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Abstract : Let R be a commutative semiring with nonzero identity and φ a func-
tion from I (R) into I (R) ∪ {∅} where I (R) is the set of ideals of R. Let n be
a positive integer. In this paper, we introduce the concept of φ-n-absorbing ideals
which are a generalization of n-absorbing ideals. A proper ideal I of R is called a
φ-n-absorbing ideal if whenever x1x2 · · ·xn+1 ∈ I − φ(I) for x1, x2, . . . , xn+1 ∈ R,
then x1x2 · · ·xi−1xi+1 · · ·xn+1 ∈ I for some i ∈ {1, 2, . . . , n+ 1}. A number of re-
sults concerning relationships between φ-n-absorbing ideals and n-absorbing ideals
as well as examples of n-absorbing ideals are given. Moreover, φ-n-absorbing ide-
als of decomposable semirings, of quotient semirings and of semirings of fractions
are investigated.
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1 Introduction

Throughout this paper, all rings and semirings are assumed to be commuta-
tive rings with nonzero identity and commutative semirings with nonzero iden-
tity, respectively. Moreover, the notation φ is assumed to be a function from
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I (R) into I (R) ∪ {∅} in which I (R) is the set of ideals of a semiring R (ring
R). Furthermore, if R is a semiring (ring) and φ is a function from I (R) into
I (R) ∪ {∅}, then R is called a semiring with φ (ring with φ). Let n and m be
positive integers, we denote x̂i,n+1 the element of R obtained by eliminating xi

from the product x1x2 · · ·xn+1 where x1, x2, . . . , xn+1 ∈ R; in addition, we de-
note x̂{i1,i2,...,im},n+1 the element of R obtained by eliminating xi1 , xi2 , . . . , xim

from the product x1x2 · · ·xn+1 where x1, x2, . . . , xn+1 ∈ R and {i1, i2, . . . , im} ⊆
{1, 2, . . . , n+ 1}.

The concept of 2-absorbing ideals of rings was introduced and investigated by
A. Badawi in 2007 [1]. He defined a 2-absorbing ideal I of a ring R to be a proper
ideal and if whenever a, b, c ∈ R, abc ∈ I implies ab ∈ I or ac ∈ I or bc ∈ I. In
2011, D. F. Anderson and A. Badawi [2] generalized the concept of 2-absorbing
ideals of rings to n-absorbing ideals of rings. A proper ideal I of a ring R is
called an n-absorbing ideal if for x1, x2, . . . , xn+1 ∈ R, x1x2 · · ·xn+1 ∈ I implies
x̂i,n+1 ∈ I for some i ∈ {1, 2, . . . , n+1}. From the definition of n-absorbing ideals,
it is easy to see that if n and n′ are positive integers such that n ≤ n′ and I is
an n-absorbing ideal, then I is an n′-absorbing ideal. Moreover, if n = 1, then
1-absorbing ideals are just prime ideals.

In 2008, D. D. Anderson and M. Bataineh [3] generalized the concept of prime
ideals, weakly prime ideals, almost prime ideals, n-almost prime ideals and ω-
prime ideals of rings to φ-prime ideals of rings with φ. They defined a φ-prime
ideal I of a ring R with φ to be a proper ideal and if for a, b ∈ R, ab ∈ I − φ(I)
implies a ∈ I or b ∈ I. After that, in 2012, M. Ebrahimpour and R. Nekooei [4] in-
troduced the concept of (n−1, n)-φ-prime ideals (n ≥ 2) of rings with φ which are
a generalization of n-absorbing ideals of rings and φ-prime ideals of rings with φ.
They defined an (n− 1, n)-φ-prime ideal I of a ring R with φ to be a proper ideal
and if whenever x1, x2, . . . , xn ∈ R and x1x2 · · ·xn ∈ I − φ(I), then x̂i,n ∈ I for
some i ∈ {1, 2, . . . , n}. Then (n − 1, n)-φ-prime ideals are just (n − 1)-absorbing
ideals if φ : I (R) → I (R) ∪ {∅} is a function with φ[I (R)] = {∅}.

In this paper, we extend notions of n-absorbing ideals and (n− 1, n)-φ-prime
ideals of rings to n-absorbing ideals and φ-n-absorbing ideals of semirings. We
define n-absorbing ideals of semirings in the same manner as the definition of
n-absorbing ideals of rings. Besides, we define a φ-n-absorbing ideal I of a semir-
ing R with φ to be a proper ideal and if whenever x1x2 · · ·xn+1 ∈ I − φ(I) for
x1, x2, . . . , xn+1 ∈ R, then x̂i,n+1 ∈ I for some i ∈ {1, 2, . . . , n+ 1}. Hence, if I is
an n-absorbing ideal, then I is, obviously, a φ-n-absorbing ideal for any φ.

As a result, we give an equivalent definition of φ-n-absorbing ideals. In addi-
tion, relationships between φ-n-absorbing ideals (weakly n-absorbing ideals) and
n-absorbing ideals are investigated in decomposable semirings. Moreover, if φ-
n-absorbing ideals of semirings are given, then we can construct φ-n-absorbing
ideals of quotient semirings and of semirings of fractions. We also show that , for
a semiring R and its Q-ideal I, if P/I is a φ-n-absorbing ideal of R/I, then P is
a φ-n-absorbing ideal of R.
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2 φ-n-Absorbing Ideals

In this section, we investigate φ-n-absorbing ideals of semirings with φ. For
the sake of completeness, we state some definitions in the same fashion as found
in [2] and [3] which are used throughout this paper.

