Theorem 2.5. Suppose that |X\Y | = 1. Let a, b ∈ Y

be such that a 6= b and X\Y = {c}. Define α, β : X → X by

xα =

{

a, if x = c,

x, otherwise,

and

xβ =

{

b, if x = c,

x, otherwise.

Since α|Y , β|Y are the identity mappings, we deduce α, β ∈ PGY (X). Note that
α = αβα, β = βαβ and α2 = α whence α, β ∈ V (α). Therefore PGY (X) is not
an inverse semigroup.

From Remark 2.1, we obtain the converse.

Let P (X) be the partial transformation semigroup on X . We note that T (X)
is a subsemigroup of P (X). The following theorem shows that each full transfor-
mations semigroup can be embedded into PGY (X) for some set X .
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Theorem 2.7. Let 0 6∈ X. Then P (X) is isomorphic to PG{0}(X ∪ {0}).

Proof. Let α ∈ P (X). Then dom(α) ⊆ X . We let α : X ∪ {0} → X ∪ {0} be
defined by

xα =

{

xα, if x ∈ dom(α),

0, otherwise.

Obviously, α|{0} ∈ G({0}) whence α ∈ PG{0}(X ∪ {0}). We claim that αβ = αβ

for each α, β ∈ P (X). Let α, β ∈ P (X) and x ∈ X ∪ {0}.
Case 1. xα 6∈ dom(β). If x ∈ dom(α) then xα 6∈ dom(β) which implies

x 6∈ dom(αβ). If x 6∈ dom(α) then x 6∈ dom(αβ) since dom(αβ) ⊆ dom(α).
Consequently, xαβ = 0 = xαβ.

Case 2. xα ∈ dom(β). Then xα = xα and we conclude that x ∈ dom(αβ).
Hence xαβ = xαβ = xαβ = xαβ.

These imply that αβ = αβ for all α, β ∈ P (X). It follows that the mapping
ϕ : P (X) → PG{0}(X ∪ {0}) defined by αϕ = α is a homomorphism.

To verify injectivity of ϕ, let α, β ∈ P (X) be such that α = β. Let D =
{x ∈ X : xα 6= 0}. Obviously, dom(α) = D = dom(β). Moreover, we obtain that
xα = xβ for all x ∈ D which implies α = β. Finally, let β ∈ PG{0}(X ∪ {0}).
Then define α ∈ P (X) by xα = xβ for all x ∈ {x ∈ X : xβ 6= 0}. Clearly, α = β.
Hence P (X) is isomorphic to PG{0}(X ∪ {0}).

Immediately, we obtain the following corollary.

Corollary 2.8. Let 0 6∈ X. Then T (X) can be embedded into PG{0}(X ∪ {0}).

3 Regularity

Recall that an element x in a semigroup S is called left [right ] regular if x = yx2

[x = x2y] for some y ∈ S and x is completely regular if x = xyx and xy = yx for
some y ∈ S. In this section, the left regularity, right regularity, and completely
regularity of elements in PGY (X) are studied.

Theorem 3.1. Let α ∈ PGY (X). Then α is a right regular element if and only

if α|Xα is injective.

Proof. Assume that α = α2β for some β ∈ PGY (X). Let x, y ∈ Xα be such that
xα = yα. Thus x = x′α and y = y′α for some x′, y′ ∈ X . It follows that

x = x′α = x′α2β = xαβ = yαβ = y′α2β = y′α = y.

Hence α|Xα is injective.
Suppose that α|Xα is injective. We will construct β ∈ PGY (X) satisfying

α = α2β. Let x ∈ Xα2. Then by the assumption, we have x′α = x for a unique
x′ ∈ Xα. Define β : X → X by

xβ =

{

x′, if x ∈ Xα2,

x, otherwise.
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We conclude via α|Y ∈ G(Y ) that Y = Y α = Y α2. To verify Y β = Y , let x ∈ Y .
Since x ∈ Y = Y α2 and by the uniqueness of x′, we have x′ = yα for some y ∈ Y

whence xβ ∈ Y . On the other hand, let y ∈ Y . Since Y = Y α, we conclude that
yα ∈ Y α2 and hence (yα)β = (yα)′ = y. Thus Y = Y β. Let x, y ∈ Y be such that
xβ = yβ. Then x, y ∈ Y = Y α = Y α2. By the uniqueness of x′ and y′, we obtain
β|Y is injective. Hence β ∈ PGY (X). Finally, let x ∈ X . Since (xα)α = xα2, we
have (xα2)′ = xα. That is xα2β = (xα2)′ = xα.

