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Abstract : In this paper, by introducing the new concept called cyclic coupled
proximal mappings we explore the existence of strong coupled best proximity point
in metric spaces that generalizes the results of [1]. Further, we also proved the
existence of strong coupled fixed point for multi-valued cyclic coupled mapping
under suitable conditions.
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1 Introduction and Preliminaries

Initially, in 1922 Banach proved the existance and uniqueness of fixed point
for contraction mapping. Later, among several interesting results given by various
authors; [2] introduced a kind of mapping which has its own significance, as it
also admits fixed point on discontinuous maps. Inspire of many authors proving
the existence of fixed point on self mappings, it has been proved by [3] that fixed
points do exist on a special kind of maps called cyclic maps.
Let A and B be two non-empty subsets of metric space (X, d). A mapping T :
A ∪B → A ∪B is said to be cyclic if T (A) ⊂ B and T (B) ⊂ A.
Meanwhile, another class of mappings called coupled maps were introduced by
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[4] to find coupled fixed point which has wide range of applications to partial
differential equations and boundary value problems.

Definition 1.1. An element (x, y) ∈ X ×X in a non-empty set X is said to be
coupled fixed point for a mapping F : X ×X → X if F (x, y) = x and F (y, x) = y.

These kind of maps were later generalized by [5] finding out coupled best
proximity points for coupled proximal maps with respect to A and B as non-empty
closed subsets of metric space (X, d) with A ∩ B = ∅. Very recently [1] extended
concept of cyclic maps by introducing cyclic coupled Kannan-type contraction as
follows.

Definition 1.2. Let A and B be two non-empty subsets of a metric space (X, d).
A mapping F : X ×X → X is called cyclic coupled Kannan-type mapping if F is
cyclic with respect to A and B satisfying, for some k ∈ (0, 1

2
), the inequality

d(F (x, y), F (u, v)) ≤ k[d(x, F (x, y)) + d(u, F (u, v))].

where x, v ∈ A and y, u ∈ B.

Definition 1.3. Let X be a non-empty set. An element (x, x) ∈ X ×X is said
to be strong coupled fixed point if F (x, x) = x.

The following theorem was proved by [1].

Theorem 1.4. Let A and B be two non-empty closed subsets of a complete metric
space (X, d) with A∩B 6= ∅ and F : X ×X → X be a cyclic coupled Kannan-type
mapping with respect to A and B with A ∩ B 6= ∅.Then F has a strong coupled
fixed point on A ∩B.

Immediately, [6] extended the result of [1] using Ciric-type contractions.
The existence and convergence of best proximity points is an interesting topic
on optimization theory on which several interesting results were published [7–10].
Such results may sometime assume a sequential property on metric spaces called
UC-property.

Definition 1.5. Let A and B be nonempty subsets of a metric space (X, d).
Then (A,B) is said to satisfy the UC-property if {xn} and {zn} are sequences
in A and {yn} is a sequence in B such that limn→∞d(xn, yn) = d(A,B) and
limn→∞d(zn, yn) = d(A,B), then limn→∞d(xn, zn) = 0.

In this paper, we define a new concept called cyclic coupled mappings and
prove the existance of proximity point for such mappings which reduces to strong
coupled Fixed point on particular case that A∩B 6= ∅. We also find strong coupled
fixed point for multi-valued cyclic coupled mappings.



Fixed Point and Best Proximity Point Results ... 433

2 Best Proximity Points for Cyclic Coupled Map-

ping

In this part we introduce cyclic coupled proximal maps and proved the exis-
tence of proximity points for those maps under suitable conditions.

Definition 2.1. Let A and B be two non-empty subsets of a metric space (X, d)
with A ∩ B = ∅. A mapping F : X × X → X is called cyclic coupled proximal
mapping of type I if F is cyclic with respect to A and B satisfying the inequality

d(F (x, y), F (u, v)) ≤ kmax[d(x, F (x, y)), d(u, F (u, v))] + (1− k)d(A,B)

where x, v ∈ A and y, u ∈ B for some k ∈ (0, 1).