Definition 2.1. Let R be a semiring and n a positive integer.
A proper ideal I of R is said to be n-absorbing if x1, x2, . . . , xn+1 ∈ R and

x1x2 · · ·xn+1 ∈ I implies x̂i,n+1 ∈ I for some i ∈ {1, 2, . . . , n+ 1}.
A proper ideal I of R is said to be weakly n-absorbing if x1, x2, . . . , xn+1 ∈ R

and x1x2 · · ·xn+1 ∈ I − {0} implies x̂i,n+1 ∈ I for some i ∈ {1, 2, . . . , n+ 1}.
A proper ideal I of R is said to be almost n-absorbing if x1, x2, . . . , xn+1 ∈ R

and x1x2 · · ·xn+1 ∈ I − I2 implies x̂i,n+1 ∈ I for some i ∈ {1, 2, . . . , n+ 1}.
A proper ideal I of R is said to be m-almost n-absorbing (m ≥ 2) if x1, x2, . . . ,

xn+1 ∈ R and x1x2 · · ·xn+1 ∈ I−Im implies x̂i,n+1 ∈ I for some i ∈ {1, 2, . . . , n+ 1}.
A proper ideal I of R is said to be ω-n-absorbing if x1, x2, . . . , xn+1 ∈ R and

x1x2 · · ·xn+1 ∈ I − ∩∞
l=1I

l implies x̂i,n+1 ∈ I for some i ∈ {1, 2, . . . , n+ 1}.

Example 2.2. Let n be a positive integer with n ≥ 2 and p1, p2, . . . , pn prime
numbers (not necessary distinct). Then p1p2 · · · pnZ

+
0 is an n-absorbing ideal but

not an (n− 1)-absorbing ideal of the semiring Z
+
0 under usual addition and usual

multiplication.

In the following, we define φ-n-absorbing ideals of semirings. These ideals gen-
eralize n-absorbing ideals, weakly n-absorbing ideals, almost n-absorbing ideals,
m-almost n-absorbing ideals and ω-n-absorbing ideals of semirings.

Definition 2.3. A proper ideal I of a semiring R is said to be φ-n-absorbing if
whenever x1, x2, . . . , xn+1 ∈ R and x1x2 · · ·xn+1 ∈ I − φ(I), then x̂i,n+1 ∈ I for
some i ∈ {1, 2, . . . , n+ 1}.

Hence, for a semiring R, if we define φ∅ : I (R) → I (R)∪{∅} by φ∅(I) = ∅ for
all I ∈ I (R), then a φ∅-n-absorbing ideal is just an n-absorbing ideal. Similarly,
if we define φ0 : I (R) → I (R) ∪ {∅} by φ0(I) = {0} for all I ∈ I (R), then
a φ0-n-absorbing ideal is a weakly n-absorbing ideal. In the same way, if we
define the functions φα : I (R) → I (R) ∪ {∅} such that φ2(I) = I2, φm(I) = Im

where m ∈ N with m ≥ 2 and φω(I) = ∩∞
l=1I

l for all I ∈ I (R), then a φ2-n-
absorbing (φm-n-absorbing, φω-n-absorbing) ideal is an almost n-absorbing (m-
almost n-absorbing, ω-n-absorbing) ideal, respectively. These functions are defined
analogously to those (for the ring-case) found in [3].

Recall that a k-ideal (subtractive ideal) of a semiring R is an ideal I of R such
that if for x, y ∈ R and x, x + y ∈ I, then y ∈ I. It is easy to see that if A,B are
k-ideals of a semiring R and I = A ∪B is an ideal of R, then I = A or I = B.

Let R be a semiring. Given two functions ϕ1, ϕ2 : I (R) → I (R) ∪ {∅}, we
define ϕ1 ≤ ϕ2 if ϕ1(I) ⊆ ϕ2(I) for each I ∈ I (R) in the same manner as given
in [3].
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Proposition 2.4. Let R be a semiring, I a proper ideal of R and ϕ1 ≤ ϕ2 where
ϕ1 and ϕ2 are functions from I (R) into I (R) ∪ {∅}. If I is a ϕ1-n-absorbing
ideal, then I is a ϕ2-n-absorbing ideal.

Proof. The proof is straightforward.

Corollary 2.5. Let I be a proper ideal of a semiring and n,m ∈ N with m ≥ 2.
Consider the following statements:

(1) I is an n-absorbing ideal.

(2) I is a weakly n-absorbing ideal.

(3) I is an ω-n-absorbing ideal.

(4) I is an (m+ 1)-almost n-absorbing ideal.

(5) I is an m-almost n-absorbing ideal.

(6) I is an almost n-absorbing ideal.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6).

In the following result, we give an equivalent definition of φ-n-absorbing ideals.

Theorem 2.6. Let R be a semiring with φ, I a proper ideal of R and n, n′ positive
integers with n < n′. Then I is a φ-n-absorbing ideal if and only if whenever
x1x2 · · ·xn′ ∈ I − φ(I) for any x1, x2, . . . , xn′ ∈ R, then xi1xi2 · · ·xin ∈ I for
some distinct i1, i2, . . . , in ∈ {1, 2, . . . , n′}.

