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Abstract : Hensel’s lemma has been the basis for the computation of the square
roots of p-adic numbers in Zp. We generalize this problem to the computation
of qth roots of p-adic numbers in Qp, where q is a prime and p is greater than
q. We provide necessary and sufficient conditions for the existence of qth roots of
p-adic numbers in Qp. Then, given a root of order r, we use the Newton-Raphson
method to approximate the qth root of a p-adic number a. We also determine
the rate of convergence of this method and the number of iterations needed for a
specified number of correct digits in the approximate.
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1 Introduction

The basic idea behind the calculation of the square roots of p-adic numbers

in Zp using Hensel’s lemma is to “construct” the root by choosing the coefficients

in its p-adic expansion. This method has actually been extended to provide the
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necessary conditions for the existence of square roots in Qp by establishing the con-

ditions for a p-adic number to be a square. Zerzaihi et al. followed this approach

in [1] to establish the existence of cube roots of p-adic numbers in Qp. Recent

developments on this problem include the use of numerical methods to extend the

p-adic root-finding problem to Qp ([1–3]), or to calculate multiplicative inverses

([4, 5]) in Qp.

In this paper, we address the generalized root-finding problem to the qth
roots of p-adic numbers in Qp, where q is prime, and p > q. We establish
sufficient conditions for the existence of qth roots in Qp and approximate
the values using the Newton-Raphson method. Given a root of order r, we
determine the order of the approximate root after n iterations. We also
determine the rate of convergence of this method and provide the num-
ber of iterations required for any desired number of correct digits in the
approximate.

2 Preliminaries

The field of p-adic numbers Qp is the completion of Q with respect to
the p-adic norm | · |p. Because the p-adic norm | · |p is non-Archimedean, we
call (Qp, | · |p) a complete ultrametric space. An important property of Qp is
that a unique representation exists for every element. This representation
is described in the following theorem.

Theorem 2.1 ([6]). Every p-adic number a ∈ Qp has a unique represen-
tation

a = anp
n + an+1p

n+1 + ...+ a−1p
−1 + a0 + a1p+ a2p

2 + ... =
∞
∑

i=n

aip
i

where ai ∈ Z and 0 ≤ ai ≤ p− 1 for i ≥ n and n < 0.

Notice that this representation of p-adic numbers coincides with the
base p expansion of integers. We use a short notation for writing a p-adic
number a = anp

n+an+1p
n+1+ ...+a−1p

−1+a0+a1p+a2p
2+ ... by writing

only the coefficients of the powers of p. That is, anan+1...a−1a0a1a2...

represents the same p-adic number as a.

Definition 2.2 ([7]). The set Z×
p of p-adic units is given by

Z×
p =

{

a ∈ Zp : a =

∞
∑

i=0

aip
i, a0 6= 0

}

= {a ∈ Qp : |a|p = 1} .
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The p-adic units offer an alternative (and convenient) way of writing
p-adic numbers using their p-adic valuation.

Theorem 2.3 ([7]). Let a ∈ Qp, then a = pvp(a)u for some u ∈ Z×
p .

The following result will be central to our discussion.

Lemma 2.4 ([7]). Let a, b ∈ Qp. Then a ≡ b(mod pk) ⇔ |a− b|p ≤ p−k.

We can also talk about the analysis of functions defined on Qp.

Definition 2.5 ([7]). Let X ⊆ Qp, a ∈ X be an accumulation point of X.
A function f : X → Qp is differentiable at a if the derivative of f at a,
defined by

f ′(a) = lim
x→a

f(x)− f(a)

x− a

exists. A function f : X → Qp is differentiable on X if f ′(a) exists at all
a ∈ X.

Following this definition, it may be verified that polynomials in Qp

have continuous derivatives. One of the most important results on finding
solutions of polynomials in Qp is given by the following theorem.

Theorem 2.6 ([7]). (Hensel’s lemma) Let F (x) = c0 + c1x + ... + cnx
n

be a polynomial whose coefficients are p-adic integers and F ′(x) = c1 +
2c2x+ ...+ ncnx

n−1 be its derivative. Suppose a0 is a p-adic integer which
satisfies F (a0) ≡ 0(mod p) and F ′(a0) 6≡ 0(mod p). Then, there exists a
unique p-adic integer a such that F (a) = 0 and a ≡ a0(mod p).

