Thai Journal of Mathematics Volume 14 (2016) Number 2 : 443–451

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Some Characterizations of (m, μ) -Precontinuous Functions¹

Kittiya Wanwongsa $^{\dagger}_{,}$ Chokchai Viriyapong ‡,2 and Chawalit Boonpok ‡

[†]Mahasarakham University Demonstration School (Elementary), Maha Sarakham 44000, Thailand e-mail : pookka_boy@hotmail.com

[‡]Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand e-mail: chokchai.v@msu.ac.th (C. Viriyapong) chawalit.b@msu.ac.th (C. Boonpok)

Abstract : The aim of this paper is to introduce weak froms of (m, μ) -continuous functions, which are called (m, μ) -precontinuous, almost (m, μ) -precontinuous and weakly (m, μ) -precontinuous, as functions from an *m*-space into a generalized topological space. Several characterizations of functions are obtained.

Keywords : *m*-space; *m*-preopen set; generalized topological space; (m, μ) continuous function; (m, μ) -precontinuous function; almost (m, μ) -precontinuous
function; weakly (m, μ) -precontinuous function. **2010 Mathematics Subject Classification :** 54A05; 54C10.

1 Introduction

The concepts of m-spaces and M-continuity were introduced by Popa and Noiri in [1]. Later, Császár introduced the notions of generalized topological spaces and generalized continuity in [2]. Such spaces are the generalization of topological spaces. In [3] and [4], Boonpok introduced the concepts of continuity, almost

Copyright 2016 by the Mathematical Association of Thailand. All rights reserved.

 $^{^1{\}rm This}$ research has been funded by Mahasarakham University. $^2{\rm Corresponding}$ author.

continuity and weakly continuity from a generalized topological space into an m-space and investigated some their characterizations. After that, the nontions of continuity, almost continuity and weakly continuity from an m-space into a generalized topological space were studied by Phodee et al. in [5]. In this paper, we introduce the weak forms continuity from an m-space into a generalized topological space were introduced by Rasas [6]. Furthermore, some their characterizations are obtained.

2 Preliminaries

We begin this section by introducing the notion of a *m*-space in [7]. Let X be a nonempty set and $\mathscr{P}(X)$ the power set of X. A subfamily m of $\mathscr{P}(X)$ is called a *minimal structure* (briefly *m*-structure) on X if $\emptyset \in m$ and $X \in m$. The pair (X, m) is called an *m*-space. Each member of m is called *m*-open and the complement of an *m*-open set is called *m*-closed. For a *m*-structure m on X and $A \subset X$, the closure of A on m, denoted by m-Cl(A), is the intersection of all *m*-closed sets containing A, i.e., m-Cl(A) = $\bigcap \{F : X - F \in m \text{ and } A \subset F\}$, and the interior of A on m, denoted by m-Int(A), is the union of all *m*-open sets contained in A, i.e., m-Int(A) = $\bigcup \{U : U \in m \text{ and } U \subset A\}$. A subset A of an *m*-space (X, m) is said to be *m*-preopen [6] if $A \subset m$ -Int(*m*-Cl(A)). The complement of an *m*-preclosed. It can verify that A is *m*-preclosed if and only if m-Cl(*m*-Int(A)) $\subset A$. For a subset A of an *m*-space (X, m), the *m*-pre-closure of A, denoted by *m*-Cl(A), and the *m*-pre-interior of A, denoted by *m*-pInt(A), defined as follows:

$$m$$
-pCl(A) = $\bigcap \{F : F \text{ is } m$ -preclosed and $A \subset F\},\$

and

$$m$$
-pInt $(A) = \bigcup \{ U : U \text{ is } m$ -preopen and $U \subset A \}.$