Proof. First, assume that I is a φ-n-absorbing ideal of R. Let x1, x2, . . . , xn′ ∈ R
be such that x1x2 · · ·xn(xn+1xn+2 · · ·xn′) = x1x2 · · ·xn′ ∈ I − φ(I). Since I is
a φ-n-absorbing ideal, x1x2 · · ·xn ∈ I or x̂i,n(xn+1xn+2 · · ·xn′) ∈ I for some
i ∈ {1, 2, . . . , n}. If x1x2 · · ·xn ∈ I, then we are done. So we suppose that
x̂i,nxn+1xn+2 · · ·xn′ ∈ I. Since x1x2 · · ·xn′ /∈ φ(I), we obtain x̂i,nxn+1xn+2 · · ·xn′

= x̂i,nxn+1(xn+2 · · ·xn′) ∈ I − φ(I). Because I is a φ-n-absorbing ideal, it follows
that x̂i,nxn+1 ∈ I or x̂{i,j},n+1(xn+2 · · ·xn′) ∈ I for some j ∈ {1, 2, . . . , n+1}−{i}.
If x̂i,nxn+1 ∈ I, then we are done. If not, we continue this process, and hence we
obtain xi1xi2 · · ·xin ∈ I for some distinct i1, i2, . . . , in ∈ {1, 2, . . . , n′}.

Conversely, the proof is clear by choosing n′ = n+ 1.

Corollary 2.7. Let R be a semiring, I a proper ideal of R and n, n′ positive
integers with n < n′. Then I is an n-absorbing ideal if and only if whenever
x1x2 · · ·xn′ ∈ I for x1, x2, . . . , xn′ ∈ R, then xi1xi2 · · ·xin ∈ I for some distinct
i1, i2, . . . , in ∈ {1, 2, . . . , n′}.

It is easy to see that n-absorbing ideals imply n′-absorbing ideals for any
n, n′ ∈ N with n ≤ n′; moreover, this statement is also true for φ-n-absorbing
ideals as shown in the next proposition.
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Proposition 2.8. Let R be a semiring with φ, I a proper ideal of R and n a pos-
itive integer. If I is a φ-n-absorbing ideal, then I is a φ-n′-absorbing ideal for all
n′ ∈ N with n ≤ n′.

Proof. Assume that I is a φ-n-absorbing ideal of R. Let n′ ∈ N be such that
n ≤ n′. Note that, if n′ = n, then there is nothing to do. So we assume that
n < n′. Let x1, x2, . . . , xn′+1 ∈ R be such that x1x2 · · ·xn′+1 ∈ I − φ(I). We
obtain from Theorem 2.6 that xi1xi2 · · ·xin ∈ I for some distinct i1, i2, . . . , in ∈
{1, 2, . . . , n′ + 1}. By choosing all distinct

in+1, in+2, . . . , in′ ∈ {1, 2, . . . , n′ + 1} − {i1, i2, . . . , in}

and by multiplying, xi1xi2 · · ·xi
n′

= (xi1xi2 · · ·xin)
(

xin+1
xin+2

· · ·xn′

)

∈ I. Hence
I is a φ-n′-absorbing ideal of R. Therefore, I is a φ-n′-absorbing ideal for all
n ≤ n′.

Since the empty set is a subset of all sets, n-absorbing ideals imply φ-n-
absorbing ideals for any φ by Proposition 2.4. The converse of this statement
is not true. Nevertheless, in 2015, M. K. Dubey and P. Sarohe [5] gave the condi-
tions for φ-n-absorbing ideals to be n-absorbing ideals.

Proposition 2.9 ([5]). Let R be a semiring with φ, n a positive integer and I a
proper k-ideal of R such that φ(I) is a k-ideal. If I is a φ-n-absorbing ideal with
In+1 6⊆ φ(I), then I is an n-absorbing ideal.

From Corollary 2.5, we know that every n-absorbing ideal is a weakly n-
absorbing ideal. Nonetheless, the converse of this statement is not true. In 2015,
M. K. Dubey and P. Sarohe [5] also gave some characters of ideals which are weakly
n-absorbing k-ideal but are not n-absorbing ideals as follows.

Corollary 2.10 ([5]). Let R be a semiring and n a positive integer. If I is a
weakly n-absorbing k-ideal but is not an n-absorbing ideal, then In+1 = {0}.

We would like to point out here that Corollary 2.10 is used to prove several
results in the next section.

3 On Decomposable Semirings

In this section, we examine n-absorbing ideals, weakly n-absorbing ideals and
φ-n-absorbing ideals of decomposable semirings.

For a decomposable semiring R = R1×R2×· · ·×Rm (m ∈ N with m ≥ 2) such
that Ri is a semiring with ϕi for all i ∈ {1, 2, . . . ,m} and an ideal I1×I2×· · ·×Im
of R, it follows that ϕ1(I1)×ϕ2(I2)×· · ·×ϕm(Im) is an ideal of R or the empty set.
Hence there is a function φ : I (R) → I (R)∪{∅} such that φ(I1×I2×· · ·×Im) =
ϕ1(I1)× ϕ2(I2)× · · · × ϕm(Im) for all I1 × I2 × · · · × Im ∈ I (R); in addition, we
denote the function φ which is defined as the previous by φ = ϕ1 ×ϕ2 × · · · ×ϕm.

Moreover, for an ideal I = I1 × I2 × · · · × Im of a decomposable semiring
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R = R1 ×R2 × · · · ×Rm, it is easy to see that I is a k-ideal of R if and only if Ii
is a k-ideal of Ri for all i ∈ {1, 2, . . . ,m}.

First, we would like to show that, for m,n ∈ N with m ≥ n + 1, a nonzero
weakly n-absorbing ideal I1 × I2× · · ·× Im of a decomposable semiring R1 ×R2×
· · · ×Rm has at least one Ii = Ri for some i ∈ {1, 2, . . . ,m}.

