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1 Introduction

Let C be a nonempty closed convex subset of a real normed linear space X.

A self-mapping T : C → C is said to be nonexpansive if ‖T (x)− T (y)‖ ≤ ‖x− y‖
for all x, y ∈ C. A self-mapping T : C → C is called asymptotically nonexpansive
if there exists a sequence {kn} ⊂ [1,∞), kn → 1 as n → ∞ such that

‖T n(x)− T n(y)‖ ≤ kn‖x− y‖ (1.1)
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for all x, y ∈ C and n ≥ 1. A mapping T : C → C is said to be uniformly
L-Lipschitzian if there exists a constant L > 0 such that

‖T n(x) − T n(y)‖ ≤ L‖x− y‖ (1.2)

for all x, y ∈ C and n ≥ 1.
It is easy to see that if T is an asymptotically nonexpansive, then it is uniformly

L−Lipschitzian with the uniform Lipschitz constant L = sup{kn : n ≥ 1}.
Fixed-point iteration process for nonexpansive self-mappings including Mann

and Ishikawa iteration processes have been studied extensively by various au-
thors [1–6] For nonexpansive nonself-mappings, some authors [7–12] have studied
the strong and weak convergence theorems in Hilbert space or uniformly convex
Banach space. In 1972, Goebel and Kirk [13] introduced the class of asymptot-
ically nonexpansive self-mappings, who proved that if C is a nonempty closed
convex subset of a real uniformly convex Banach space and T is an asymptotically
nonexpansive self-mapping on C, then T has a fixed point.

In 1991, Schu [14] introduced the following modified Mann iteration process

xn+1 = (1− αn)xn + αnT
nxn, n ≥ 1, (1.3)

to approximate fixed points of asymptotically nonexpansive self-mappings in Hilbert
space. Since then, Schu’s iteration process (1.3) has been widely used to approx-
imate fixed points of asymptotically nonexpansive self-mappings in Hilbert space
or Banach spaces [4, 14–17].

In all the above results, the operator T, remains a self-mapping of a nonempty
closed convex subset C of X. If, however, the domain of T, D(T ), is a proper
subset of X (and this is the case in several applications), and T maps D(T ) into
X, then the iteration processes of Mann and Ishikawa studied by these authors;
and their modifications introduced by Schu may fail to be well defined.

The concept of asymptotically nonexpansive nonself-mappings was introduced
by Chidume, Ofoedu and Zegeye [18] in 2003 as the generalization of asymp-
totically nonexpansive self-mappings. The asymptotically nonexpansive nonself-
mapping is defined as follows:

Definition 1.1 ([18]). Let C be a nonempty subset of a real normed linear space
X. Let P : X → C be a nonexpansive retraction of X onto C. A nonself-mapping
T : C → X is called asymptotically nonexpansive if there exists a sequence {kn} ⊂
[1,∞), kn → 1 as n → ∞ such that

‖T (PT )n−1x− T (PT )n−1y‖ ≤ kn‖x− y‖ (1.4)

for all x, y ∈ C and n ≥ 1. T is said to be uniformly L-Lipschitzian if there exists
a constant L > 0 such that

‖T (PT )n−1x− T (PT )n−1y‖ ≤ L‖x− y‖ (1.5)

for all x, y ∈ C and n ≥ 1.
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By studying the following iteration process: x1 ∈ C,

xn+1 = P ((1− αn)xn + αnT (PT )n−1xn) (1.6)

Chidume, Ofoedu and Zegeye [18] gave some strong and weak convergence the-
orems for asymptotically nonexpansive nonself-mapping in a uniformly convex
Banach space.

If T is a self-mapping, then P becomes the identity mapping so that (1.4) and
(1.5) reduce to (1.1) and (1.2), respectively. (1.6) reduces to (1.3).

In 2006, Wang [19] generalized the iteration process (1.6) as follows: x1 ∈ C,

{

xn+1 = P ((1− αn)xn + αnT1(PT1)
n−1yn),

yn = P ((1 − βn)xn + βnT2(PT2)
n−1xn), n ≥ 1,

(1.7)

where T1, T2 : C → X are asymptotically nonexpansive nonself-mappings and
{αn}, {βn} are real sequences in [0, 1). He studied the strong and weak convergence
of the iterative scheme (1.7) under proper conditions. Meanwhile, the results of [19]
generalized the results of [18].