We see that m-pInt $(A) \subset A \subset m$ -pCl(A) and if $A \subset B \subset X$, then m-pCl $(A) \subset m$ -pCl(B) and m-pInt $(A) \subset m$ -pInt(B). It is easy to prove that $x \in m$ -pCl(A) if and only if $W \cap A \neq \emptyset$ for every m-preopen set W containing x. Furthermore, m-pCl(X - A) = X - m-pInt(A) and m-pInt(X - A) = X - m-pCl(A). It is easy to observe that if A_{γ} is m-preopen for all $\gamma \in J$, then $\bigcup_{\gamma \in J} A_{\gamma}$ is m-preopen, and if A_{γ} is m-preclosed for all $\gamma \in J$, then $\bigcap_{\gamma \in J} A_{\gamma}$ is m-preclosed. As a consequence of the previous fact, we obtain the following properties: m-pInt(A) is m-preopen; m-pCl(A) is m-preclosed; A is m-preopen if and only if A = m-pInt(A); m-pCl(m-pCl(A)) = m-pCl(A).

Now, we recall some notions of generalized topological spaces in [5]. A subcollection μ of subsets of a nonempty set Y is called a *generalized topology* (briefly, GT) on Y if $\emptyset \in \mu$ and any union of elements of μ belongs to μ . In this case, (Y,μ) is called a *generalized topological space* (briefly, GTS). A subset A of Y is called μ -open if $A \in \mu$. The complement of a μ -open set is called a μ -closed

Some Characterizations of (m, μ) -Precontinuous ...

set. For a GTS (Y,μ) and $A \subset Y$, $c_{\mu}(A)$ is the intersection of all μ -closed sets containing A, i.e., the smallest μ -closed set containing A, and $i_{\mu}(A)$ is the union of all μ -open sets contained in A, i.e., the largest μ -open set contained in A. Clearly, $i_{\mu}(A) \subset A \subset c_{\mu}(A)$. It is easy to verify that c_{μ} and i_{μ} are idempotent (i.e., if $A \subset Y$, then $c_{\mu}(A) = c_{\mu}(c_{\mu}(A))$ and $i_{\mu}(A) = i_{\mu}(i_{\mu}(A))$) and monotonic (i.e., if $A \subset B \subset Y$, then $c_{\mu}(A) \subset c_{\mu}(B)$ and $i_{\mu}(A) \subset i_{\mu}(B)$). Moreover, $c_{\mu}(Y-A) = Y - i_{\mu}(A)$ and $i_{\mu}(Y-A) = Y - c_{\mu}(A)$. It is well known that $x \in c_{\mu}(A)$ if and only if $x \in V \in \mu$ implies $V \cap A \neq \emptyset$.

A subset A of a GTS (Y, μ) is said to be μ r-open (resp. μ -semi-open, μ -preopen, μ - α -open, μ - β -open) if $A = i_{\mu}(c_{\mu}(A))$ (resp. $A \subset c_{\mu}(i_{\mu}(A)), A \subset i_{\mu}(c_{\mu}(A)), A \subset c_{\mu}(i_{\mu}(c_{\mu}(A)))$). The complement of a μ r-open (resp. μ -semi-open, μ -preopen, μ - α -open, μ - β -open) set is said to be μ r-closed (resp. μ -semi-closed, μ -preclosed, μ - α -closed, μ - β -closed). Clearly, A is μ -closed if and only if $A = c_{\mu}(i_{\mu}(A))$. Let (X,m) be an m-space and (Y,μ) a GTS. A function $f : (X,m) \to (Y,\mu)$ is said to be (m,μ) -continuous (resp. almost (m,μ) continuous, weakly (m,μ) -continuous) at a point $x \in X$ if for each μ -open set V containing f(x), there exists an m-open set U containing x such that $f(U) \subset V$ (resp. $f(U) \subset i_{\mu}(c_{\mu}(V)), f(U) \subset c_{\mu}(V)$). A function $f : (X,m) \to (Y,\mu)$ is said to be (m,μ) -continuous (resp. almost (m,μ) -continuous, weakly (m,μ) -continuous) if f is (m,μ) -continuous (resp. almost (m,μ) -continuous, weakly (m,μ) -continuous) at every point in X.