Proposition 3.1. Let R = R1×R2×· · ·×Rm where m,n ∈ N with m ≥ n+1 be
a decomposable semiring and I = I1 × I2 × · · · × Im a nonzero proper ideal of R.
If I is a weakly n-absorbing ideal, then Ii = Ri for some i ∈ {1, 2, . . . ,m}.

Proof. Assume that I is a weakly n-absorbing ideal. Since I is a nonzero ideal,
there is (x1, x2, . . . , xm) ∈ I such that (x1, x2, . . . , xm) 6= (0, 0, . . . , 0). Then

(0, 0, . . . , 0) 6= (x1, x2, . . . , xm)

= (x1, 1, . . . , 1)(1, x2, 1, . . . , 1) · · · (1, . . . , 1, xn+1, . . . , xm) ∈ I.

Thus (x1, x2, . . . , xn, 1, . . . , 1) ∈ I or (x1, . . . , xi−1, 1, xi+1, . . . , xn+1, . . . , xm) ∈ I
for some i ∈ {1, 2, . . . , n} because I is a weakly n-absorbing ideal. Hence 1 ∈ Ii
for some i ∈ {1, 2, . . . ,m}. Therefore, Ii = Ri.

We know that n-absorbing ideals imply weakly n-absorbing ideals but not
vice versa in general. However, in decomposable semirings, the converse of this
statement is true if we assume those ideals are nonzero proper k-ideals.

Proposition 3.2. Let R = R1×R2×· · ·×Rm where m,n ∈ N with m ≥ n+1 be
a decomposable semiring and I = I1 × I2 × · · ·× Im a nonzero proper k-ideal of R.
Then I is a weakly n-absorbing ideal if and only if I is an n-absorbing ideal.

Proof. Assume that I is a weakly n-absorbing ideal of R. Then Ii = Ri for
some i ∈ {1, 2, . . . ,m} by Proposition 3.1. Thus In+1 6= {0}. Therefore, I is an
n-absorbing ideal by Corollary 2.10. The converse is clear by Corollary 2.5.

From Proposition 3.2, we can conclude that weakly n-absorbing ideals and
n-absorbing ideals are coincide if we provide that they are nonzero proper k-
ideals of decomposable semirings with m components where m ≥ n + 1. In the
following theorem, we assume the condition that “there is at least one Ii = Ri

where i ∈ {1, 2, . . . ,m}” holds while the condition that “I is a nonzero ideal and
m ≥ n+1” can be omitted. We still obtain the same result; moreover, we get that
any proper components of I are n-absorbing ideals.

Theorem 3.3. Let R = R1 × R2 × · · · × Rm be a decomposable semiring, n a
positive integer and I = I1 × I2 × · · · × Im a proper k-ideal of R with at least one
Ii = Ri where i ∈ {1, 2, . . . ,m}. Consider the following statements:

(1) I is a weakly n-absorbing ideal of R.

(2) I is an n-absorbing ideal of R.

(3) If Ij 6= Rj where j ∈ {1, 2, . . . ,m}, then Ij is an n-absorbing ideal of Rj.
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Then (1) and (2) are equivalent and (2) implies (3).

Proof. The proof for (1) ⇔ (2) is clear by Corollary 2.5 and Corollary 2.10.

To show (2) ⇒ (3), assume that I is an n-absorbing ideal of R and Ij 6= Rj for
some j ∈ {1, 2, . . . ,m}. Let x1, x2, . . . , xn+1 ∈ Rj be such that x1x2 · · ·xn+1 ∈ Ij .
We obtain (0, . . . , 0, x1, 0, . . . , 0)(0, . . . , 0, x2, 0, . . . , 0) · · · (0, . . . , 0, xn+1, 0, . . . , 0) =
(0, . . . , 0, x1x2 · · ·xn+1, 0, . . . , 0) ∈ I. Since I is an n-absorbing ideal, it follows that
(0, . . . , 0, x̂l,n+1, 0, . . . , 0) ∈ I for some l ∈ {1, 2, . . . ,m}. Hence x̂l,n+1 ∈ Ij . There-
fore, Ij is an n-absorbing ideal of Rj .

From Theorem 3.3, we can conclude that if I1× I2×· · ·× Im is an n-absorbing
ideal (weakly n-absorbing ideal) of R1 × R2 × · · · × Rm, then Ij with Ij 6= Rj is
an n-absorbing ideal of Rj where j ∈ {1, 2, . . . ,m}. Nevertheless, the converse of
this statement is not true in general as we show in the following example.

Example 3.4. Let R = R1×R2×· · ·×Rm = Z
+
0 ×Z

+
0 ×· · ·×Z

+
0 and n a positive

integer. Let I1 = p1p2 · · · pnZ
+
0 and I2 = q1q2 · · · qnZ

+
0 where p1, p2, . . . , pn, q1,

q2, . . . , qn are positive primes. Thus I1 and I2 are n-absorbing ideals of Z+
0 . Since

(p1, 1, 1, . . . , 1)(p2, q1, 1, . . . , 1) · · · (pn, qn−1, 1, . . . , 1)(1, qn, 1, . . . , 1) = (p1p2 · · · pn,
q1q2 · · · qn, 1, 1, . . . , 1) ∈ I1 × I2 ×R3 × · · · ×Rm but p̂i,n /∈ I1 and q̂j,n /∈ I2 for all
i, j ∈ {1, 2, . . . , n}, the ideal I1 × I2 ×R3 × · · · ×Rm is not an n-absorbing ideal.

In the next theorem, we assume a stronger condition than conditions given in
Theorem 3.3 in order to make (1), (2) and (3) be equivalent.