Hensel’s lemma paves the way for the study of roots of p-adic integers
since in particular, it provides the condition for the existence of solutions
in Zp for f(x) = xn − a = 0 where f ∈ Zp[x]. Serre in [8] provides a
general result on the existence of solutions of p-adic polynomials in Zp.
The following is a special case of this result.

Theorem 2.7 ([7]). A polynomial with integer coefficients has a root in Zp

if and only if it has an integer root modulo pk for any k ≥ 1.

A natural consequence of this result is the following proposition.

Proposition 2.8 ([7]). A rational integer a not divisible by p has a square
root in Zp, (p 6= 2) if and only if a is a quadratic residue modulo p.
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Corollary 2.9 ([7]). Let p 6= 2 be a prime. An element x ∈ Qp is a square
if and only if it can be written x = p2ny2 with n ∈ Z and y ∈ Z×

p a p-adic
unit.

These results are consistent with the following definition.

Definition 2.10. A p-adic number b ∈ Qp is said to be a square root of
a ∈ Qp of order k ∈ N if and only if b2 ≡ a(mod pk).

In this paper, we shall adopt the generalization of the nth roots of p-adic
numbers in the following definition.

Definition 2.11. A p-adic number b ∈ Qp is said to be an nth root of
a ∈ Qp of order k ∈ N if and only if bn ≡ a(mod pk).

In [1], the authors used this definition with n = 3 to define the cube
roots of p-adic numbers.

We end this section by introducing the Newton-Raphson method. For
a function, say f(x) and its derivative f ′(x), this method makes use of the
iterative function

g(x) = x− f(x)

f ′(x)

from which the recurrence relation will be obtained. The method is em-
ployed by first having an initial appropriate guess x0 and then, using the
formula xn+1 = g(xn), obtain a recurrence relation which will be used for
approximation. If the initial guess x0 and the iterative function are suit-
ably chosen, the sequence {xn} should converge to a root of f . The rate
of convergence of the method gives the rate at which the number of cor-
rect digits in the approximation increases. Formally, we define the rate of
convergence as follows.

Definition 2.12. If the sequence {xn} converges to r and if there exist real
numbers λ > 0 and α ≥ 1 such that

lim
n→+∞

|xn+1 − r|p
|xn − r|αp

= λ

then we say that α is the rate of convergence of the sequence.

3 Main Results

We shall now present the results of this paper. We first establish the
existence of the qth roots of p-adic numbers in Qp. We then proceed to
compute them using the Newton-Raphson method.
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3.1 Existence of Roots

We begin with proving the existence of the qth root of a p-adic number
a in Qp, where q is prime. We do this by generalizing the necessary and
sufficient conditions for the existence of these qth roots in Qp. We first
provide the generalization of Proposition 2.8 in the following result:

Proposition 3.1. A rational integer a not divisible by p has a qth root in
Zp (p 6= q) if and only if a is a qth residue modulo p.

Proof. Suppose that a is not a qth residue modulo p, that is, a 6≡ a
q
0(mod p)

for any a0 ∈ {1, 2, 3, ..., p − 1}. Then, a has no qth integer root modulo
pk, k = 1. Theorem 2.7, implies the non-existence of qth roots in Zp.
Conversely, consider the p-adic continuous function f(x) = xq − a and its
derivative f ′(x) = qxq−1. If a ≡ a

q
0(mod p) for some a0 ∈ {1, 2, 3, ..., p−1},

then f(a0) = (a0)
q−a ≡ 0(mod p) and f ′(a0) = q(a0)

q−1 6≡ 0(mod p) since
p 6= q and a0 ∈ {1, 2, 3, ..., p − 1}. By Hensel’s Lemma, f(x) has a zero in
Zp, that is, a has a qth root in Zp.

This result ensures the existence of roots in Zp. The next result extends
the existence of qth roots to Qp.

Proposition 3.2. Let p and q be prime numbers and a = pvp(a)u ∈ Qp for
some u = a0 + a1p + a2p

2 + ... ∈ Z×
p . Then a has a qth root in Qp if and

only if vp(a) = mq, m ∈ Z and u = vq for some v ∈ Z×
p .