Definition 2.2. Let A and B be two non-empty subsets of a metric space (X, d)
with A ∩ B = ∅. A mapping F : X × X → X is called cyclic coupled proximal
mapping of type II if F is cyclic with respect to A and B satisfying the inequality

d(F (x, y), F (u, v)) ≤ k[d(x, F (x, y)) + d(u, F (u, v))] + (1− 2k)d(A,B)

where x, v ∈ A and y, u ∈ B for some k ∈ (0, 1

2
).

Definition 2.3. Let (X, d) be a metric space. An element (x, y) ∈ X ×X is said
to be strong coupled proximal point if d(x, F (x, y)) = d(A,B) and d(y, F (y, x)) =
d(A,B) with d(x, y) = d(A,B).

Theorem 2.4. Let (X, d) be a complete metric space and A,B are two non-empty
closed subsets of X such that A ∩ B = ∅. Let F : X ×X → X be cyclic coupled
proximal mapping of type I. Then F has strong coupled proximal point if (A,B)
satisfies UC-property.

Proof. Let x0 ∈ A, y0 ∈ B be any two arbitrary elements of X . Let {xn} and {yn}
are two sequences defined as F (xn, yn) = yn+1 and F (yn, xn) = xn+1. Then, for
n=1,

d(x1, y2) = d(F (y0, x0), F (x1, y1))

≤ kmax[d(y0, F (y0, x0)), d(x1, F (x1, y1))] + (1− k)d(A,B)

≤ kmax[d(y0, x1)), d(x1, y2)] + (1− k)d(A,B)

and

d(y1, x2) = d(F (x0, y0), F (y1, x1))

≤ kmax[d(x0, F (x0, y0)), d(y1, F (y1, x1))] + (1− k)d(A,B)

≤ kmax[d(x0, y1)), d(y1, x2)] + (1− k)d(A,B).

Similarly,for n = 2,

d(x2, y3) ≤ kmax[d(y1, x2)), d(x2, y3)] + (1− k)d(A,B),

d(y2, x3) ≤ kmax[d(x1, y2)), d(y2, x3)] + (1− k)d(A,B).
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In general,

d(xn, yn+1) ≤ kmax[d(yn−1, xn)), d(xn, yn+1)] + (1− k)d(A,B), (2.1)

d(yn, xn+1) ≤ kmax[d(xn−1, yn)), d(yn, xn+1)] + (1− k)d(A,B). (2.2)

If d(xn, yn+1) ≤ kd(xn, yn+1)+(1−k)d(A,B), the inequality reduces to d(xn, yn+1)
≤ d(A,B) which gives d(xn, yn+1) = d(A,B). Knowing the fact that, d(yn−1, xn) ≥
d(A,B) equation (2.1) reduces to

d(xn, yn+1) ≤ kd(yn−1, xn) + (1− k)d(A,B), ∀n ∈ N.

Similarly, equation (2.2) reduces as

d(yn, xn+1) ≤ kd(xn−1, yn) + (1− k)d(A,B), ∀n ∈ N.

Thus we conclude,

d(xm, ym+1) ≤ kd(ym−1, xm) + (1 − k)d(A,B)

≤ k[kd(xm−2, ym−1) + (1 − k)d(A,B)] + (1 − k)d(A,B)

≤ k2d(xm−2, ym−1) + k(1− k)d(A,B) + (1 − k)d(A,B)

≤ k2d(xm−2, ym−1) +

[

1
∑

i=0

ki

]

(1− k)d(A,B)]

...

≤







kmd(x0, y1) +
[

∑m−1

i=0
ki
]

(1− k)d(A,B)] if m is even,

kmd(y0, x1) +
[

∑m−1

i=0
ki
]

(1− k)d(A,B)] if m is odd.

Since
[
∑

∞

i=0
ki
]

= 1

1−k
for all k ∈ (0, 1), the above inequality become d(xm, ym+1)

→ d(A,B) as letting m → ∞ and similarly it can be shown that d(ym, xm+1) →
d(A,B) as m → ∞. The results implies that limm→∞ d(xm, ym) = d(A,B).
Claim: {xn} is a Cauchy sequence.
Let m < n

d(xn, ym) = d(F (yn−1, xn−1), F (xm−1, ym−1))

≤ kmax[d(yn−1, xn), d(xm−1, ym)] + (1− k)d(A,B).