Theorem 3.5. Let R = R1 × R2 × · · · × Rm be a decomposable semiring, n a
positive integer and I = I1 × I2 × · · · × Im a proper k-ideal of R with exactly one
Ii 6= Ri where i ∈ {1, 2, . . . ,m}. The following statements are equivalent.

(1) I is a weakly n-absorbing ideal of R.

(2) I is an n-absorbing ideal of R.

(3) Ii is an n-absorbing ideal of Ri.

Proof. It remains to show (3) ⇒ (2). Assume Ii is an n-absorbing ideal of Ri. Let
(x11, . . . , x1m), (x21, . . . , x2m), . . . , (x(n+1)1, . . . , x(n+1)m) ∈ R be such that

(x11, . . . , x1m)(x21, . . . , x2m) · · · (x(n+1)1, . . . , x(n+1)m) ∈ I.

Note that I = R1 × · · · ×Ri−1 × Ii ×Ri+1 × · · · ×Rm. Thus

(x11x21 · · ·x(n+1)1, . . . , x1ix2i · · ·x(n+1)i, . . . , x1mx2m · · ·x(n+1)m) ∈ I.

Since Ii is an n-absorbing ideal of Ri, we obtain x̂ji,(n+1)i ∈ Ii for some j ∈
{1, 2, . . . , n+1}. Thus (x11, . . . , x1m) · · · (x(j−1)1, . . . , x(j−1)m)(x(j+1)1, . . . , x(j+1)m)
· · · (x(n+1)1, . . . , x(n+1)m) ∈ I. Therefore, I is an n-absorbing ideal of R.



484 Thai J. Math. 14 (2016)/ P. Petchkaew et al.

Corollary 3.6. Let R = R1 ×R2 × · · · ×Rm be a decomposable semiring with φ,
n a positive integer and I = I1 × I2 × · · · × Im a proper k-ideal of R with exactly
one Ii 6= Ri where i ∈ {1, 2, . . . ,m}. If Ii is an n-absorbing ideal of Ri, then I is
a φ-n-absorbing ideal of R.

Besides, we investigate that if Ii is an n-absorbing ideal of a semiring Ri, then
I = R1 × R2 × · · · × Ri−1 × Ii × Ri+1 × · · · × Rm is a φ-n-absorbing ideal of the
decomposable semiring R1 ×R2 × · · · ×Rm for any φ. We also study in case of Ii
is a weakly n-absorbing ideal of Ri as follows.

Theorem 3.7. Let R = R1 × R2 × · · · × Rm be a decomposable semiring, n a
positive integer and I = I1 × I2 × · · · × Im a proper k-ideal of R with exactly one
Ii 6= Ri where i ∈ {1, 2, . . . ,m}. If Ii is a weakly n-absorbing ideal of Ri, then I
is a φ-n-absorbing ideal of R for all φω ≤ φ.

Proof. In fact, I = R1×· · ·×Ri−1×Ii×Ri+1×· · ·×Rm for some i ∈ {1, 2, . . . ,m}.
Without loss of generality, we assume that i = 1. Assume that I1 is a weakly n-
absorbing ideal of R1. Since I is a k-ideal, I1 is a k-ideal. If I1 is an n-absorbing
ideal of R1, then I is an n-absorbing ideal of R by Theorem 3.5, and so I is a
φω-n-absorbing ideal of R. Assume that I1 is not an n-absorbing ideal of R1.
Thus In+1

1 = {0} by Corollary 2.10. Consider the element (x1, . . . , xm) ∈ φω(I) =
∩∞
l=1I

l ⊆ In+1 = (I1 × R2 × · · · × Rm)n+1 ⊆ In+1
1 × R2 × · · · × Rm = {0} ×

R2 × · · · × Rm. Let (x11, . . . , x1m), (x21, . . . , x2m), . . . , (x(n+1)1, . . . , x(n+1)m) ∈
R be such that (x11x21 · · ·x(n+1)1, . . . , x1mx2m · · ·x(n+1)m) ∈ I − φω(I). Then
x11x21 · · ·x(n+1)1 ∈ I1 − {0}. Since I1 is a weakly n-absorbing ideal, we obtain
x̂j1,(n+1)1 ∈ I1 for some j ∈ {1, 2, . . . , n + 1}. Hence (x̂j1,(n+1)1, x̂j2,(n+1)2, . . . ,
x̂jm,(n+1)m) ∈ I. Thus I is a φω-n-absorbing ideal. Therefore, in any cases, I is a
φω-n-absorbing ideal, and so I is a φ-n-absorbing ideal for all φω ≤ φ.

Next, we are interested in case of I = I1×I2×· · ·×Im is a weakly n-absorbing
k-ideal which every component Ii 6= {0}.

Theorem 3.8. Let R = R1 × R2 × · · · × Rm be a decomposable semiring, n a
positive integer with n ≥ 2 and I = I1 × I2 × · · · × Im where Ii 6= {0} for all
i ∈ {1, 2, . . . ,m} is a weakly n-absorbing k-ideal. Then I is an n-absorbing ideal
of R or Ii is an (n− 1)-absorbing ideal of Ri for all i ∈ {1, 2, . . . ,m}.