The asymptotically perturbed nonexpansive and uniformly perturbed L−
Lipschitzian (nonself) mappings are defined as follows:

Definition 1.2 ([20]). Let C be a nonempty subset of a real normed linear space
X. Let P : X → C be a nonexpansive retraction of X onto C. A nonself-mapping
T : C → X is called asymptotically perturbed P−nonexpansive if there exists a
sequence {kn} ⊂ [1− ǫ,∞), kn → 1− ǫ as n → ∞ for some ǫ > 0 such that

‖T (PT )n−1x− Tx‖ ≤ kn‖x− Tx‖

for all x ∈ C and n ≥ 1. T is said to be uniformly perturbed L−Lipschitzian with
respect to retraction P if there exists a constant L > 0 such that

‖T (PT )n−1x− Tx‖ ≤ L‖x− Tx‖

for all x ∈ C and n ≥ 1. A nonself asymptotically perturbed P−nonexpansive
mapping T : C → X is said to satisfy ball condition if there exists r > 0 such that

‖x− Tx‖+ ‖y − Ty‖ ≤ (sup
i≥1

ki)
−1‖x− y‖

for all x, y ∈ C ∩ B̄r(0) with x 6= y, where B̄r(0) is the closed ball in X centre 0
and radius r.

Now, since T : C → X is an asymptotically perturbed P−nonexpansive sat-
isfying the ball condition, so is T : C ∩ B̄r(0) → X. Using Definition 1.2, we
have
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‖T (PT )n−1x− T (PT )n−1y‖ ≤ ‖T (PT )n−1x− Tx‖+ ‖Tx− Ty‖

+ ‖Ty − T (PT )n−1y‖

≤ kn‖x− Tx‖+ ‖Tx− Ty‖+ kn‖y − Ty‖

= kn‖x− Tx‖+ kn‖y − Ty‖

+ ‖Tx− x+ x− y + y − Ty‖

≤ kn‖x− Tx‖+ kn‖y − Ty‖+ ‖x− Tx‖

+ ‖y − Ty‖+ ‖x− y‖

= (1 + kn)‖x− Tx‖+ (1 + kn)‖y − Ty‖+ ‖x− y‖

= (1 + kn)(‖x− Tx‖+ ‖y − Ty‖) + ‖x− y‖

≤ (1 + kn)(sup
i≥1

ki)
−1‖x− y‖+ ‖x− y‖

= Kn‖x− y‖

for all x, y ∈ C ∩ B̄r(0) with x 6= y, where Kn = (1 + kn)(supi≥1 ki)
−1 + 1.

Therefore, for all n ≥ 1, T (PT )n−1 is Lipschitzian mapping with the Lips-
chitzian constant Kn ≥ 1.

Pathak, Cho and Kang [20] generalized the iteration process (1.7) as follows:
x1 ∈ C1 ∩ C2,

{

xn+1 = P ((1 − αn)xn + αnT2(QT2)
n−1yn) ∈ C1,

yn = (1 − βn)xn + βnT1(PT1)
n−1xn ∈ C2, n ≥ 1,

(1.8)

where T1 : C1 → X and T2 : C2 → X are two asymptotically perturbed P -
nonexpansive and Q-nonexpansive nonself-mappings and {αn}, {βn} are real se-
quences in [ǫ, 1− ǫ) for some ǫ > 0. In [20], they got the following strong and weak
convergence theorems.

Theorem 1.3 ([20]). Let C1 and C2 be two nonempty closed convex subsets of
a uniformly convex Banach space X. Let T1 : C1 → X and T2 : C2 → X be two
nonself asymptotically perturbed P -nonexpansive and Q-nonexpansive mappings
satisfying ball condition and C2 ⊇ (1 − λ)C1 + λT1(C1) for each λ ∈ [ǫ, 1 − ǫ)
for some ǫ > 0 with sequences {kn}, {ln} ⊂ [1 − ǫ,∞) for some ǫ > 0 and
∑∞

n=1 k
′

n < ∞,
∑∞

n=1 l
′

n < ∞, where k
′

n = (1 + kn)(supi≥1 ki)
−1 and l

′

n = (1 +
ln)(supi≥1 li)

−1. Let {xn} ⊂ C1 and {yn} ⊂ C2 be defined by (1.8), where {αn},
{βn} are two sequences in [ǫ, 1− ǫ). If one of T1 and T2 is completely continuous
and F (T1) ∩ F (T2) 6= ∅, then {xn} and {yn} both converge strongly to a common
fixed point of T1 and T2.

Theorem 1.4 ([20]). Let C1 and C2 be two nonempty closed convex subsets of
a uniformly convex Banach space X. Let T1 : C1 → X and T2 : C2 → X be two
nonself asymptotically perturbed P -nonexpansive and Q-nonexpansive mappings
satisfying ball condition and C2 ⊇ (1 − λ)C1 + λT1(C1) for each λ ∈ [ǫ, 1− ǫ) for
some ǫ > 0 with sequences {kn}, {ln} ⊂ [1− ǫ,∞) for some ǫ > 0 and

∑∞

n=1 k
′

n <
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∞,
∑∞

n=1 l
′

n < ∞, where k
′

n = (1+kn)(supi≥1 ki)
−1 and l

′

n = (1+ ln)(supi≥1 li)
−1.