3 Main Results

In this section, we shall introduce some weak forms continuity from an m-space into a GTS and study some of their characterizations. Throughout this section, let (X, m) and (Y, μ) be an m-space and a GTS, respectively.

Definition 3.1. A function $f: (X, m) \to (Y, \mu)$ is said to be (m, μ) -precontinuous at a point $x \in X$ if for each μ -open set V containing f(x), there exists an m-preopen set U containing x such that $f(U) \subset V$. A function $f: (X, m) \to (Y, \mu)$ is said to be (m, μ) -precontinuous if f is (m, μ) -precontinuous at every point in X.

Remark 3.2. Clearly, every (m, μ) -continuous function is (m, μ) -precontinuous but the converse is not true as the following example.

Example 3.3. Let $X = \{1, 2, 3, 4\}$, $m = \{\emptyset, \{1, 2\}, \{1, 3\}, X\}$ and $Y = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a, b\}, \{a, c\}, \{a, b, c\}\}$. Define $f : (X, m) \to (Y, \mu)$ as follows: f(1) = a, f(2) = b, f(3) = b, f(4) = b. Then f is (m, μ) -precontinuous but it is not (m, μ) -continuous.

Theorem 3.4. A function $f : (X, m) \to (Y, \mu)$ is (m, μ) -precontinuous if and only if $f^{-1}(V)$ is m-preopen in X for every μ -open set V in Y.

Proof. Let V be a μ -open set in Y and let $x \in f^{-1}(V)$. Since f is (m, μ) -precontinuous, there exists an m-preopen set U in X containing x such that

 $f(U) \subset V$. Then $x \in U \subset f^{-1}(V)$, and so $x \in m$ -pInt $(f^{-1}(V))$. Thus $f^{-1}(V) = m$ -pInt $(f^{-1}(V))$. Hence, $f^{-1}(V)$ is m-preopen in X.

Conversely, let $x \in X$ and V a μ -open set in Y containing f(x). Then $x \in f^{-1}(V)$. By assumption, $x \in m$ -pInt $(f^{-1}(V))$. Thus there exists an m-preopen set U in X such that $x \in U \subset f^{-1}(V)$. Hence, $f(U) \subset V$, and so f is (m, μ) -precontinuous at x. This implies f is (m, μ) -precontinuous.

Theorem 3.5. For a function $f : (X, m) \to (Y, \mu)$, the following properties are equivalent:

- (1) f is (m, μ) -precontinuous;
- (2) $f(m-pCl(A)) \subset c_{\mu}(f(A))$ for every subset A of X;
- (3) m-pCl $(f^{-1}(B)) \subset f^{-1}(c_{\mu}(B))$ for every subset B of Y;
- (4) $f^{-1}(i_{\mu}(B)) \subset m$ -pInt $(f^{-1}(B))$ for every subset B of Y;
- (5) $f^{-1}(F)$ is m-preclosed in X for every μ -closed set F in Y.

Proof. (1) \Rightarrow (2) Let A be a subset of X and let $x \in m$ -pCl(A). Let V be a μ -open set in Y containing f(x). By (1), there exists an m-preopen set U in X such that $x \in U \subset f^{-1}(V)$. Since $x \in m$ -pCl(A), $U \cap A \neq \emptyset$. Then $\emptyset \neq f(U \cap A) \subset f(U) \cap f(A) \subset V \cap f(A)$. This implies $f(x) \in c_{\mu}(f(A))$, and so $x \in f^{-1}(c_{\mu}(f(A)))$. Thus m-pCl(A) $\subset f^{-1}(c_{\mu}(f(A)))$. Hence, f(m-pCl(A)) $\subset c_{\mu}(f(A))$.