Proof. Consider the polynomial F (X) = Xq − a ∈ Qp[X].
(⇒) Let a = pvp(a)u ∈ Qp for some u =

(

a0 + a1p+ a2p
2 + ...

)

∈ Z×
p and

b = pvp(b)v ∈ Qp for some v =
(

b0 + b1p+ b2p
2 + ...

)

∈ Z×
p . If bq = a, we

have that pqvp(b)vq = pvp(a)u. Note that, since v ∈ Z×
p , this equation is

equivalent to the following system

qvp(b) = vp(a) (3.1)

vq = u. (3.2)

(⇐) We wish to find b ∈ Qp such that F (b) = bq − a = 0, that is a qth root
b of a in Qp. Note that equation (3.2) reduces to

b
q
0 ≡ a0( mod p). (3.3)

Consider now the function f(x) = xq − a0 ∈ Zp[x]. Note that
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(i) If p 6= q, then by Proposition 3.1, f(x) = xq − a0 has a solution in
Zp. With this solution, we can find b1, b2, ... by reducing equation
(3.3) respectively mod p2, mod p3, etc. These bi’s are exactly the
coefficients in the p-adic expansion of the solution b ∈ Qp for F (X) =
Xq − a = 0.

(ii) If p = q, then equation (3.3) becomes bq0 ≡ a0(mod q). By Fermat’s
Little Theorem, b0 ≡ a0(mod q). Hence, for b0 satisfying this congru-
ence, by equations (3.1) and (3.2) we can find a solution b ∈ Qp for
F (X) = Xq − a = 0 by following the same method in the previous
case.

3.2 The qth Roots of p-Adic Numbers

We now compute the qth roots of p-adic numbers using the Newton-
Raphson method. By Proposition 3.2, we limit our discussion to p-adic
numbers a ∈ Qp such that |a|p = p−mq where m ∈ Z. Applying the
Newton-Raphson method, we obtain the recurrence relation

xn+1 =
x
q
n(q − 1) + a

qx
q−1
n

(3.4)

With this recurrence relation, we then obtain the following result.

Proposition 3.3. Let {xn} be the sequence of p-adic numbers obtained
from the Newton-Raphson iteration. If x0 is a qth root of a of order r,
|x0|p = p−m, r > qm, and p > q, then

(i) |xn|p = p−m for n = 1, 2, 3, ...;

(ii) xqn ≡ a(mod p2
nr−qm(2n−1));

(iii) {xn} converges to the qth root of a.

Proof. We first prove (i) and (ii) by induction. Let n = 1, then by our
assumption, we have xq0 = a+ bpr where 0 < b < p. Using equation (3.4),
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we have

|x1|p =
|xq0(q − 1) + a|p

|qxq−1
0 |p

=
|qa+ (q − 1)bpr|p

|qxq−1
0 |p

=
max{|qa|p, |(q − 1)bpr|p}

|qxq−1
0 |p

=
p−qm

p−(q−1)m

= p−m.

Also by equation (3.4), we have

x
q
1 − a =

(xq0(q − 1) + a)q − aqqx
q(q−1)
0

qqx
q(q−1)
0

=

(xq

0−a)
2











q
∑

i=2









i−2
∑

j=0

(i − (j + 1))

(

q

j

)

(q − 1)q−j



− (i− 2)qq



x
q(q−i)
0 ai−2











qqx
q(q−1)
0

.

Now, let

φ(x0) =









q
∑

i=2









i−2
∑

j=0

(i− (j + 1))

(

q

j

)

(q − 1)q−j



− (i− 2)qq



x
q(q−i)
0 ai−2









qqx
q(q−1)
0

.