Let {xn} ⊂ C1 and {yn} ⊂ C2 be defined by (1.8), where {αn}, {βn} are two
sequences in [ǫ, 1− ǫ). If one of T1 and T2 is demicompact and F (T1)∩F (T2) 6= ∅,
then {xn} and {yn} both converge strongly to a common fixed point of T1 and T2.

Theorem 1.5 ([20]). Let C1 and C2 be two nonempty closed convex subsets of a
uniformly convex Banach space X satisfying Opial’s condition. Let T1 : C1 → X

and T2 : C2 → X be two nonself asymptotically perturbed P -nonexpansive and
Q-nonexpansive mappings satisfying ball condition and C2 ⊇ (1− λ)C1 + λT1(C1)
for each λ ∈ [ǫ, 1 − ǫ) for some ǫ > 0 with sequences {kn}, {ln} ⊂ [1 − ǫ,∞) for
some ǫ > 0 and

∑∞

n=1 k
′

n < ∞,
∑∞

n=1 l
′

n < ∞, where k
′

n = (1 + kn)(supi≥1 ki)
−1

and l
′

n = (1 + ln)(supi≥1 li)
−1. Let {xn} ⊂ C1 and {yn} ⊂ C2 be defined by (1.8),

where {αn}, {βn} are two sequences in [ǫ, 1− ǫ). If F (T1)∩ F (T2) 6= ∅, then {xn}
and {yn} both converge weakly to a common fixed point of T1 and T2.

If T1 = T2, P = Q and βn = 0 for all n ≥ 1, then the iteration scheme (1.8)
reduces to (1.6).

Recently, an iterative scheme which is called the projection type Ishikawa
iteration for two asymptotically nonexpansive nonself-mappings was defined and
constructed by Thianwan [21]. It is given as follows:

{

xn+1 = P ((1− αn)yn + αnT1(PT1)
n−1yn),

yn = P ((1 − βn)xn + βnT2(PT2)
n−1xn), n ≥ 1,

(1.9)

where T1, T2 : C → X are asymptotically nonexpansive nonself-mappings and
{αn}, {βn} are real sequences in [0, 1). He studied the strong and weak concergence
of the iterative scheme (1.9) under proper conditions in a uniformly convex Banach
space.

The iterative schemes (1.9) and (1.7) are independent: neither reduces to the
other. If T1 = T2 and βn = 0 for all n ≥ 1, then (1.9) reduces to (1.6). It also can
be reduces to Schu process (1.3).

Inspired and motivated by these facts, a new type of two-step iterative scheme
is introduced and studied in this paper. The scheme is defined as follows.

Let X be a uniformly convex Banach space and C1, C2 two nonempty closed
convex subsets of X which are also nonexpansive retracts of X with retractions P
and Q, respectively. Let T1 : C1 → X and T2 : C2 → X be two asymptotically
perturbed P−nonexpansive and Q−nonexpansive nonself-mappings satisfying the
ball condition with sequences {kn}, {ln} ⊂ [1 − ǫ,∞) for some ǫ > 0 such that
limn→∞ kn = 1− ǫ, limn→∞ ln = 1− ǫ, respectively and C2 ⊇ (1−λ)C1+λT1(C1)
for each λ ∈ [ǫ, 1 − ǫ) for some ǫ > 0. Then for a given x1 ∈ C1 ∩ C2, we now
introduce the following iteration scheme:

{

xn+1 = P ((1− αn)yn + αnT2(QT2)
n−1yn) ∈ C1,

yn = (1− βn)xn + βnT1(PT1)
n−1xn ∈ C2, n ≥ 1,

(1.10)

where {αn} and {βn} are appropriate real sequences in [0, 1).
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If T1 = T2, P = Q and βn = 0 for all n ≥ 1, then (1.10) reduces to (1.6).
Pathak, Cho and Kang process (1.8) and our process (1.10) are independent:
neither reduces to the other.

Note that each lp (1 ≤ p < ∞) satisfies the Opial’s condition, while all Lp

do not have the property unless p = 2 and the dual of reflexive Banach spaces
with a Fréchet differentiable norm have the Kadec–Klee property. It is worth
mentioning that there are uniformly convex Banach spaces, which have neither a
Fréchet differentiable norm nor Opial property; however, their dual does have the
Kadec–Klee property (see [22, 23]).