 $(2) \Rightarrow (3)$ Let B be a subset of Y. By (2), $f(m \operatorname{-pCl}(f^{-1}(B))) \subset c_{\mu}(f(f^{-1}(B)))$. Hence, $m \operatorname{-pCl}(f^{-1}(B)) \subset f^{-1}(c_{\mu}(B))$.

(3)⇒(4) Let *B* be a subset of *Y*. By (3), *m*-pCl($f^{-1}(Y-B)$) ⊂ $f^{-1}(c_{\mu}(Y-B))$. Hence, $f^{-1}(i_{\mu}(B)) \subset m$ -pInt($f^{-1}(B)$).

(4)⇒(5) Let F be a μ -closed set in Y. Then $Y - F = i_{\mu}(Y - F)$. By (4), $f^{-1}(Y - F) \subset m$ -pInt $(f^{-1}(Y - F))$. This implies m-pCl $(f^{-1}(F)) \subset f^{-1}(F)$. Hence, m-pCl $(f^{-1}(F)) = f^{-1}(F)$, and so $f^{-1}(F)$ is m-preclosed in X

 $(5) \Rightarrow (1)$ It follows from Theorem 3.4.

Next, we shall introduce a weak form of (m, μ) -precontinuous functions and study some of their characterizations.

Definition 3.6. A function $f : (X,m) \to (Y,\mu)$ is said to be almost (m,μ) precontinuous at a point $x \in X$ if for each μ -open set V containing f(x), there exists an *m*-preopen set U containing x such that $f(U) \subset i_{\mu}(c_{\mu}(V))$. A function $f : (X,m) \to (Y,\mu)$ is said to be almost (m,μ) -precontinuous if f is almost (m,μ) precontinuous at every point in X.

Remark 3.7. It is clear that every (m, μ) -precontinuous function is almost (m, μ) -precontinuous but the converse is not true as the following example.

Example 3.8. Let $X = \{1, 2, 3, 4\}, m = \{\emptyset, \{1, 2\}, \{1, 3\}, X\}$ and $Y = \{a, b, c, d\}, \mu = \{\emptyset, \{a, b\}, \{a, c\}, \{a, b, c\}\}$. Define $f : (X, m) \to (Y, \mu)$ as follows: f(1) = c, f(2) = a, f(3) = b, f(4) = c. Then f is almost (m, μ) -precontinuous but it is not (m, μ) -precontinuous.

Some Characterizations of (m, μ) -Precontinuous ...

Theorem 3.9. For a function $f: (X,m) \to (Y,\mu)$, the following properties are equivalent:

- (1) f is almost (m, μ) -precontinuous;
- (2) $f^{-1}(V) \subset m$ -pInt $(f^{-1}(i_{\mu}(c_{\mu}(V))))$ for every μ -open set V in Y;
- (3) m-pCl $(f^{-1}(c_{\mu}(i_{\mu}(F)))) \subset f^{-1}(F)$ for every μ -closed set F in Y;
- (4) m-pCl $(f^{-1}(c_u(i_u(c_u(B))))) \subset f^{-1}(c_u(B))$ for every subset B of Y:
- (5) $f^{-1}(i_{\mu}(B)) \subset m\text{-pInt}(f^{-1}(i_{\mu}(c_{\mu}(i_{\mu}(B)))))$ for every subset B of Y;
- (6) $f^{-1}(V)$ is m-preopen in X for every μ r-open set V in Y;
- (7) $f^{-1}(F)$ is m-preclosed in X for every μr -closed set F in Y.

