Smith Multiples of a Class of Primes with Small Digital Sum

Amin Witno
Department of Basic Sciences, Philadelphia
University, 19392 Jordan
e-mail : awitno@gmail.com

Abstract

Using prime numbers whose digits are zeros and ones, we demonstrate how to construct integers m for which $m P$ is a Smith number for any prime P with a fixed, small digital sum. Conversely, using numbers with small digital sums, we can obtain Smith multiples of a given prime whose digits are zeros and ones. Our approach relies on numbers with small digital sum in order that every multiplication process is free from carries.

Keywords : Smith numbers; sum of digits.
2010 Mathematics Subject Classification : 11A63; 11A41.
]

1 Introduction

A Smith number n is a composite whose digital sum $S(n)$ equals $S_{p}(n)$, the digital sum of all the prime factors of n, counting multiplicity. For example, 728 is a Smith number because the factorization $728=2^{3} \times 7 \times 13$ gives us $S_{p}(728)=2+2+2+7+1+3=17$, matching $S(728)=7+2+8=17$.

It is known that Smith numbers are infinitely many 1]. And over thirty years since Smith numbers were first introduced [2], we have now quite a variety of methods for constructing Smith numbers [3-7. In particular, it was shown [6, Theorem 2.1] that for any prime number P with $S(P)=5$, the product $21 P$ is a Smith number. The simple proof is based on the fact that the multiplication of the two small-digit numbers are free from carries, so that $S(21 P)=S(21) S(P)=$ $3 \times 5=15$, which equals $S_{p}(21 P)=3+7+5=15$.

[^0]This present article is in part a response to the challenge to find similar results using other primes of a small digital sum. Still relying on carry-free multiplication, we shall deal with primes P for which $S(P) \leq 8$ and construct the Smith multiples $m P$ with the help of prime numbers whose digits are composed of zeros and ones.

Along this line, we acknowledge an early work [3] in which Smith multiples of a prime repunit are studied. (Such multipliers are listed on page A104167 at OEIS, the On-Line Encyclopedia of Integer Sequences.) Nevertheless, our results do not overlap with such a case since we are to find one Smith multiplier that works for a whole class of primes given by their digital sum.

2 Main Results

Throughout our discussion we will mostly deal with the product of a zero-one integer and a number of digital sum at most nine. Hence, we will settle first the claim that such multiplication is free from carries.
Theorem 2.1. Let n be a number with $S(n) \leq 9$ and m be a number whose digits are only zeros and ones. Then $S(m n)=S(m) S(n)$.

Proof. Let $r=S(n)$ and write $n=10^{e_{1}}+\cdots+10^{e_{r}}$, where the exponents e_{1}, \ldots, e_{r} are not assumed distinct. Then $m n$ is the sum of r numbers that are composed of zeros and ones, each of which has digital sum $S(m)$. Since $r \leq 9$, this summation does not involve carries. Thus $S(m n)=S(m) r$.

Definition 2.2. For convenience, we shall employ the notation P_{N} to denote any prime number whose digits are only zeros and ones, and with exactly N ones. In other words, P_{N} stands for a prime number which can be expressed as the sum of N distinct powers of ten.

Theorem 2.3. Fix a prime number $P>3$ with $S(P)=a \leq 7$. (Note that $a \in\{2,4,5,7\}$.) Let a prime P_{N} be given and let $b=N \bmod 7$. If $(a, b) \in$ $\{(2,2),(4,6),(5,3),(7,0)\}$, then there exists an integer $k \geq 0$, determined solely by the choice of a and N, such that the product $P \times P_{N} \times 10^{k}$ is a Smith number.