The purpose of this paper is to construct a more general iteration scheme (see
(1.10) above) than iteration scheme (1.9) for approximating common fixed points
of two asymptotically perturbed nonexpansive nonself-mappings and to prove some
strong and weak convergence theorems for such mappings in a uniformly convex
Banach space. Furthermore, we prove weak convergence of the iteration process
(1.10) in a uniformly convex Banach space whose dual has the Kadec–Klee prop-
erty. The result applies not only to Lp spaces with (1 ≤ p < ∞) but also to other
spaces which do not satisfy Opial’s condition or have a Fréchet differentiable norm.

2 Preliminaries

Let X be a Banach space with dimension X ≥ 2. The modulus of X is the
function δX : (0, 2] → [0, 1] defined by

δX(ǫ) = inf{1− ‖
1

2
(x + y)‖ : ‖x‖ = 1, ‖y‖ = 1, ǫ = ‖x− y‖}.

A Banach space X is uniformly convex if and only if δX(ǫ) > 0 for all ǫ ∈ (0, 2].

A subset C of X is said to be a retract if there exists continuous mapping
P : X → C such that Px = x for all x ∈ C. Every closed convex subset of a
uniformly convex Banach space is a retract. A mapping P : X → X is said to be
a retraction if P 2 = P. It follows that if a mapping P is a retraction, then Pz = z

for every z ∈ R(P ), the range of P. A set C is optimal if each point outside C can
be moved to be closer to all points of C. It is well known (see [24]) that

(1) If X is a separable, strictly convex, smooth, reflexive Banach space, and if
C ⊂X is an optimal set with interior, then C is a nonexpansive retract of X.

(2) A subset of lp, with 1 < p < ∞, is a nonexpansive retract if and only if it
is optimal.

Note that every nonexpansive retract is optimal. In strictly convex Banach
spaces, optimal sets are closed and convex. Moreover, every closed convex subset
of a Hilbert space is optimal and also a nonexpansive retract.

Recall that a Banach space X is said to satisfy Opial’s condition [25] if xn → x

weakly as n → ∞ and x 6= y implying that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖.
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A mapping T : C → X is said to be semi-compact (or demicompact) if, for any
sequence {xn} in C such that ‖xn−Txn‖ → 0 as n → ∞, there exists subsequence
{xnj

} of {xn} such that {xnj
} converges strongly to x∗ ∈ C. A Banach space X

is said to have the Kadec–Klee property if for every sequence {xn} in X , xn → x

weakly and ‖xn‖ → ‖x‖ strongly together imply ‖xn−x‖ → 0 for more details on
Kadec-Klee property, the reader is referred to [26, 27] and the references therein.

In the sequel, the following lemmas are needed to prove our main results.

Lemma 2.1 ([17]). Let {an} and {tn} be two sequences of nonnegative real num-
bers satisfying the inequality

an+1 ≤ an + tn for all n ≥ 1.

If
∑∞

n=1 tn < ∞, then limn→∞ an exists.

Lemma 2.2 ([14]). Let X be a real uniformly convex Banach space and 0 ≤ p ≤
tn ≤ q < 1 for all positive integer n ≥ 1. Also suppose that {xn} and {yn} are
two sequences of X such that lim supn→∞ ‖xn‖ ≤ r, lim supn→∞ ‖yn‖ ≤ r and
limn→∞ ‖tnxn+(1− tn)yn‖ = r hold for some r ≥ 0, then limn→∞ ‖xn− yn‖ = 0.

Lemma 2.3 ([20]). Let X be a uniformly convex Banach space, C a nonempty
closed convex subset of X, and let T : C → X be an asymptotically perturbed
P−nonexpansive map satisfying the ball condition with a sequence {kn} ⊂ [1−ǫ,∞)
and kn → 1 − ǫ as n → ∞. Then I − T is demiclosed at zero, i.e., if xn → x

weakly and xn − Txn → 0 strongly, then x ∈ F (T ), where F (T ) is the set of fixed
point of T .

Lemma 2.4 ([28]). Let X be a Banach space which satisfies Opial’s condition
and let {xn} be a sequence in X . Let u, v ∈ X be such that limn→∞ ‖xn − u‖
and limn→∞ ‖xn − v‖ exist. If {xnk

} and {xmk
} are subsequences of {xn} which

converge weakly to u and v, respectively, then u = v.

Lemma 2.5 ([23]). Let X be a real reflexive Banach space such that its dual X∗

has the Kadec-Klee property. Let {xn} be a bounded sequence in X and x∗, y∗ ∈
ωw(xn); where ωw(xn) denotes the set of all weak subsequential limits of {xn}.
Suppose limn→∞ ‖txn + (1− t)x∗ − y∗‖ exists for all t ∈ [0, 1]. Then x∗ = y∗.