Proof. (1) \Rightarrow (2) Let V be a μ -open set in Y and let $x \in f^{-1}(V)$. Then $f(x) \in V$. By (1), there exists an *m*-preopen set U in X containing x such that $f(U) \subset$ $i_{\mu}(c_{\mu}(V))$. Thus $x \in m$ -pInt $(f^{-1}(i_{\mu}(c_{\mu}(V))))$. Now, it obtain that $f^{-1}(V) \subset$ m-pInt $(f^{-1}(i_{\mu}(c_{\mu}(V)))).$

 $(2) \Rightarrow (3)$ Let F be a μ -closed set in Y. Then Y - F is μ -open in Y. By (2), $f^{-1}(Y-F) \subset m$ -pInt $(f^{-1}(i_{\mu}(c_{\mu}(Y-F))))$. This implies m-pCl $(f^{-1}(c_{\mu}(i_{\mu}(F)))) \subset$ $f^{-1}(F).$

(3) \Rightarrow (4) Let B be a subset of Y. Then $c_{\mu}(B)$ is μ -closed set in Y. By (3), m-pCl $(f^{-1}(c_{\mu}(i_{\mu}(c_{\mu}(B))))) \subset f^{-1}(c_{\mu}(B)).$

(4) \Rightarrow (5) Let B be a subset of Y. By (4), m-pCl $(f^{-1}(c_{\mu}(i_{\mu}(c_{\mu}(Y-B))))) \subset$ $f^{-1}(c_{\mu}(Y-B))$. This implies $f^{-1}(i_{\mu}(B)) \subset m$ -pInt $(f^{-1}(i_{\mu}(c_{\mu}(i_{\mu}(B)))))$. (5) \Rightarrow (6) Let V be a μ r-open set in Y. Then $i_{\mu}(V) = V = i_{\mu}(c_{\mu}(i_{\mu}(V)))$. By

(5), $f^{-1}(V) \subset m$ -pInt $(f^{-1}(V))$. This implies $f^{-1}(V)$ is m-preopen in X.

 $(6) \Rightarrow (7)$ It is clear.

 $(7) \Rightarrow (1)$ Let $x \in X$ and V a μ -open set in Y containing f(x). Then Y $i_{\mu}(c_{\mu}(V))$ is μ r-closed in Y and $x \in f^{-1}(i_{\mu}(c_{\mu}(V)))$. By (7), $f^{-1}(Y - i_{\mu}(c_{\mu}(V)))$ is *m*-preclosed in X. Thus $f^{-1}(i_{\mu}(c_{\mu}(V)))$ is *m*-preopen in X. Set $U = f^{-1}(i_{\mu}(c_{\mu}(V)))$. Then U is m-preopen containing x such that $f(U) \subset i_{\mu}(c_{\mu}(V))$. Hence, f is almost (m,μ) -precontinuous at x. This implies f is almost (m,μ) -precontinuous.

Theorem 3.10. For a function $f: (X,m) \to (Y,\mu)$, the following properties are equivalent:

- (1) f is almost (m, μ) -precontinuous;
- (2) m-pCl $(f^{-1}(U)) \subset f^{-1}(c_{\mu}(U))$ for every μ - β -open set U in Y;
- (3) m-pCl $(f^{-1}(U)) \subset f^{-1}(c_{\mu}(U))$ for every μ -semi-open set U in Y;
- (4) $f^{-1}(U) \subset m$ -pInt $(f^{-1}(i_{\mu}(c_{\mu}(U))))$ for every μ -preopen set U in Y.

Proof. (1) \Rightarrow (2) Let U be a μ - β -open set in Y. Then $c_{\mu}(U)$ is μ r-closed in Y. By (7) in Theorem 3.9, $f^{-1}(c_{\mu}(U))$ is *m*-preclosed in X. Hence, m-pCl $(f^{-1}(U)) \subset$ $f^{-1}(c_{\mu}(U)).$

(2) \Rightarrow (3) It follows from the fact that every μ -semi-open set in Y is μ - β -open. (3) \Rightarrow (1) Let F be a μ r-closed set in Y. Then $c_{\mu}(F) = F = c_{\mu}(i_{\mu}(F))$, and so F is μ -semi-open in Y. By (3), m-pCl $(f^{-1}(F)) \subset f^{-1}(F)$. Hence, $f^{-1}(F)$ is m-preclosed in X. By (7) in Theorem 3.9, f is almost (m, μ) -precontinuous.