Proof. Writing $N=7 t+b$ with some integer $t \geq 0$, we have, by Theorem 2.1,

$$
\begin{aligned}
S\left(P \times P_{N} \times 10^{k}\right)-S_{p}\left(P \times P_{N} \times 10^{k}\right) & =(S(P) \times N)-(S(P)+N+7 k) \\
& =a(7 t+b)-(a+7 t+b+7 k) \\
& =7 t(a-1)+a b-a-b-7 k
\end{aligned}
$$

We have Smith number when this displayed quantity equals zero, i.e., if and only if

$$
k=t(a-1)+\frac{a b-a-b}{7}
$$

Now note that for $(a, b)=(2,2),(4,6),(5,3),(7,0)$, we have a nonnegative integer value for k : respectively, $k=t, 3 t+2,4 t+1,6 t-1$. (The value of $6 t-1$ is nonnegative since $b=0$ implies that $t \geq 1$ for this case.)

Theorem 2.3 is practical only if we can find at least one prime P_{N} for each of the specified residue classes of N modulo 7 . One may turn to page A020449 at OEIS to see the first thousand terms of the sequence given by the primes P_{N}. In particular, we have the seven primes
11, 10111, 101111, 11110111, 1011111111, 110111111101, 1011011111111111,
representing the least prime number P_{N} in their respective class of N modulo 7 (The last of these seven is the 966th term in the P_{N} sequence!).

Example 2.4. To illustrate, we consider the prime $P=4021$, where $S(P)=7$. According to Theorem 2.3, we need a prime P_{N} with N a multiple of 7, e.g., $P_{7}=11110111$, for which $t=1$ and $k=5$ as explained in the above proof. The resulting Smith product is

$$
4021 \times 11110111 \times 10^{5}=4,467,375,633,100,000
$$

of digital sum 49 .
Note that the case $S(P)=8$ is not covered in Theorem 2.3. In fact, the form $P \times P_{N} \times 10^{k}$ is never a Smith number if $S(P)=8$, for we would have $S\left(P \times P_{N} \times 10^{k}\right)=8 N \equiv N(\bmod 7)$, whereas $S_{p}\left(P \times P_{N} \times 10^{k}\right)=8+N+7 k \equiv N+1$ $(\bmod 7)$; hence the two quantities would not coincide. For this reason, we shall now treat the case $S(P)=8$ separately.
Theorem 2.5. Let P be a prime number with $S(P)=8$. Then $1011 P$ is a Smith number.

Proof. Theorem 2.1 applies, hence $S(1011 P)=3 \times 8=24$. Since $1011=3 \times 337$, we have also $S_{p}(1011 P)=16+8=24$.

We leave it to the reader to verify that Smith multiples also occur when the multiplier 1011 in Theorem [2.5 is substituted by 11010111, 11011101, 11100001, 11110100 , or 11111100 .

For the sake of completeness, we proceed to answer the next challenge. Given a prime P_{N}, can we find Smith multiples of P_{N} using small-digit multipliers and carry-free multiplication? Of course, Theorem 2.3 already suffices for the cases where $N \bmod 7=0,2,3,6$. The next proposition provides another part of the answer.

Theorem 2.6. Fix a prime number P_{N}. Let $b=N \bmod 7$, and let $c \in\{3,6,9\}$. If $(b, c) \in\{(1,6),(5,3),(6,9)\}$, then there exists an integer $k \geq 0$ such that the product $c \times P_{N} \times 10^{k}$ is a Smith number.

Proof. Again, we note that $c \times P_{N}$ is a carry-free multiplication. Writing $N=7 t+b$ for some integer $t \geq 0$, we have

$$
\begin{aligned}
S\left(c \times P_{N} \times 10^{k}\right)-S_{p}\left(c \times P_{N} \times 10^{k}\right) & =(S(c) \times N)-\left(S_{p}(c)+N+7 k\right) \\
& =c(7 t+b)-\left(S_{p}(c)+7 t+b+7 k\right) \\
& =7 t(c-1)+b c-b-S_{p}(c)-7 k .
\end{aligned}
$$

This time, we seek for a nonnegative integer solution for

$$
k=t(c-1)+\frac{b c-b-S_{p}(c)}{7}
$$

By inspection, if $(b, c)=(1,6),(5,3),(6,9)$, then $k=5 t, 2 t+1,8 t+6$, respectively.