We denote by Γ the set of strictly increasing, continuous convex functions
γ : R+ → R

+ with γ(0) = 0. Let C be a convex subset of the Banach space X . A
mapping T : C → C is said to be type (γ) [29] if γ ∈ Γ and 0 6 α 6 1,

γ(‖αTx+ (1 − α)Ty − T (αx+ (1 − α)y)‖) 6 ‖x− y‖ − ‖Tx− Ty‖

for all x, y in C. Obviously, every type (γ) mapping is nonexpansive. For more
information about mappings of type(γ), see [30–32].

Lemma 2.6 ([33,34]). Let X be a uniformly convex Banach space and C a convex
subset of X. Then there exists γ ∈ Γ such that for each mapping S : C → C with
Lipschitz constant L,

‖αSx+ (1− α)Sy − S(αx+ (1− α)y)‖ 6 Lγ−1(‖x− y‖ −
1

L
‖Sx− Sy‖)

for all x, y ∈ C and 0 < α < 1.
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3 Main Results

In this section, we prove strong and weak convergence theorems for the two-
step iterative scheme given in (1.10) to a common fixed point for two asymptoti-
cally perturbed nonexpansive nonself-mappings satisfying the ball condition in a
uniformly convex Banach space. In order to prove our main results, the following
lemmas are needed.

Lemma 3.1. Let X be a normed linear space and C1, C2 two nonempty closed
convex subsets of X. Let T1 : C1 → X and T2 : C2 → X be two asymptotically
perturbed P -nonexpansive and Q-nonexpansive nonself-mappings satisfying the ball
condition and C2 ⊇ (1−λ)C1+λT1(C1) for each λ ∈ [ǫ, 1− ǫ) for some ǫ > 0 with
sequences {kn}, {ln} ⊂ [1− ǫ,∞) for some ǫ > 0 such that kn → 1− ǫ, ln → 1− ǫ

as n → ∞, respectively and F (T1) ∩ F (T2) 6= ∅. Suppose that {αn} and {βn}
are real sequences in [ǫ, 1 − ǫ) for some ǫ > 0. From an arbitrary x1 ∈ C1 ∩ C2,
define the sequences {xn} and {yn} using (1.10). If q ∈ F (T1) ∩ F (T2), then
limn→∞ ‖xn − q‖ and limn→∞ ‖yn − q‖ exist.

Proof. Let q ∈ F (T1) ∩ F (T2). Since T1 : C1 → X and T2 : C2 → X are two
asymptotically perturbed P -nonexpansive and Q-nonexpansive nonself-mappings
satisfying the ball condition, for all n ≥ 1, T1(PT1)

n−1 and T2(QT2)
n−1 are

Lipschitzian with Lipschitzian constants Kn, Ln ≥ 1, respectively, where Kn =
(1 + kn)(supi≥1 ki)

−1 + 1 and Ln = (1 + ln)(supi≥1 li)
−1 + 1. Since kn → 1 − ǫ,

ln → 1−ǫ as n → ∞ for some ǫ > 0, so
∑∞

n=1(Kn−1) < ∞ and
∑∞

n=1(Ln−1) < ∞.

Setting k
′

n = (1 + kn)(supi≥1 ki)
−1 and l

′

n = (1 + ln)(supi≥1 li)
−1. We have

1 + k
′

n = Kn and 1 + l
′

n = Ln. It follows that
∑∞

n=1 k
′

n < ∞ and
∑∞

n=1 l
′

n < ∞.

Using (1.10), we have

‖yn − q‖ = ‖(1− βn)xn + βnT1(PT1)
n−1xn − q‖

≤ ‖(1− βn)(xn − q) + βn(T1(PT1)
n−1xn − q)‖

≤ (1− βn)‖xn − q‖+ βn‖T1(PT1)
n−1xn − q‖

≤ (1− βn)‖xn − q‖+ βnKn‖xn − q‖

= (1− βn)‖xn − q‖+ βn(1 + k
′

n)‖xn − q‖

= (1− βn)‖xn − q‖+ (βn + βnk
′

n)‖xn − q‖

≤ (1 + k
′

n)‖xn − q‖, (3.1)

and so

‖xn+1 − q‖ = ‖P ((1− αn)yn + αnT2(QT2)
n−1yn)− P (q)‖

≤ ‖(1− αn)(yn − q) + αn(T2(QT2)
n−1yn − q)‖

≤ (1 − αn)‖yn − q‖+ αn‖T2(QT2)
n−1yn − q‖

≤ (1 − αn)‖yn − q‖+ αnLn‖yn − q‖

= (1 − αn)‖yn − q‖+ αn(1 + l
′

n)‖yn − q‖
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≤ (1 + l
′

n)‖yn − q‖

≤ (1 + l
′

n)(1 + k
′

n)‖xn − q‖

= (1 + k
′

n + l
′

n + k
′

nl
′

n)‖xn − q‖

< e
∑

∞

n=1
(k

′

n+l
′

n+k
′

nl
′

n)‖x1 − q‖.