Proof. If I is an n-absorbing ideal of R, then we are done. Suppose that I is not
an n-absorbing ideal of R. Then In+1 = {0} by Corollary 2.10. Hence Ij 6= Rj

for all j ∈ {1, 2, . . . ,m}. Let i, j ∈ {1, 2, . . . ,m}. Without loss of generality, we
assume that j < i. We show that Ij is an (n − 1)-absorbing ideal of Rj . Let
x1, x2, . . . , xn ∈ Rj be such that x1x2 · · ·xn ∈ Ij . Since Ii 6= {0}, there exists
0 6= yi ∈ Ii. So (0, 0, . . . , 0) 6= (0, . . . , 0, x1x2 · · ·xn, 0, . . . , 0, yi, 0, . . . , 0) ∈ I. Thus
(0, 0, . . . , 0) 6= (0, . . . , 0, x1, 0, . . . , 0, 1, 0, . . . , 0)(0, . . . , 0, x2, 0, . . . , 0, 1, 0, . . . , 0) · · ·

(0, . . . , 0, xn, 0, . . . , 0, 1, 0, . . . , 0)(0, . . . , 0, 1, 0, . . . , 0, yi, 0, . . . , 0) ∈ I.
Since I is weakly n-absorbing, 1 ∈ Ii or x̂l,n ∈ Ij for some l ∈ {1, 2, . . . , n}. Since
Ii 6= Ri, we obtain 1 /∈ Ii, and hence x̂l,n ∈ Ij . Therefore, Ij is an (n−1)-absorbing
ideal of Rj .
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LetR = R1×R2×· · ·×Rm be a decomposable semiring and I = I1×I2×· · ·×Im
a proper ideal of R with exactly one Ii 6= Ri where i ∈ {1, 2, . . . ,m}. From
Theorem 3.5, if Ii is an n-absorbing ideal of Ri, then I is an n-absorbing ideal
of R. In the next result, we consider in case of every component Ii of I is an
ni-absorbing ideal of Ri, then we obtain an interesting result which is I must be
an n-absorbing ideal where n = n1 + n2 + · · · + nm; in addition, in this theorem
ni can be zero. In case ni = 0, we denote 0-absorbing ideal the ideal R.

Theorem 3.9. Let R = R1 × R2 × · · · × Rm be a decomposable semiring and
I = I1 × I2 × · · · × Im an ideal of R. If Ii is an ni-absorbing ideal of Ri where
ni ∈ Z

+
0 for all i ∈ {1, 2, . . . ,m}, then I is an n-absorbing ideal of R where

n = n1 + n2 + · · ·+ nm, so that I is a φ-n-absorbing ideal of R.

Proof. Assume that Ii is an ni-absorbing ideal of Ri where ni ∈ Z
+
0 for all i ∈

{1, 2, . . . ,m}. Let n = n1+n2+· · ·+nm. Let (x11, x12, . . . , x1m), (x21, x22, . . . , x2m),
. . . , (x(n+1)1, x(n+1)2, . . . , x(n+1)m) ∈ R be such that

(x11, x12, . . . , x1m)(x21, x22, . . . , x2m) · · · (x(n+1)1, x(n+1)2, . . . , x(n+1)m) ∈ I.

We obtain (x11x21 · · ·x(n+1)1 , x12x22 · · ·x(n+1)2 , . . . , x1mx2m · · ·x(n+1)m) ∈ I.
Since Ii is an ni-absorbing ideal, x1ix2i · · ·x(n+1)i ∈ Ii and ni < n + 1, we
obtain xj1ixj2i · · ·xjni

i ∈ Ii for some distinct j1, j2, . . . , jni
∈ {1, 2, . . . , n + 1}

by Corollary 2.7. Suppose that ∪m
i=1{j1, j2, . . . , jni

} = {j′1, j
′
2, . . . , j

′
h}. Thus

{j′1, j
′
2, . . . , j

′
h} ⊆ {1, 2, . . . , n+ 1} and h ≤ n since n1 + n2 + · · ·+ nm = n. Since

{j1, j2, . . . , jni
} ⊆ {j′1, j

′
2, . . . , j

′
h} and xj1ixj2i · · ·xjni

i ∈ Ii for all i ∈ {1, 2, . . . ,m},
we obtain

xj′
1
ixj′

2
i · · ·xj′

h
i ∈ Ii.

By choosing all distinct j′h+1, j
′
h+2, . . . , j

′
n ∈ {1, 2, . . . , n + 1} − {j′1, j

′
2, . . . , j

′
h},

hence

xj′
1
ixj′

2
i · · ·xj′

n
i = (xj′

1
ixj′

2
i · · ·xj′

h
i)(xj′

h+1
ixj′

h+2
i · · ·xj′

n
i) ∈ Ii.

Then we obtain

(xj′
1
1, xj′

1
2, . . . , xj′

1
m)(xj′

2
1, xj′

2
2, . . . , xj′

2
m) · · · (xj′

n
1, xj′

n
2, . . . , xj′

n
m)

= (xj′
1
1xj′

2
1 · · ·xj′

n
1 , xj′

1
2xj′

2
2 · · ·xj′

n
2 , . . . , xj′

1
mxj′

2
m · · ·xj′

n
m) ∈ I.

Therefore, I is an n-absorbing ideal of R, and hence I is a φ-n-absorbing ideal
of R.

Example 3.10. Consider the semiring R = Z
+
0 × Z

+
0 × Z

+
0 × Z

+
0 .

(1) Then 2Z+
0 × 6Z+

0 × 30Z+
0 × Z

+
0 is a 6-absorbing ideal of R because 2Z+

0 is
a 1-absorbing ideal, 6Z+

0 is a 2-absorbing ideal, 30Z+
0 is a 3-absorbing ideal and

Z
+
0 is a 0-absorbing ideal of the semiring Z

+
0 .