 $(1) \Rightarrow (4)$ Let U be a μ -preopen set in Y. Then $U \subset i_{\mu}(c_{\mu}(U))$ and $i_{\mu}(c_{\mu}(U))$ is μ r-open in Y. By (6) in Theorem 3.9, $f^{-1}(i_{\mu}(c_{\mu}(U)))$ is m-preopen in X. Hence, $f^{-1}(U) \subset m$ -pInt $(f^{-1}(i_{\mu}(c_{\mu}(U))))$.

 $(4) \Rightarrow (1)$ Let U be a μ r-open set in Y. Then $U = i_{\mu}(c_{\mu}(U))$ and U is μ -preopen in Y. By (4), $f^{-1}(U) \subset m$ -pInt $(f^{-1}(U))$. Hence, $f^{-1}(U)$ is m-preopen in X. By (6) in Theorem 3.9, f is almost (m, μ) -precontinuous.

Finally, we shall introduce a weak form of almost (m, μ) -precontinuous functions and study some of their characterizations.

Definition 3.11. A function $f : (X, m) \to (Y, \mu)$ is said to be *weakly* (m, μ) -*precontinuous at a point* $x \in X$ if for each μ -open set V containing f(x), there
exists an m-preopen set U containing x such that $f(U) \subset c_{\mu}(V)$. A function $f : (X, m) \to (Y, \mu)$ is said to be *weakly* (m, μ) -*precontinuous* if f is weakly (m, μ) precontinuous at every point in X.

Remark 3.12. It is obvious that every almost (m, μ) -precontinuous function is weakly (m, μ) -precontinuous but the converse is not true as the following example.

Example 3.13. Let $X = \{1, 2, 3, 4\}, m = \{\emptyset, \{1, 2\}, \{1, 3\}, X\}$ and $Y = \{a, b, c, d\}, \mu = \{\emptyset, \{a, b\}, \{a, c\}, \{a, b, c\}\}$. Define $f : (X, m) \to (Y, \mu)$ as follows: f(1) = d, f(2) = a, f(3) = b, f(4) = d. Then f is weakly (m, μ) -precontinuous but it is not almost (m, μ) -precontinuous.

Theorem 3.14. A function $f : (X, m) \to (Y, \mu)$ is weakly (m, μ) -precontinuous if and only if $f^{-1}(V) \subset m$ -pInt $(f^{-1}(c_{\mu}(V)))$ for every μ -open set V in Y.

Proof. Let V be a μ -open set in Y and let $x \in f^{-1}(V)$. Since f is weakly (m, μ) precontinuous, there exists an m-preopen set U in X containing x such that $f(U) \subset c_{\mu}(V)$. Then $x \in U \subset f^{-1}(c_{\mu}(V))$, and so $x \in m$ -pInt $(f^{-1}(c_{\mu}(V)))$. Hence, $f^{-1}(V) \subset m$ -pInt $(f^{-1}(c_{\mu}(V)))$.

Conversely, let $x \in X$ and V a μ -open set in Y containing f(x). Then $x \in f^{-1}(V)$. By assumption, $x \in m$ -pInt $(f^{-1}(c_{\mu}(V)))$. Thus there exists an m-preopen set U in X such that $x \in U \subset f^{-1}(c_{\mu}(V))$. Hence, $f(U) \subset c_{\mu}(V)$, and so f is weakly (m, μ) -precontinuous at x. This implies f is weakly (m, μ) -precontinuous.

Theorem 3.15. For a function $f : (X, m) \to (Y, \mu)$, the following properties are equivalent:

- (1) f is weakly (m, μ) -precontinuous;
- (2) m-pCl $(f^{-1}(i_{\mu}(F))) \subset f^{-1}(F)$ for every μ -closed set F in Y;
- (3) m-pCl $(f^{-1}(i_{\mu}(c_{\mu}(B)))) \subset f^{-1}(c_{\mu}(B))$ for every subset B of Y;

Some Characterizations of (m, μ) -Precontinuous ...