Therefore, limm→∞ d(xn, ym) = d(A,B). Therefore by using UC-property we get,
limn→∞ d(xn, xm) = 0(i.e., for given ǫ > 0, ∃n0 ∈ N such that ∀m > n > n0,
d(xn, xm) < ǫ). Hence, {xn} is a Cauchy sequence and converges to some point
x ∈ A. Similarly, it can be proved that {yn} is a Cauchy sequence and converges
to some point y ∈ B. Since, limm→∞(xm, ym) = d(A,B) and d is uniformly
continuous, we get d(x, y) = d(A,B).
Now,

d(x, F (x, y)) ≤ d(x, xn+1) + d(xn+1, F (x, y))

= d(x, xn+1) + d(F (yn, xn), F (x, y))

≤ d(x, xn+1) + kmax[d(yn, xn+1), d(x, F (x, y))] + (1 − k)d(A,B),
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for all n ∈ N. Thus, as n → ∞, d(x, F (x, y)) ≤ d(A,B). i.e., d(x, F (x, y)) =
d(A,B). Similarly, we can prove that d(y, F (y, x)) = d(A,B) which concludes
(x, y) is the strong coupled proximal point of F .

Example 2.5. Consider A = {(0, a) | a ∈ [0, 1]} and B = {(1, b) | b ∈ [−1, 0]} on
R

2 under 1−norm with d(A,B) = 1. Also the sets satisfies UC-property.
Define

F (a′, b′) =

{

(1, ab
4+a

) if (a′, b′) ∈ A×B,where a′ = (0, a)and b′ = (1, b);

(0, −ab
4−a

) if (a′, b′) ∈ B ×A,where a′ = (1, a)and b′ = (0, b).

Let x′ = (0, x), v′ = (0, v) be any two elements of A and y′ = (1, y), u′ = (1, u) be
any two elements of B.
Now,

d(F (x′, y′), F (u′, v′)) = d((1,
xy

4 + x
), (0,

−uv

4− u
)

=| 1 | + |
xy

4 + x
+

uv

4− u
|

≤| 1 | + |
xy

4 + x
| + |

uv

4− u
|

≤| 1 | +
1

3
[| x | + | −u |]

≤| 1 | +
1

3

[

| x−
xy

4 + x
| + | −u−

uv

4− u
|

]

=| 1 | −2×
1

3
+

1

3
[d(x′, F (x′, y′)) + d(u′, F (u′, v′))]

= (1−
2

3
)d(A,B) +

1

3
[d(x′, F (x′, y′)) + d(u′, F (u′, v′))]

= (1−
2

3
)d(A,B) +

2

3
[
d(x′, F (x′, y′)) + d(u′, F (u′, v′))

2
]

≤ (1−
2

3
)d(A,B) +

2

3
max[d(x′, F (x′, y′)), d(u′, F (u′, v′))].

Thus, F satisfies all conditions of theorem(2.4). The strong coupled proximal
points of F on A and B are (0, 0) and (1, 0).

Remarks 2.1. If d(A,B) = 0 in the above theorem, it reduces to fixed point result
which holds even if UC-property is neglected. In that case it is an generalization
to result given by [1].

Theorem 2.6. Let (X, d) be a complete metric space and A,B be two non-empty
closed subsets of X such that A ∩ B = ∅. Let F : X ×X → X be cyclic coupled
proximal mapping of type II. Then F has strong coupled proximal point if it
satisfies,

d(u, v) + d(A,B) ≤ d(u, F (a, b))
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whenever v = F (b, a) and {u, v} belongs to set A or B.

Proof. Let x0 ∈ A, y0 ∈ B be any two arbitrary elements of X . Define F (xn, yn) =
yn+1 and F (yn, xn) = xn+1.
Then, for n = 1,

d(x1, y2) = d(F (y0, x0), F (x1, y1))

≤ k[d(y0, F (y0, x0)) + d(x1, F (x1, y1))] + (1− 2k)d(A,B)

≤ k[d(y0, x1) + d(x1, y2)] + (1− 2k)d(A,B).

Hence d(x1, y2) ≤
(

k
1−k

)

d(y0, x1) +
(

1−2k
1−k

)

d(A,B).

Similarly, d(y1, x2) ≤
(

k
1−k

)

d(x0, y1) +
(

1−2k
1−k

)

d(A,B).