(2) Then 22Z+
0 × 23Z+

0 × 24Z+
0 × 25Z+

0 is a 14-absorbing ideal of R because
2lZ+

0 is an l-absorbing ideal of the semiring Z
+
0 for all l ∈ N.
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From Theorem 3.9, we can conclude that, for an ideal I = I1 × I2 × · · · × Im
of a decomposable semiring R = R1 ×R2 × · · · ×Rm, if every component of I is a
prime ideal of its semiring, then I is an m-absorbing ideal of R.

4 On Quotient Semirings and Semirings of Frac-

tions

In this final section, we concern with φ-n-absorbing ideals of quotient semirings
and φ-n-absorbing ideals of semirings of fractions.

An ideal I of a semiring R is called a Q-ideal (partitioning ideal) if there exists
a subset Q of R such that R = ∪{q+ I | q ∈ Q} and (q1 + I) ∩ (q2 + I) 6= ∅ if and
only if q1 = q2 for q1, q2 ∈ Q.

Let I be a Q-ideal of a semiring R and R/I = {q + I | q ∈ Q}. Then R/I
forms a semiring under the binary operations ⊕ and ⊙ defined as follows:

(q1 + I)⊕ (q2 + I) = q3 + I and (q1 + I)⊙ (q2 + I) = q4 + I

where q3, q4 ∈ Q are the unique elements such that q1 + q2 + I ⊆ q3 + I and
q1q2 + I ⊆ q4 + I. This semiring R/I is called the quotient semiring of R by I.
In addition, since R is a commutative semiring with nonzero identity, R/I is a
commutative semiring with nonzero identity, see [6].

Next, we would like to give the notion of a subtractive extension of an ideal
which was introduced by D. R. Bonde and J. N. Chuadhari in 2014 [7].

Definition 4.1 ([7]). Let I be an ideal of a semiring R. An ideal P of R
containing I is said to be subtractive extension of I if whenever x, y ∈ R and
x ∈ I, x+ y ∈ P , then y ∈ P .

Note that, every k-ideal of a semiring R containing an ideal I of R is a sub-
tractive extension of I; nevertheless, the converse of this statement is not true as
shown in the next example.

Example 4.2. Let I = 4Z+
0 ×{0} and P = 2Z+

0 × (Z+
0 −{1}). Then I and P are

ideals of the semiring R = Z
+
0 × Z

+
0 such that I ⊆ P . Since (4, 2), (4, 2) + (2, 1) =

(6, 3) ∈ P but (2, 1) /∈ P , the ideal P is not a k-ideal of R. Let x ∈ I and
x + y ∈ P . Thus x = (4n, 0) for some n ∈ Z

+
0 and x + y = (2m, l) for some

m ∈ Z
+
0 and for some l ∈ Z

+
0 − {1}. Let y = (a, b) for some a, b ∈ Z

+
0 . Then

(2m, l) = x+ y = (4n, 0)+ (a, b) = (4n+ a, b). Hence 4n+ a = 2m and b = l, and
so we obtain a ∈ 2Z+

0 and b ∈ Z
+
0 −{1}. That is y = (a, b) ∈ P . Therefore, P is a

subtractive extension of I.

Let R be a semiring and I a Q-ideal of R. Then L is an ideal of R/I if and
only if there exists an ideal P of R such that P is a subtractive extension of I and
P/I = {q + I : q ∈ Q ∩ P} = L as shown by D. R. Bonde and J. N. Chaudhari in
2014, see [7].
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Moreover, if I is a Q-ideal of a semiring R and P is a k-ideal containing I,
then I is an (P ∩ Q)-ideal of the semiring P and P/I = {q + I : q ∈ P ∩Q} is a
k-ideal of R/I as given by S. E. Atani in 2007, see [6].

Let R be a semiring and I a Q-ideal of R. Moreover, let φ be a function
from I (R) into I (R) ∪ {∅} such that φ(L) is a subtractive extension of I for all
ideal L of R where L is a subtractive extension of I. We define φI : I (R/I) →
I (R/I)∪{∅} by φI(J/I) = (φ(J))/I for each ideal J of R where J is a subtractive
extension of I.

We call R a semiring with φ satisfying the property (∗) if R is a semiring with φ,
I is a Q-ideal of R and φI is a function from I (R/I) into I (R/I)∪ {∅} where φ
and φI are defined in the previous paragraph.

Example 4.3. Consider the semiring Z
+
0 and its Q-ideal I = 12Z+

0 . Define
φ : I (Z+

0 ) → I (Z+
0 )∪{∅} by φ(J) = 3Z+

0 if J is a subtractive extension of I and
φ(J) = {0} otherwise for all J ∈ I (Z+

0 ). Certainly, φ(L) = 3Z+
0 is a subtractive

extension of I = 12Z+
0 for all L ∈ I (R) where L is a subtractive extension of I.

Define φI : I (R/I) → I (R/I)∪ {∅} by φI(J/I) = (3Z+
0 )/I for each ideal J of R

where J is a subtractive extension of I. Thus Z+
0 is the semiring with φ satisfying

the property (∗).

Theorem 4.4. Let R be a semiring with φ satisfying the property (∗), n a positive
integer, I a Q-ideal of R and P a subtractive extension of I. Then P is a φ-n-
absorbing ideal of R if and only if P/I is a φI-n-absorbing ideal of R/I.

Proof. First, assume that P is a φ-n-absorbing ideal of R. Then P/I is an ideal of
R/I because P is a subtractive extension of I. Let q1+I, q2+I, . . . , qn+1+I ∈ R/I
be such that (q1 + I)(q2 + I) · · · (qn+1 + I) ∈ P/I − φI(P/I). Thus q1q2 · · · qn+1 ∈
P−φ(P ). Since P is a φ-n-absorbing ideal, q̂i,n+1 ∈ P for some i ∈ {1, 2, . . . , n+1}.
Hence (q1 + I) · · · (qi−1 + I)(qi+1 + I) · · · (qn+1 + I) ∈ P/I. Therefore, P/I is a
φI -n-absorbing k-ideal of R/I.

