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Abstract : Using prime numbers whose digits are zeros and ones, we demonstrate
how to construct integers m for which mP is a Smith number for any prime P

with a fixed, small digital sum. Conversely, using numbers with small digital
sums, we can obtain Smith multiples of a given prime whose digits are zeros and
ones. Our approach relies on numbers with small digital sum in order that every
multiplication process is free from carries.
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1 Introduction

A Smith number n is a composite whose digital sum S(n) equals Sp(n), the
digital sum of all the prime factors of n, counting multiplicity. For example,
728 is a Smith number because the factorization 728 = 23 × 7 × 13 gives us
Sp(728) = 2 + 2 + 2 + 7 + 1 + 3 = 17, matching S(728) = 7 + 2 + 8 = 17.

It is known that Smith numbers are infinitely many [1]. And over thirty years
since Smith numbers were first introduced [2], we have now quite a variety of
methods for constructing Smith numbers [3–7]. In particular, it was shown [6,
Theorem 2.1] that for any prime number P with S(P ) = 5, the product 21P is a
Smith number. The simple proof is based on the fact that the multiplication of
the two small-digit numbers are free from carries, so that S(21P ) = S(21)S(P ) =
3× 5 = 15, which equals Sp(21P ) = 3 + 7 + 5 = 15.
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This present article is in part a response to the challenge to find similar results
using other primes of a small digital sum. Still relying on carry-free multiplication,
we shall deal with primes P for which S(P ) ≤ 8 and construct the Smith multiples
mP with the help of prime numbers whose digits are composed of zeros and ones.

Along this line, we acknowledge an early work [3] in which Smith multiples
of a prime repunit are studied. (Such multipliers are listed on page A104167 at
OEIS, the On-Line Encyclopedia of Integer Sequences.) Nevertheless, our results
do not overlap with such a case since we are to find one Smith multiplier that
works for a whole class of primes given by their digital sum.

2 Main Results

Throughout our discussion we will mostly deal with the product of a zero-one
integer and a number of digital sum at most nine. Hence, we will settle first the
claim that such multiplication is free from carries.

Theorem 2.1. Let n be a number with S(n) ≤ 9 and m be a number whose digits
are only zeros and ones. Then S(mn) = S(m)S(n).

Proof. Let r = S(n) and write n = 10e1+· · ·+10er , where the exponents e1, . . . , er
are not assumed distinct. Then mn is the sum of r numbers that are composed of
zeros and ones, each of which has digital sum S(m). Since r ≤ 9, this summation
does not involve carries. Thus S(mn) = S(m)r.

Definition 2.2. For convenience, we shall employ the notation PN to denote any
prime number whose digits are only zeros and ones, and with exactly N ones. In
other words, PN stands for a prime number which can be expressed as the sum of
N distinct powers of ten.

Theorem 2.3. Fix a prime number P > 3 with S(P ) = a ≤ 7. (Note that
a ∈ {2, 4, 5, 7}.) Let a prime PN be given and let b = N mod 7. If (a, b) ∈
{(2, 2), (4, 6), (5, 3), (7, 0)}, then there exists an integer k ≥ 0, determined solely by
the choice of a and N , such that the product P × PN × 10k is a Smith number.

Proof. Writing N = 7t+ b with some integer t ≥ 0, we have, by Theorem 2.1,

S(P × PN × 10k)− Sp(P × PN × 10k) = (S(P )×N)− (S(P ) +N + 7k)

= a(7t+ b)− (a+ 7t+ b+ 7k)

= 7t(a− 1) + ab− a− b− 7k.

We have Smith number when this displayed quantity equals zero, i.e., if and only
if

k = t(a− 1) +
ab− a− b

7
.

Now note that for (a, b) = (2, 2), (4, 6), (5, 3), (7, 0), we have a nonnegative integer
value for k: respectively, k = t, 3t + 2, 4t + 1, 6t − 1. (The value of 6t − 1 is
nonnegative since b = 0 implies that t ≥ 1 for this case.)
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Theorem 2.3 is practical only if we can find at least one prime PN for each of
the specified residue classes of N modulo 7. One may turn to page A020449 at
OEIS to see the first thousand terms of the sequence given by the primes PN . In
particular, we have the seven primes

11, 10111, 101111, 11110111, 101111111, 110111111101, 101101111111111,

representing the least prime number PN in their respective class of N modulo 7
(The last of these seven is the 966th term in the PN sequence!).

Example 2.4. To illustrate, we consider the prime P = 4021, where S(P ) = 7.
According to Theorem 2.3, we need a prime PN with N a multiple of 7, e.g.,
P7 = 11110111, for which t = 1 and k = 5 as explained in the above proof. The
resulting Smith product is

4021× 11110111× 105 = 4, 467, 375, 633, 100, 000,

of digital sum 49.