For n = 2,

d(x2, y3) = d(F (y1, x1), F (x2, y2))

≤ k[d(y1, F (y1, x1)) + d(x1, F (x1, y1)] + (1 − 2k)d(A,B)

≤ k[d(y1, x2) + d(x2, y3)] + (1 − 2k)d(A,B)

and hence,

d(x2, y3) ≤

(

k

1− k

)

d(y1, x2) +

(

1− 2k

1− k

)

d(A,B)

≤

(

k

1− k

)2

d(x0, y1) +

(

1− 2k

1− k

)(

1 +
k

1− k

)

d(A,B)

≤

(

k

1− k

)2

d(x0, y1) +

(

1− 2k

1− k

)

[

1
∑

i=0

(

k

1− k

)i
]

d(A,B).

Similarly,

d(y2, x3) ≤

(

k

1− k

)2

d(y0, x1) +

(

1− 2k

1− k

)

[

1
∑

i=0

(

k

1− k

)i
]

d(A,B).

For n = 3 it is easy to obtained that,

d(x3, y4) ≤

(

k

1− k

)3

d(y0, x1) +

(

1− 2k

1− k

)

[

2
∑

i=0

(

k

1− k

)i
]

d(A,B).

d(y3, x4) ≤

(

k

1− k

)3

d(x0, y1) +

(

1− 2k

1− k

)

[

2
∑

i=0

(

k

1− k

)i
]

d(A,B).

In general it can be concluded that,

d(xn, yn+1) ≤















(

k
1−k

)n

d(y0, x1) +
(

1−2k
1−k

)

[

∑n−1

i=0

(

k
1−k

)i
]

d(A,B) if n is odd;

(

k
1−k

)n

d(x0, y1) +
(

1−2k
1−k

)

[

∑n−1

i=0

(

k
1−k

)i
]

d(A,B) if n is even.
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In the above inequality, as limn→∞ d(xn, yn+1) = d(A,B) and Similarly, as
limn→∞ d(yn, xn+1) = d(A,B).
Claim: {xn} is a Cauchy sequence.
Let m > n.

d(xn, xm) ≤ d(xn, F (xm−1, ym−1))− d(A,B)

≤ d(F (yn−1, xn−1, F (xm−1, ym−1))− d(A,B)

≤ k[d(yn−1, xn) + d(xm−1, ym)] + (1− 2k)d(A,B)− d(A,B)

≤ k[d(yn−1, xn) + d(xm−1, ym)] + (−2k)d(A,B).

Hence, as limn→∞ d(xn, xm) = 0. Therefore, {xn} is a Cauchy sequence and hence
converges to some point x ∈ A. Similarly, {yn} is a Cauchy sequence and hence
converges to some point y ∈ B. Therefore, d(x, y) = d(A,B).
Now,

d(x, F (x, y)) ≤ d(x, F (yn, xn)) + d(F (yn, xn), F (x, y))

≤ d(x, xn+1) + k[d(yn, F (yn, xn) + d(x, F (x, y))] + (1− 2k)d(A,B)

and hence,

(1 − k)d(x, F (x, y)) ≤ d(xn, xn+1) + k d(yn, xn+1) + (1− 2k)d(A,B).

Now letting n → ∞, the above inequality reduces to

d(x, F (x, y)) ≤

(

k

1− k

)

d(A,B) +

(

1− 2k

1− k

)

d(A,B)

≤ d(A,B).

Therefore, d(x, F (x, y)) = d(A,B) and similarly, d(y, F (y, x)) = d(A,B) with
d(x, y) = d(A,B) concludes that (x, y) is the strong coupled proximal point of
F .

Example 2.7. Consider A = {(0, a) | a ∈ [−1, 0]} and B = {(1, b) | b ∈ [−1, 0]}
on R

2 under 1−norm with d(A,B) = 1.
Define

F (a′, b′) =

{

(1, ab
4
) if (a′, b′) ∈ A×B,where a′ = (0, a)and b′ = (1, b);

(0, ab
4
) if (a′, b′) ∈ B ×A,where a′ = (1, a)and b′ = (0, b).

It is easy to verify that F satisfies all conditions of Theorem 2.6. The strong
coupled proximal points of F on A and B are (0, 0) and (1, 0).