Since
∑∞

n=1(k
′

n + l
′

n + k
′

nl
′

n) < ∞, then {xn} is bounded. It implies that there
exists constant M > 0 such that ‖xn − q‖ ≤ M for all n ≥ 1. So,

‖xn+1 − q‖ ≤ ‖xn − q‖+ (k
′

n + l
′

n + k
′

nl
′

n)M.

It follows from Lemma 2.1 that limn→∞ ‖xn−q‖ exists. By using (3.1) and Lemma
2.1, it follows easily that limn→∞ ‖yn − q‖ exists. This completes the proof.

Lemma 3.2. Let X be a uniformly convex Banach space and C1, C2 two nonempty
closed convex subsets of X. Let T1 : C1 → X and T2 : C2 → X be two asymptot-
ically perturbed P -nonexpansive and Q-nonexpansive nonself-mappings satisfying
the ball condition and C2 ⊇ (1 − λ)C1 + λT1(C1) for each λ ∈ [ǫ, 1 − ǫ) for
some ǫ > 0 with sequences {kn}, {ln} ⊂ [1 − ǫ,∞) for some ǫ > 0 such that
kn → 1 − ǫ, ln → 1 − ǫ as n → ∞, respectively and F (T1) ∩ F (T2) 6= ∅. Sup-
pose that {αn} and {βn} are real sequences in [ǫ, 1− ǫ) for some ǫ > 0. From an
arbitrary x1 ∈ C1 ∩ C2, define the sequences {xn} and {yn} using (1.10). Then
limn→∞ ‖xn − yn‖ = limn→∞ ‖xn − T1xn‖ = limn→∞ ‖yn − T2yn‖ = 0.

Proof. Let q ∈ F (T1)∩F (T2). Since T1(PT1)
n−1 and T2(QT2)

n−1 are Lipschitzian
with Lipschitzian constants Kn, Ln ≥ 1, respectively,
where Kn = (1 + kn)(supi≥1 ki)

−1 +1 and Ln = (1 + ln)(supi≥1 li)
−1 + 1. Set

1+k
′

n = Kn and 1+ l
′

n = Ln. By Lemma 3.1, we see that limn→∞ ‖xn− q‖ exists.
Assume that limn→∞ ‖xn − q‖ = c. Using (3.1), we have

‖yn − q‖ ≤ (1 + k
′

n)‖xn − q‖. (3.2)

Taking the lim sup on both sides in the inequality (3.2), we have

lim sup
n→∞

‖yn − q‖ ≤ c. (3.3)

In addition, ‖T2(QT2)
n−1yn − q‖ ≤ (1 + l

′

n)‖yn − q‖, taking the lim sup on both
sides in this inequality, we have

lim sup
n→∞

‖T2(QT2)
n−1yn − q‖ ≤ c. (3.4)

From (1.10), we have

‖xn+1 − q‖ ≤ ‖(1− αn)(yn − q) + αn(T2(QT2)
n−1yn − q)‖

≤ (1 + k
′

n + l
′

n + k
′

nl
′

n)‖xn − q‖. (3.5)
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Since
∑∞

n=1(k
′

n + l
′

n + k
′

nl
′

n) < ∞ and limn→∞ ‖xn+1 − q‖ = c, letting n → ∞ in
the inequality (3.5), we have

lim
n→∞

‖(1− αn)(yn − q) + αn(T2(QT2)
n−1yn − q)‖ = c. (3.6)

By using (3.3), (3.4), (3.6) and Lemma 2.2, we have

lim
n→∞

‖T2(QT2)
n−1yn − yn‖ = 0. (3.7)

In addition, ‖T1(PT1)
n−1xn− q‖ ≤ (1+k

′

n)‖xn− q‖, taking lim sup on both sides
in this inequality, we have

lim sup
n→∞

‖T1(PT1)
n−1xn − q‖ ≤ c. (3.8)

Using (1.10), we have

‖xn+1 − q‖ ≤ (1 − αn)‖yn − q‖+ αn‖T2(QT2)
n−1yn − q‖

= (1 − αn)‖yn − q‖+ αn‖T2(QT2)
n−1yn − yn + yn − q‖

≤ (1 − αn)‖yn − q‖+ αn‖T2(QT2)
n−1yn − yn‖+ αn‖yn − q‖

≤ ‖yn − q‖+ ‖T2(QT2)
n−1yn − yn‖. (3.9)

Taking the lim inf on both sides in the inequality (3.9), by (3.7) and limn→∞ ‖xn+1−
q‖ = c, we have

lim inf
n→∞

‖yn − q‖ ≥ c. (3.10)

It follows from (3.3) and (3.10) that limn→∞ ‖yn − q‖ = c. This implies that

c = lim
n→∞

‖yn − q‖ ≤ lim
n→∞

‖(1− βn)(xn − q) + βn(T1(PT1)
n−1xn − q)‖

≤ lim
n→∞

‖xn − q‖ = c,

and so
lim
n→∞

‖(1− βn)(xn − q) + βn(T1(PT1)
n−1xn − q)‖ = c.