Conversely, assume that P/I is a φI -n-absorbing ideal of R/I. We show
that P is a φ-n-absorbing ideal of R. Let x1, x2, . . . , xn+1 ∈ R be such that
x1x2 · · ·xn+1 ∈ P − φ(P ). Then there exist q1, q2 . . . , qn+1 ∈ Q such that
xi ∈ qi + I for all i ∈ {1, 2, . . . , n + 1}. So there is yi ∈ I such that xi = qi + yi
for all i ∈ {1, 2, . . . , n+1}. Hence we obtain (q1 + y1)(q2 + y2) · · · (qn+1 + yn+1) ∈
P − φ(P ). Then q1q2 · · · qn+1 ∈ P − φ(P ) because P and φ(P ) are subtractive
extensions of I. Thus (q1 + I)(q2 + I) · · · (qn+1 + I) ∈ P/I − φI(P/I). Hence
(q1 + I) · · · (qi−1 + I)(qi+1 + I) · · · (qn+1 + I) ∈ P/I for some i ∈ {1, 2, . . . , n+ 1}
since P/I is a φI -n-absorbing ideal. Then q̂i,n+1 ∈ P . Thus x̂i,n+1 = (q1 +
y1) · · · (qi−1 + yi−1)(qi+1 + yi+1) · · · (qn+1 + yn+1) ∈ P . Therefore, P is a φ-n-
absorbing ideal of R.

Corollary 4.5. Let R be a semiring with φ satisfying the property (∗), n a positive
integer and I a Q-ideal of R. Then I is a φ-n-absorbing ideal of R if and only if
the zero ideal of R/I is a φI-n-absorbing ideal.
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Let R be a semiring and S the set of all multiplicatively cancellable elements
of R. Define a relation ∼ on R× S as follows :

(a, s) ∼ (b, t) if and only if at = bs

for all (a, s), (b, t) ∈ R× S. Then ∼ is an equivalence relation on R× S.

For (a, s) ∈ R × S, denote the equivalence class of ∼ containing (a, s) by
a

s
,

and denote the set of all equivalence classes of ∼ by RS . Then RS forms a semiring
under operations

a

s
+

b

t
=

at+ sb

st
and

(a

s

)

(

b

t

)

=
ab

st

for all a, b ∈ R and s, t ∈ S. This new semiring RS is called the semiring of
fractions of R with respect to S, see [8].

Let I be an ideal of R. The ideal generated by I of RS , that is the set of
all finite sums a1s1 + a2s2 + · · · + ansn where ai ∈ I and si ∈ RS , is called the
extension of I to RS , and is denoted by IRS . Let J be an ideal of RS . Then

the contraction of J in R is J ∩ R =
{

r ∈ R :
r

1
∈ J

}

, which is an ideal of R.

Moreover, x ∈ IRS if and only if it can be written in from x =
a

c
for some a ∈ I

and c ∈ S, see [8].
Let R be a semiring with φ. We define φS : I (RS) → I (RS) ∪ {∅} by

φS(J) = φ(J ∩ R)RS if φ(J ∩ R) ∈ I (R) and φS(J) = ∅ if φ(J ∩ R) = ∅ for all
J ∈ I (RS).

In the last theorem, we would like to show that if I is a φ-n-absorbing ideal
of R under some conditions, then IRS is a φS-n-absorbing ideal of RS .

Theorem 4.6. Let R be a semiring with φ, S the set of all multiplicatively can-
cellable elements of R and I an ideal of R with I ∩S = ∅ and φ(I)RS ⊆ φS(IRS).
If I is a φ-n-absorbing ideal of R, then IRS is a φS-n-absorbing ideal of RS .

Proof. Assume that I is a φ-n-absorbing ideal of R. Since I ∩ S = ∅, it fol-

lows that IRS is a proper ideal of RS . Let
x1

s1
,
x2

s2
, . . . ,

xn+1

sn+1
∈ RS be such

that
x1x2 · · ·xn+1

s1s2 · · · sn+1
∈ IRS − φS(IRS). Then

x1x2 · · ·xn+1

s1s2 · · · sn+1
∈ IRS − φ(I)RS

because φ(I)RS ⊆ φS(IRS). Thus there exist a ∈ I and v ∈ S such that
x1x2 · · ·xn+1

s1s2 · · · sn+1
=

a

v
. Hence x1x2 · · ·xn+1v = s1s2 · · · sn+1a ∈ I. If x1x2 · · ·xn+1v ∈

φ(I), then
x1x2 · · ·xn+1

s1s2 · · · sn+1
=

x1x2 · · ·xn+1v

s1s2 · · · sn+1v
∈ φ(I)RS which is a contradiction.

Then x1x2 · · ·xn+1v ∈ I − φ(I). Since I is φ-n-absorbing, x1x2 · · ·xn ∈ I or

x̂i,nxn+1v ∈ I for some i ∈ {1, 2, . . . , n}. Thus
x1x2 · · ·xn

s1s2 · · · sn
∈ IRS or

x̂i,nxn+1v

ŝi,nsn+1v
∈

IRS . Hence
x̂j,n+1

ŝj,n+1
∈ IRS for some j ∈ {1, 2, . . . , n + 1}. Therefore, IRS is a

φS-n-absorbing ideal of RS .
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