3 Strong Coupled Fixed Point for Cyclic Coupled

Multi-Valued Mapping

In this part we introduce the concept of multi-valuedness on cyclic coupled
mapping and established strong coupled fixed point for cyclic coupled multi-valued
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contraction maps. Let (X, d) be a metric space and CB(M) denote collection of
all non-empty closed and bounded subsets of X with metric defined for A,B ∈
CB(M) as

H(A,B) = max{sup
x∈B

d(x,A), sup
y∈A

d(y,B)},

where d(x,A) = infy∈A d(x, y). Such a map H is called Hausdorff metric induced
by d.

Definition 3.1. Let A and B be two nonempty subsets of complete metric space
(X, d). A mapping F : X×X → CB(X) is said to be cyclic coupled φ-multivalued
contraction mapping with respect to A and B if

H(F (x, y), F (u, v)) ≤ φ[d(x, u)]d(x, u), for all x, v ∈ A and y, u ∈ B,

where φ : [0,∞) → [0, 1) is a increasing function with 0 = φ(0) < φ(r) ≤ r for all
r ∈ (0,∞).

Theorem 3.2. Let (X, d) be a complete metric space and A and B be two non-
empty closed subsets of X such that A ∩ B 6= ∅. Suppose F : X ×X → CB(X)
be cyclic coupled φ-multivalued contraction mapping with respect to A and B such
that F (x, y) is closed and bounded on A×B and B×A, then F has strong coupled
fixed point in A ∩B.

Proof. Let x0 ∈ A, y0 ∈ B be any two arbitrary elements of X . Choose x1 ∈
F (y0, x0), y1 ∈ F (x0, y0) and s > 1 such that sφ[d(y0, x0)] < 1. Then

d(x1, y1) ≤ sH(F (y0, x0), F (x0, y0))

≤ sφ[d(y0, x0)] d(y0, x0)

< d(y0, x0), since sφ[d(y0, x0)] < 1.

Hence, φ[d(x1, y1)] < φ[d(y0, x0)].
Similarly, Choose t > 1 such that tφ[d(y0, x1)] < 1 and tφ[d(x0, y1)] < 1.

Then, from definition, we can find x2 ∈ F (y1, x1) and y2 ∈ F (x1, y1) such that

d(x2, y2) ≤ sH(F (y1, x1), F (x1, y1))

≤ sφ[d(y1, x1)] d(y1, x1)

< sφ[d(y0, x0)] d(y1, x1)

< d(y1, x1), since sφ[d(y0, x0)] < 1.

Hence, φ[d(x2, y2)] < φ[d(y1, x1)], with

d(x1, y2) ≤ tH(F (y0, x0), F (x1, y1))

≤ tφ[d(y0, x1)] d(y0, x1)

< d(y0, x1), since tφ[d(y0, x1)] < 1.
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Therefore, φ[d(x1, y2)] < φ[d(y0, x1)]. Also, we get

d(y1, x2) ≤ tH(F (x0, y0), F (y1, x1))

≤ tφ[d(x0, y1)] d(x0, y1)

< d(x0, y1), since tφ[d(y0, x1)] < 1.

Therefore, φ[d(y1, x2)] < φ[d(x0, y1)].
Now, choose x3 ∈ F (y2, x2) and y3 ∈ F (x2, y2) which gives

d(x3, y3) ≤ sH(F (y2, x2), F (x2, y2))

≤ sφ[d(y2, x2)] d(y2, x2)

< sφ[d(x1, y1)] d(y2, x2)

< sφ[d(x0, y0)] d(y2, x2)

< d(y2, x2), since sφ[d(x0, y0)] < 1.

Therefore, φ[d(x3, y3)] < φ[d(y3, x2)] with

d(x2, y3) ≤ tH(F (y1, x1), F (x2, y2))

≤ tφ[d(y1, x2)] d(y1, x2)

< tφ[d(x0, y1)] d(y1, x2)

< d(y1, x2), since tφ[d(x0, y1)] < 1.

Therefore, φ[d(x2, y3)] < φ[d(y1, x2)] and also from

d(x2, y3) < tφ[d(x0, y1)] d(y1, x2)

< [tφ[d(x0, y1)]]
2 d(x0, y1).

Also, we get

d(y2, x3) ≤ tH(F (x1, y1), F (y2, x2))

≤ tφ[d(x1, y2)] d(x1, y2)

< tφ[d(y0, x1)] d(x1, y2)

< d(x1, y2).