Using (3.8) and Lemma 2.2, we obtain

lim
n→∞

‖T1(PT1)
n−1xn − xn‖ = 0. (3.11)

From yn = (1− βn)xn + βnT1(PT1)
n−1xn, we have

‖yn − xn‖ = ‖(1− βn)xn + βnT1(PT1)
n−1xn − xn‖

≤ ‖(1− βn)(xn − xn) + βn(T1(PT1)
n−1xn − xn)‖

≤ (1 − βn)‖xn − xn‖+ βn‖T1(PT1)
n−1xn − xn‖

≤ ‖T1(PT1)
n−1xn − xn‖. (3.12)
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It follows from (3.11) and (3.12) that

lim
n→∞

‖xn − yn‖ = 0.

We now prove that limn→∞ ‖xn − T1xn‖ = 0. Suppose, on the contrary, that
limn→∞ ‖xn − T1xn‖ > 0. In addition,

‖xn − T1xn‖ = ‖xn − T1(PT1)
n−1xn + T1(PT1)

n−1xn − T1xn‖

≤ ‖xn − T1(PT1)
n−1xn‖+ ‖T1(PT1)

n−1xn − T1xn‖

≤ ‖xn − T1(PT1)
n−1xn‖+ kn‖xn − T1xn‖. (3.13)

It follows from (3.11) and (3.13) that

lim
n→∞

‖xn − T1xn‖ ≤ (1 − ε) lim
n→∞

‖xn − T1xn‖

< lim
n→∞

‖xn − T1xn‖,

a contradiction. So, we must have

lim
n→∞

‖xn − T1xn‖ = 0.

Next, we prove that limn→∞ ‖yn − T2yn‖ = 0. Indeed, we have

‖yn − T2yn‖ = ‖yn − T2(QT2)
n−1yn + T2(QT2)

n−1yn − T2yn‖

≤ ‖yn − T2(QT2)
n−1yn‖+ ‖T2(QT2)

n−1yn − T2yn‖

≤ ‖yn − T2(QT2)
n−1yn‖+ ln‖yn − T2yn‖. (3.14)

Suppose, on the contrary, that limn→∞ ‖yn −T2yn‖ > 0. It follows from (3.7) and
(3.14) that

lim
n→∞

‖yn − T2yn‖ ≤ (1 − ε) lim
n→∞

‖yn − T2yn‖

< lim
n→∞

‖yn − T2yn‖,

a contradiction. Therefore, we must have limn→∞ ‖yn−T2yn‖ = 0. This completes
the proof.

Theorem 3.3. Let X be a uniformly convex Banach space and C1, C2 two nonempty
closed convex subsets of X. Let T1 : C1 → X and T2 : C2 → X be two asymptot-
ically perturbed P -nonexpansive and Q-nonexpansive nonself-mappings satisfying
the ball condition and C2 ⊇ (1 − λ)C1 + λT1(C1) for each λ ∈ [ǫ, 1 − ǫ) for some
ǫ > 0 with sequences {kn}, {ln} ⊂ [1− ǫ,∞) for some ǫ > 0 such that kn → 1− ǫ,

ln → 1− ǫ as n → ∞, respectively and F (T1)∩F (T2) 6= ∅. Suppose that {αn} and
{βn} are real sequences in [ǫ, 1−ǫ) for some ǫ > 0. From an arbitrary x1 ∈ C1∩C2,
define the sequences {xn} and {yn} using (1.10). If one of T1 and T2 is completely
continuous, then {xn} and {yn} converge strongly to a common fixed point of T1

and T2.
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Proof. By Lemma 3.1, {xn} and {yn} both are bounded. In addition, by Lemma
3.2, limn→∞ ‖xn−yn‖ = 0, limn→∞ ‖xn−T1xn‖ = 0 and limn→∞ ‖yn−T2yn‖ = 0,
then {T1xn} and {T2xn} are also bounded. If T1 is completely continuous, there
exists subsequence {T1xnj

} of {T1xn} such that T1xnj
→ q as j → ∞. It follows

from Lemma 3.2, that limj→∞ ‖xnj
− T1xnj

‖ = limj→∞ ‖ynj
− T2ynj

‖ = 0. So
by the continuity of T1 and Lemma 2.3, we have limj→∞ ‖xnj

− q‖ = 0 and
q ∈ F (T1) ∩ F (T2). Furthermore, by Lemma 3.1, we get that limn→∞ ‖xn − q‖
exists. Thus limn→∞ ‖xn − q‖ = 0. Similarly, if T2 is completely continuous, then
using the same argument we can show that {yn} converges strongly to a common
fixed point of T1 and T2. The proof is completed.