So, we can write xq1 − a = (xq0 − a)
2
φ(x0). Since x0 is a root of a of order

r, that is xq0 ≡ a(mod pr), we have |xq0 − a|p ≤ p−r. Hence

|xq1 − a|p = | (xq0 − a)
2 |p|φ(x0)|p

≤ p−2r|φ(x0)|p.
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For |φ(x0)|p, we have

|φ(x0)|p =

∣

∣

∣

∣

q
∑

i=2









i−2
∑

j=0

(i− (j + 1))

(

q

j

)

(q − 1)q−j



− (i− 2)qq



x
q(q−i)
0 ai−2

∣

∣

∣

∣

p
∣

∣

∣

∣

qqx
q(q−1)
0

∣

∣

∣

∣

p

=

max











∣

∣

∣

∣













i−2
∑

j=0

(i− (j + 1))

(

q

j

)

(q −1)q−j






−(i−2)qq






x
q(q−i)
0 ai−2

∣

∣

∣

∣

p











q

i=2

|qq|p|x
q(q−1)
0 |p

.

Note that for 2 ≤ i ≤ q

|xq(q−i)
0 ai−2|p = p−mq(q−2).

So we have

∣

∣

∣

∣

q
∑

i=2









i−2
∑

j=0

(i−(j + 1))

(

q

j

)

(q−1)q−j



− (i−2)qq



x
q(q−i)
0 ai−2

∣

∣

∣

∣

p

≤ p−mq(q−2).

Hence

|φ(x0)|p ≤ p−mq(q−2)+mq(q−1)

= pmq.

Therefore |xq1 − a|p ≤ pmq−2r. By Lemma 2.4

x
q
1 − a ≡ 0( mod p2r−mq).

Now, assume that our conclusions hold for n− 1. That is,

|xn−1|p = p−m (3.5)

x
q
n−1 ≡ a( mod p2

n−1r−qm(2n−1−1)). (3.6)

Note that equation (3.6) implies that

x
q
n−1 = a+ bp2

n−1r−qm(2n−1−1)
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where 0 < b < p. Using equation (3.4), we have

|xn|p =
|xqn−1(q − 1) + a|p

|qxq−1
n−1|p

=
|qa+ (q − 1)bp2

n−1r−qm(2n−1−1)|p
|qxq−1

n−1|p

=
max{|qa|p, |(q − 1)bp2

n−1r−qm(2n−1−1)|p}
|qxq−1

n−1|p

=
p−qm

p−(q−1)m

= p−m.

Also, we have that

xqn − a =
(xqn−1(q − 1) + a)q − aqqx

q(q−1)
n−1

qqx
q(q−1)
n−1

=

(xq

n−1−a)
2











q
∑

i=2









i−2
∑

j=0

(i−(j+1))

(

q

j

)

(q − 1)q−j



−(i−2)qq



x
q(q−i)
n−1 ai−2











qqx
q(q−1)
n−1

.

Now, let

φ(xn−1)=









q
∑

i=2









i−2
∑

j=0

(i−(j+1))

(

q

j

)

(q − 1)q−j



− (i− 2)qq



x
q(q−i)
n−1 ai−2









qqx
q(q−1)
n−1

.

So, we can write xqn − a =
(

x
q
n−1 − a

)2
φ(xn−1). Since xn−1 is a root of a

of order 2n−1r − qm(2n−1 − 1), that is xqn−1 ≡ a(mod p2
n−1r−qm(2n−1−1)),

we then have |xqn−1 − a|p ≤ p−(2n−1r−qm(2n−1−1)). Hence

|xqn − a|p = |
(

x
q
n−1 − a

)2 |p|φ(xn−1)|p
≤ p−2(2n−1r−qm(2n−1−1))|φ(xn−1)|p.
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For |φ(xn−1)|p, we have

|φ(xn−1)|p=

∣

∣

∣

∣

q
∑

i=2









i−2
∑

j=0

(i−(j+1))

(

q

j

)

(q − 1)q−j



−(i− 2)qq



x
q(q−i)
n−1 ai−2

∣

∣

∣

∣

p
∣

∣

∣

∣

qqx
q(q−1)
n−1

∣

∣

∣

∣

p

=

max











∣

∣

∣

∣













i−2
∑

j=0

(i−(j + 1))

(

q

j

)

(q−1)q−j






−(i−2)qq






x
q(q−i)
n−1 ai−2

∣

∣

∣

∣

p











q

i=2

|qq|p|x
q(q−1)
n−1 |p

.

Again, observe also that for 2 ≤ i ≤ q

|xq(q−i)
n−1 ai−2|p = |xq(q−i)

n−1 |p|ai−2|p
= |xn−1|q(q−i)

p |a|i−2
p

= p−mq(q−i)p−mq(i−2)

= p−mq(q−2).