Therefore, φ[d(y2, x3)] < φ[d(x1, y2)] and also from

d(y2, x3) < tφ[d(y0, x1)] d(x1, y2)

< [tφ[d(y0, x1)]]
2 d(y0, x1).

Let us assume that xn ∈ F (yn−1, xn−1) and yn ∈ F (xn−1, yn−1), with

d(xn, yn) < sφ[d(x0, y0)] d(yn−1, xn−1)

< d(yn−1, xn−1)
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which gives φ[d(xn, yn)] < φ[d(yn−1, xn−1)] and also assume

d(xn−1, yn) <

{

[tφ[d(x0, y1)]]
n−1 d(x0, y1), if n is odd;

[tφ[d(y0, x1)]]
n−1 d(y0, x1), if n is even.

with φ[d(xn−1, yn)] < φ[d(yn−2, xn−1)] and

d(yn−1, xn) <

{

[tφ[d(y0, x1)]]
n−1 d(y0, x1), if n is odd;

[tφ[d(x0, y1)]]
n−1 d(x0, y1), if n is even.

with φ[d(yn−1, xn)] < φ[d(xn−1, yn)].
Now, for xn+1 ∈ F (yn, xn) and yn+1 ∈ F (xn, yn), we have

d(xn+1, yn+1) ≤ sH(F (yn, xn), F (xn, yn))

≤ sφ[d(yn, xn)] d(yn, xn)

< sφ[d(x0, y0)] d(xn, yn)

< [sφ[d(x0, y0)]]
2 d(xn−1, yn−1)

...

< [sφ[d(x0, y0)]]
nd(x0, y0).

d(xn, yn+1) ≤ tH(F (yn−1, xn−1), F (xn, yn))

≤ tφ[d(yn−1, xn)] d(yn−1, xn)

<

{

[tφ[d(y0, x1)]]
nd(y0, x1), if n is odd;

[tφ[d(x0, y1)]]
nd(x0, y1), if n is even.

Similarly, we obtain that

d(yn, xn+1) <

{

[tφ[d(x0, y1)]]
nd(x0, y1), if n is odd;

[tφ[d(y0, x1)]]
nd(y0, x1), if n is even.

d(xn, xn+1) + d(yn, yn+1) ≤ d(xn, yn) + d(yn, xn+1) + d(yn, xn) + d(xn, yn+1)

≤ d(xn, yn) + d(yn, xn+1) + d(xn, yn) + d(xn, yn+1)

≤ 2d(xn, yn) + d(yn, xn+1) + d(xn, yn+1)

< 2[sφ[d(x0, y0)]]
nd(x0, y0) + [tφ[d(y0, x1)]]

n[d(y0, x1)

+ d(x0, y1)].

Since, sφ[d(x0, y0)] < 1 and tφ[d(y0, x1)] < 1 we get
∑n

i=0
d(xi, xi+1)+d(yi, yi+1) <

∞. Hence, {xn} and {yn} are Cauchy sequences in A ∪ B. Let, {xn} → x and
{yn} → y. Also, d({xn}, {yn}) = 0 as n → ∞, which implies that d(x, y) = 0 i.e.,
x = y.

d(x, F (x, x)) = d(x, F (x, y))

≤ d(x, xn) + d(xn, F (x, y))

≤ d(x, xn) + d(F (yn−1, xn−1), F (x, y))

≤ d(x, xn) + kd(yn−1, x),
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for all n ∈ N. Hence (x, x) is the strong coupled fixed point of F , since as n → ∞,
we get d(x, F (x, x)) = 0. Since, x = y, the equality becomes d(x, F (x, x)) = 0 and
hence (x, x) is the strong coupled fixed point of F .

Acknowledgements : I would like to thank the referees for his comments and
suggestions on the manuscript.

References

[1] B.S. Choudhury, P. Maity, Cyclic coupled fixed point result using Kannan
type contractions, Journal of Operators, 2014, Article ID 876749 (2014) 5
pages.

[2] R. Kannan, Some results on fixed points II, Amer. Math. Monthly 76 (1969)
405-408.

[3] W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed points for mappings satis-
fying cyclical contractive conditions, Fixed Point Theory (4) (2003) 79-89.
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