Theorem 3.2. Let α ∈ PGY (X). Then α is a left regular element if and only if

Xα = Xα2.

Proof. Assume that α = βα2 for some β ∈ PGY (X). Clearly, Xα2 ⊆ Xα. Let
x ∈ Xα. Then x = x′α for some x′ ∈ X . Hence x = x′α = x′βα2 ∈ Xα2 which
implies that Xα = Xα2.

Suppose that Xα = Xα2. We note from α|Y ∈ G(Y ) that for each x ∈ Y ,
there exists a unique x′ ∈ Y such that x′α = x whence x′α2 = xα. Let x ∈ X\Y .
Then by the assumption, we choose x′ ∈ X such that x′α2 = xα. We construct
β ∈ PGY (X) as follows: xβ = x′ for each x ∈ X . To verify Y = Y β, let x ∈ Y .
By the definition of x′, we deduce xβ = x′ ∈ Y . Let y ∈ Y , then yα = x for some
x ∈ Y since Y α = Y . By the uniqueness of x′, we conclude that xβ = x′ = y

which implies that Y = Y β. Assume that xβ = yβ for some x, y ∈ Y . Then
x′ = y′ which implies x = x′α = y′α = y. Therefore β|Y ∈ G(Y ). Let x ∈ X . We
conclude from the definition of x′ that xβα2 = x′α2 = xα.

Theorem 3.3. Let α ∈ PGY (X). Then α is a completely regular element if and

only if |P ∩Xα| = 1 for all P ∈ π(α).

Proof. Assume that α = αβα and αβ = βα for some β ∈ PGY (X). Let P ∈
π(α). Then P = xα−1 for some x ∈ Xα. Choose x′ ∈ P , we conclude that
x = x′α = x′αβα = xβα which implies xβ ∈ P . Since xβ = x′αβ = x′βα ∈ Xα,
we obtain P ∩Xα 6= ∅. To verify |P ∩Xα| = 1, suppose that a, b ∈ P ∩Xα. Then
a = a′α, b = b′α for some a′, b′ ∈ X and aα = bα. It follows that

a = a′α = a′αβα = aβα = aαβ = bαβ = bβα = b′αβα = b′α = b.

Assume that for each P ∈ π(α), |P ∩Xα| = 1. Let P ∈ π(α). By assumption,
we denote xP ∈ P ∩ Xα. Let P ′ = xPα

−1. Then yα = xP for all y ∈ P ′. In
particular, xP ′α = xP . Define β : X → X by

xβ = xP ′ if x ∈ P for some P ∈ π(α).

Since π(α) is a partition of X , β is well-defined. To show that Y β = Y , let x ∈ Y .
Then x ∈ P for some P ∈ π(α). We note from Y = Y α that x ∈ P ∩Xα whence
x = xP . Since Y = Y α2, we have xP = yα2 for some y ∈ Y . This means that
yα ∈ xPα

−1 = P ′. Thus yα ∈ P ′ ∩ Xα which implies yα = xP ′ . It follows
that xβ = xP ′ = yα ∈ Y α = Y . Hence Y β ⊆ Y . Let y ∈ Y . Then y = y′α

for some y′ ∈ Y since Y = Y α. From π(α) is a partition of X , we obtain that
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y′α2 ∈ P for some P ∈ π(α). Since y′α2 ∈ P ∩ Xα, we have y′α2 = xP . This
implies that y′α ∈ xPα

−1 = P ′ whence y′α ∈ P ′ ∩ Xα. Thus y′α = xP ′ . We
conclude that y′α2β = xP ′ = y′α = y then we get Y β = Y . Next, let x, y ∈ Y

be such that xβ = yβ. By the definition of β, we have that x ∈ P , y ∈ Q for
some P,Q ∈ π(α) and xβ = xP ′ , yβ = xQ′ where xP ′α = xP and xQ′α = xQ.
Thus xP = xP ′α = xβα = yβα = xQ′α = xQ whence P ∩ Q 6= ∅. Since π(α) is
a partition of X , we have P = Q. We note that x, y ∈ Y = Y α which implies
x = xP = y. Hence β|Y is injective and so β ∈ PGY (X).

To verify that α = αβα and αβ = βα, let x ∈ X . We note that xα ∈ P for a
unique P ∈ π(α). Then we obtain that xα = xP . Hence xαβα = xP ′α = xP = xα.
Since x ∈ xPα

−1 = P ′, we conclude that xβα = xP ′′α = xP ′ = xαβ. Therefore,
α is a completely regular element.
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