Note that the case S(P ) = 8 is not covered in Theorem 2.3. In fact, the
form P × PN × 10k is never a Smith number if S(P ) = 8, for we would have
S(P×PN×10k) = 8N ≡ N (mod 7), whereas Sp(P×PN×10k) = 8+N+7k ≡ N+1
(mod 7); hence the two quantities would not coincide. For this reason, we shall
now treat the case S(P ) = 8 separately.

Theorem 2.5. Let P be a prime number with S(P ) = 8. Then 1011P is a Smith
number.

Proof. Theorem 2.1 applies, hence S(1011P ) = 3× 8 = 24. Since 1011 = 3× 337,
we have also Sp(1011P ) = 16 + 8 = 24.

We leave it to the reader to verify that Smith multiples also occur when the
multiplier 1011 in Theorem 2.5 is substituted by 11010111, 11011101, 11100001,
11110100, or 11111100.

For the sake of completeness, we proceed to answer the next challenge. Given
a prime PN , can we find Smith multiples of PN using small-digit multipliers and
carry-free multiplication? Of course, Theorem 2.3 already suffices for the cases
where N mod 7 = 0, 2, 3, 6. The next proposition provides another part of the
answer.

Theorem 2.6. Fix a prime number PN . Let b = N mod 7, and let c ∈ {3, 6, 9}.
If (b, c) ∈ {(1, 6), (5, 3), (6, 9)}, then there exists an integer k ≥ 0 such that the
product c× PN × 10k is a Smith number.

Proof. Again, we note that c×PN is a carry-free multiplication. WritingN = 7t+b

for some integer t ≥ 0, we have

S(c× PN × 10k)− Sp(c× PN × 10k) = (S(c)×N)− (Sp(c) +N + 7k)

= c(7t+ b)− (Sp(c) + 7t+ b + 7k)

= 7t(c− 1) + bc− b− Sp(c)− 7k.
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This time, we seek for a nonnegative integer solution for

k = t(c− 1) +
bc− b− Sp(c)

7
.

By inspection, if (b, c) = (1, 6), (5, 3), (6, 9), then k = 5t, 2t+1, 8t+6, respectively.

Theorems 2.3 and 2.6 together leave one case still undealt with: the primes
PN with N mod 7 = 4. Since there seems to be no similar approach that works
specifically for this last case, we resort to finding a multiplier that applies to PN

in general, regardless of the residue class of N modulo 7.

Theorem 2.7. Let the prime PN be given with N ≥ 16. Then the product n =
4PN × (1026 + 1)× 10N−16 is a Smith number.

Proof. Observe that S(4(1026 + 1)) = 8, hence Theorem 2.1 gives us S(n) = 8N .
On the other hand, we have the factorization

1026 + 1 = 101× 521× 1900381976777332243781,

so that Sp(10
26 + 1) = 108 and Sp(n) = 4 + N + 108 + 7(N − 16) = 8N . Thus

S(n) = Sp(n).

We remark that the choice of 1026 + 1 in the proof is suitable merely because
Sp(10

26 + 1) mod 7 = 3. In fact, one may generate similar Smith numbers of the
form 4PN × (10e+1)× 10k provided that Sp(10

e+1) mod 7 = 3, e.g., with e = 23
or 24, and with the exponent k for the power of ten adjusted accordingly.

Collecting our results thus far, we are down to the treatment of the primes
PN for which N ≤ 15 and N mod 7 = 4. Equivalently, these are the two subcases
N = 4 and N = 11, with which we now conclude. For the P4 case, we may as well
include all prime numbers in the class of digital sum four—this would therefore
overlap with Theorem 2.3 and so to avoid repetition, we will now include the digit
2 in choosing the suitable multiplier.

Theorem 2.8. Let P denote a prime number with S(P ) = 4. Then 1220P is a
Smith number.

Proof. Since the digits in 1220 are at most two, multiplying 1220 by any number
of digital sum four does not involve carries. Hence, S(1220P ) = 5× 4 = 20. With
1220 = 22 × 5× 61, we see that Sp(1220P ) = 16 + 4 = 20.

Among the five-digit numbers, the multipliers 12012, 12020, 12220, and 21020
can also be used as a substitute for 1220 in Theorem 2.8—for the reader to verify.

Theorem 2.9. Let P11 stand for a prime number composed of only zeros and
eleven ones. Then both 10011P11 and 20001P11 are Smith numbers.

Proof. Carry-free multiplication still applies. For m = 10011 or 20001, we have
S(mP11) = 3 × 11 = 33 and Sp(mP11) = Sp(m) + 11. It suffices to check that
Sp(m) = 22, and this is true as 10011 = 3× 47× 71 and 20001 = 3× 59× 113.
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