- (4) $f^{-1}(i_{\mu}(B)) \subset m\text{-pInt}(f^{-1}(c_{\mu}(i_{\mu}(B))))$ for every subset B of Y;
- (5) m-pCl $(f^{-1}(V)) \subset f^{-1}(c_{\mu}(V))$ for every μ -open set V in Y.

Proof. (1)⇒(2) Let F be a µ-closed set in Y. Then Y - F is µ-open in Y. By Theorem 3.14, $f^{-1}(Y - F) \subset m$ -pInt $(f^{-1}(c_{\mu}(Y - F)))$. Hence, m-pCl $(f^{-1}(i_{\mu}(F))) \subset f^{-1}(F)$.

 $(2) \Rightarrow (3)$ It is clear.

(3)⇒(4) Let B be a subset of Y. By (3), we have m-pCl $(f^{-1}(i_{\mu}(c_{\mu}(Y-B)))) \subset f^{-1}(c_{\mu}(Y-B))$. This implies $f^{-1}(i_{\mu}(B)) \subset m$ -pInt $(f^{-1}(c_{\mu}(i_{\mu}(B))))$.

(4)⇒(1) Let V be a µ-open set in Y. Then $V = i_{\mu}(V)$. By (4), $f^{-1}(V) \subset m$ -pInt $(f^{-1}(c_{\mu}(V)))$. By Theorem 3.14, f is weakly (m, μ) -precontinuous.

 $(2) \Leftrightarrow (5)$ It is easy to verify.

Theorem 3.16. For a function $f : (X, m) \to (Y, \mu)$, the following properties are equivalent:

- (1) f is weakly (m, μ) -precontinuous;
- (2) m-pCl $(f^{-1}(i_{\mu}(F))) \subset f^{-1}(F)$ for every μ r-closed set F in Y;
- (3) m-pCl $(f^{-1}(i_{\mu}(c_{\mu}(G)))) \subset f^{-1}(c_{\mu}(G))$ for every μ - β -open set G in Y;
- (4) m-pCl $(f^{-1}(i_{\mu}(c_{\mu}(G)))) \subset f^{-1}(c_{\mu}(G))$ for every μ -semi-open set G in Y.

Proof. (1) \Rightarrow (2) Let F be a μ r-closed set in Y. Then F is μ -closed in Y. By (2) in Theorem 3.15, m-pCl $(f^{-1}(i_{\mu}(F))) \subset f^{-1}(F)$.

(2) \Rightarrow (3) Let G be a μ - β -open set in Y. Then $c_{\mu}(G)$ is μ r-closed in Y. By (2), m-pCl $(f^{-1}(i_{\mu}(c_{\mu}(G)))) \subset f^{-1}(c_{\mu}(G))$.

(3)⇒(4) It follows from the fact that every μ -semi-open set in Y is μ - β -open. (4)⇒(1) Let V be a μ -open set in Y. Then V is μ -semi-open in Y. By (4), m-pCl($f^{-1}(V)$) $\subset f^{-1}(c_{\mu}(V))$. By (5) in Theorem3.15, f is weakly (m, μ) -precontinuous.

Theorem 3.17. For a function $f : (X, m) \to (Y, \mu)$, the following properties are equivalent:

- (1) f is weakly (m, μ) -precontinuous;
- (2) m-pCl $(f^{-1}(i_{\mu}(c_{\mu}(G)))) \subset f^{-1}(c_{\mu}(G))$ for every μ -preopen set G in Y;
- (3) m-pCl $(f^{-1}(G)) \subset f^{-1}(c_{\mu}(G))$ for every μ -preopen set G in Y;
- (4) $f^{-1}(G) \subset m\text{-pInt}(f^{-1}(c_{\mu}(G)))$ for every μ -preopen set G in Y.