So we have

∣

∣

∣

∣

q
∑

i=2









i−2
∑

j=0

(i−(j+1))

(

q

j

)

(q−1)q−j



−(i−2)qq



x
q(q−i)
n−1 ai−2

∣

∣

∣

∣

p

≤ p−mq(q−2).

Hence

|φ(xn−1)|p ≤ p−mq(q−2)+mq(q−1)

= pmq.

Therefore

|xqn − a|p ≤ pqm−2(2n−1r−qm(2n−1−1))

= pqm(2n−1)−2nr. (3.7)

By Lemma 2.4

xqn − a ≡ 0( mod p2
nr−qm(2n−1)).

Finally, (iii) follows clearly from equation (3.7) as we take n→ ∞.

We now turn to the rate of convergence of the method.
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Proposition 3.4. Let {xn} be the sequence of p-adic numbers converging
to a qth root of a ∈ Qp obtained using the Newton-Raphson method. Then
the sequence converges quadratically with asymptotic error pmq.

Proof. We prove this result in two parts. We first determine an approximate
value of α and show using Definition (2.12) that this value of α is indeed
the rate of convergence of the method. Note that equation (2.12) means
that, if n is sufficiently large, then for some α we have

|xqn+1 − a|p ≈ λ|xqn − a|αp
|xqn − a|p ≈ λ|xqn−1 − a|αp .

Then by Proposition 3.3,

|xqn+1 − a|p
|xqn − a|p

≈
∣

∣

∣

∣

x
q
n − a

x
q
n−1 − a

∣

∣

∣

∣

α

p

.

And we have that

α ≈
log

( |xqn+1 − a|p
|xqn − a|p

)

log

( |xqn − a|p
|xqn−1 − a|p

)

≈
log

(

pmq(2n+1−1)−2n+1r

pmq(2n−1)−2nr

)

log

(

pmq(2n−1)−2nr

pmq(2n−1−1)−2n−1r

)

=
log p2

nmq−2nr

log p2n−1mq−2n−1r

= 2.

Then

lim
n→+∞

|xqn+1 − a|p
|xqn − a|2p

= lim
n→+∞

pmq(2n+1−1)−2n+1r

p2mq(2n−1)−2n+1r

= lim
n→+∞

pmq((2n+1−1)−(2(2n−1)))−r(2n+1−2n+1)

= pmq > 0.

We also have the following result.
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Proposition 3.5. Let {xn} be the sequence of approximates converging to
the qth root of a obtained from the Newton-Raphson method in Proposition
3.3. If p > q

1. Then for every iteration, the number of correct digits in the approxi-
mate increases by λn −m(q − 1).

2. The number of iterations n to obtain at least M correct digits is

n =









ln
(

M−(q−1)m
r−mq

)

ln 2









.

Proof. Note that for two consecutive approximates xi and xi+1,

xn+1 − xn =

(

(q − 1)xqn + a

qx
q−1
n

)

− xn

=
−(xqn − a)

qx
q−1
n

.

Let ψ(xn) =
−1

qx
q−1
n

. So that xn+1 −xn = (xqn− a)ψ(xn). But note that

|ψ(xn)|p = pm(q−1). Then

|xn+1 − xn|p = |(xqn − a)|p|ψ(xn)|p
≤ pm(q−1)−λn .

By Lemma 2.4 we have

xn+1 − xn ≡ 0( mod pλn−m(q−1)).

Note that if the order of the root xn is K (that is, xqn−a ≡ 0(mod pK)),
the number of correct digits in the approximate is K −m since | m

√
a|p =

p−m. Hence, to find the number of iterations n such that we haveM correct
digits in the approximate, we must set the order to M +m. Hence, we get
2n(r−mq) =M − (q − 1)m. Since {xn} is the sequence of p-adic numbers
converging to the qth root of a obtained from the Newton-Raphson iteration
in Proposition 3.3, we have r − qm > 0. Hence we take

n =









ln
(

M−(q−1)m
r−mq

)

ln 2









.

This n gives sufficient iterations to obtain at least M correct digits in
the approximate.
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