Theorems 2.3 and 2.6 together leave one case still undealt with: the primes P_{N} with $N \bmod 7=4$. Since there seems to be no similar approach that works specifically for this last case, we resort to finding a multiplier that applies to P_{N} in general, regardless of the residue class of N modulo 7 .

Theorem 2.7. Let the prime P_{N} be given with $N \geq 16$. Then the product $n=$ $4 P_{N} \times\left(10^{26}+1\right) \times 10^{N-16}$ is a Smith number.
Proof. Observe that $S\left(4\left(10^{26}+1\right)\right)=8$, hence Theorem 2.1 gives us $S(n)=8 N$. On the other hand, we have the factorization

$$
10^{26}+1=101 \times 521 \times 1900381976777332243781
$$

so that $S_{p}\left(10^{26}+1\right)=108$ and $S_{p}(n)=4+N+108+7(N-16)=8 N$. Thus $S(n)=S_{p}(n)$.

We remark that the choice of $10^{26}+1$ in the proof is suitable merely because $S_{p}\left(10^{26}+1\right) \bmod 7=3$. In fact, one may generate similar Smith numbers of the form $4 P_{N} \times\left(10^{e}+1\right) \times 10^{k}$ provided that $S_{p}\left(10^{e}+1\right) \bmod 7=3$, e.g., with $e=23$ or 24 , and with the exponent k for the power of ten adjusted accordingly.

Collecting our results thus far, we are down to the treatment of the primes P_{N} for which $N \leq 15$ and $N \bmod 7=4$. Equivalently, these are the two subcases $N=4$ and $N=11$, with which we now conclude. For the P_{4} case, we may as well include all prime numbers in the class of digital sum four-this would therefore overlap with Theorem 2.3 and so to avoid repetition, we will now include the digit 2 in choosing the suitable multiplier.

Theorem 2.8. Let P denote a prime number with $S(P)=4$. Then $1220 P$ is a Smith number.

Proof. Since the digits in 1220 are at most two, multiplying 1220 by any number of digital sum four does not involve carries. Hence, $S(1220 P)=5 \times 4=20$. With $1220=2^{2} \times 5 \times 61$, we see that $S_{p}(1220 P)=16+4=20$.

Among the five-digit numbers, the multipliers 12012, 12020, 12220, and 21020 can also be used as a substitute for 1220 in Theorem 2.8- for the reader to verify.
Theorem 2.9. Let P_{11} stand for a prime number composed of only zeros and eleven ones. Then both $10011 P_{11}$ and $20001 P_{11}$ are Smith numbers.
Proof. Carry-free multiplication still applies. For $m=10011$ or 20001, we have $S\left(m P_{11}\right)=3 \times 11=33$ and $S_{p}\left(m P_{11}\right)=S_{p}(m)+11$. It suffices to check that $S_{p}(m)=22$, and this is true as $10011=3 \times 47 \times 71$ and $20001=3 \times 59 \times 113$.

References

[1] W.L. McDaniel, The existence of infinitely many k-Smith numbers, Fibonacci Quart. 25 (1987) 76-80.
[2] A. Wilansky, Smith numbers, Two-Year College Math. J. 13 (1982) 21.
[3] S. Oltikar, K. Wayland, Construction of Smith numbers, Math. Mag. 56 (1983) 36-37.
[4] S. Yates, Special sets of Smith numbers, Math. Mag. 59 (1986) 293-296.
[5] P. Costello, K. Lewis, Lots of Smiths, Math. Mag. 75 (2002) 223-226.
[6] A. Witno, Another simple construction of Smith numbers, Missouri J. Math. Sci. 22 (2010) 97-101.
[7] A. Witno, A family of sequences generating Smith numbers, J. Integer Seq. 16 (2013) Article 13.4.6.
(Received 5 September 2013)
(Accepted 23 March 2015)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: Copyright © 2016 by the Mathematical Association of Thailand. All rights reserved.