Proof. (1) \Rightarrow (2) Let G be a μ -preopen set in Y. Then $c_{\mu}(G)$ is μ r-closed in Y. By (2) in Theorem 3.16, m-pCl $(f^{-1}(i_{\mu}(c_{\mu}(G)))) \subset f^{-1}(c_{\mu}(G))$.

(2) \Rightarrow (3) It follows from the definition of the μ -preopen set in a GTS.

 $(3) \Rightarrow (4)$ Let G be a μ -preopen set in Y. Then $G \subset i_{\mu}(c_{\mu}(G))$ and $i_{\mu}(Y-G)$ is μ -preopen in Y. By (3), m-pCl $(f^{-1}(i_{\mu}(Y-G))) \subset f^{-1}(c_{\mu}(i_{\mu}(Y-G)))$. This implies $f^{-1}(G) \subset m$ -pInt $(f^{-1}(c_{\mu}(G)))$.

(4) \Rightarrow (1) It follows from fact that every μ -open set in Y is μ -preopen and Theorem 3.14.

Now, we recall that a GTS (Y, μ) is said to be μ -regular [8] if for each μ -closed set F of Y not containing y, there exist disjoint μ -open set V and W such that $y \in V$ and $F \subset W$. It can verify that a GTS (Y, μ) is μ -regular if and only if for each $y \in Y$ and each $V \in \mu$ containing y, there exists $W \in \mu$ such that $y \in W \subset c_{\mu}(W) \subset V$.

Theorem 3.18. For a function $f : (X, m) \to (Y, \mu)$, where (Y, μ) is μ -regular, the following are equivalent:

- (1) f is (m, μ) -precontinuous;
- (2) f is almost (m, μ) -precontinuous;
- (3) f is weakly (m, μ) -precontinuous.

Proof. It is clear that $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$.

 $(3) \Rightarrow (1)$ Let $x \in X$ and V a μ -open set in Y containing f(x). Since (Y, μ) is μ -regular, there exists $W \in \mu$ such that $f(x) \in W \subset c_{\mu}(W) \subset V$. By (3), there exists an m-preopen set U containing x such that $f(U) \subset c_{\mu}(W)$. Then $f(U) \subset V$. Hence, f is (m, μ) -precontinuous at x. This implies f is (m, μ) -precontinuous. \Box

Acknowledgements : The authors would like to thank the referees for helpful comments and suggestions on the manuscript. The authors also would like to thank Mahasarakham University for the financial support.

References

- V. Popa, T. Noiri, On M-continuous functions, Anal. Univ. "Dunărea de Jo" Galați, Ser. Mat. Fiz. Mec. Teor. II 18 (23) (2000) 31-41.
- [2] A. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002) 351-357.
- [3] C. Boonpok, Almost (g, m)-continuous functions, Int. Journal of Math. Analysis 4 (2010) 1957-1964.
- [4] C. Boonpok, Weakly (g, m)-continuous functions, Int. Journal of Math. Analysis 4 (2010) 1965-1973.
- [5] S. Pholdee, C. Boonpok, C. Viriyapong, (m, μ)-continuous functions, Int. Journal of Math. Analysis 6 (2012) 2683-2693.
- [6] E. Rosas, Some new types of open and closed sets in minimal structures-I, Int. Math. Forum 4 (2009) 2169-2184.
- [7] T. Noiri, The further unified theory for modifications of g-closed sets, Rend. Circ. Mat. Palermo 57 (2008) 411–421.

Some Characterizations of (m,μ) -Precontinuous ...

[8] B. Roy, On a type of generalized open sets, Applied Gen. topology 12 (2011) 163-173.

(Received 10 April 2016) (Accepted 4 July 2016)

 $\mathbf{T}_{\mathrm{HAI}} \; \mathbf{J.} \; \mathbf{M}_{\mathrm{ATH.}} \; \mathrm{Online} \; @ \; \texttt{http://thaijmath.in.cmu.ac.th}$