Theorem 3.4. Let X be a uniformly convex Banach space and C1, C2 two nonempty
closed convex subsets of X. Let T1 : C1 → X and T2 : C2 → X be two asymptot-
ically perturbed P -nonexpansive and Q-nonexpansive nonself-mappings satisfying
the ball condition and C2 ⊇ (1 − λ)C1 + λT1(C1) for each λ ∈ [ǫ, 1 − ǫ) for some
ǫ > 0 with sequences {kn}, {ln} ⊂ [1− ǫ,∞) for some ǫ > 0 such that kn → 1− ǫ,

ln → 1 − ǫ as n → ∞, respectively and F (T1) ∩ F (T2) 6= ∅. Suppose that {αn}
and {βn} are real sequences in [ǫ, 1 − ǫ) for some ǫ > 0. From an arbitrary
x1 ∈ C1 ∩ C2, define the sequences {xn} and {yn} using (1.10). If one of T1 and
T2 is semi-compact, then {xn} and {yn} converge strongly to a common fixed point
of T1 and T2.

Proof. Since one of T1 and T2 is semi-compact, {xn} and {yn} both are bounded
and limn→∞ ‖xn − yn‖ = limn→∞ ‖xn − T1xn‖ = limn→∞ ‖yn − T2yn‖ = 0, then
there exists subsequence {xnj

} of {xn} such that xnj
converges strongly to q. It

follows from Lemma 2.3 that q ∈ F (T1) ∩ F (T2). Thus limn→∞ ‖xn − q‖ exists
by Lemma 3.1. Since the subsequence {xnj

} of {xn} such that {xnj
} converges

strongly to q, then {xn} converges strongly to the common fixed point q ∈ F (T1)∩
F (T2). Similarly, if T2 is semi-compact, then using the same argument we can show
that {yn} converges strongly to a common fixed point of T1 and T2. The proof is
completed.

Next, we prove the weak convergence of the iterative scheme (1.10) for two
asymptotically perturbed nonexpansive nonself-mappings in a uniformly convex
Banach space satisfying Opial’s condition.

Theorem 3.5. Let X be a uniformly convex Banach space which satisfies Opial’s
condition and C1, C2 two nonempty closed convex subsets of X. Let T1 : C1 →
X and T2 : C2 → X be two asymptotically perturbed P -nonexpansive and Q-
nonexpansive nonself-mappings satisfying the ball condition and C2 ⊇ (1−λ)C1 +
λT1(C1) for each λ ∈ [ǫ, 1−ǫ) for some ǫ > 0 with sequences {kn}, {ln} ⊂ [1−ǫ,∞)
for some ǫ > 0 such that kn → 1 − ǫ, ln → 1 − ǫ as n → ∞, respectively and
F (T1) ∩ F (T2) 6= ∅. Suppose that {αn} and {βn} are real sequences in [ǫ, 1 − ǫ)
for some ǫ > 0. From an arbitrary x1 ∈ C1 ∩ C2, define the sequences {xn} and
{yn} using (1.10). Then {xn} and {yn} converge weakly to a common fixed point
of T1 and T2.
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Proof. It follows from Lemma 3.2 that limn→∞ ‖xn−yn‖ = limn→∞ ‖xn−T1xn‖ =
limn→∞ ‖yn−T2yn‖ = 0. By Lemma 3.1, {xn} and {yn} both are bounded. Since
X is uniformly convex, we may assume that xn → u weakly as n → ∞, without
loss of generality. By Lemma 2.3, we have u ∈ F (T1) ∩ F (T2). Suppose that
subsequences {xnk

} and {xmk
} of {xn} converge weakly to u and v, respectively.

From Lemma 2.3, u, v ∈ F (T1) ∩ F (T2). By Lemma 3.1, limn→∞ ‖xn − u‖ and
limn→∞ ‖xn − v‖ exist. It follows from Lemma 2.4 that u = v. Therefore {xn}
converges weakly to a common fixed point of T1 and T2. By using the same
argument it also follows that {yn} converges weakly to a common fixed point of
T1 and T2. This completes the proof of the theorem.

In the remainder of this section, we deal with the weak convergence of the
sequence {xn} defined by (1.10) in a uniformly convex Banach space X whose
dual X∗ has the Kadec-Klee property.

Theorem 3.6. Let X be a uniformly convex Banach space and C1, C2 two nonempty
closed convex subsets of X. Let T1 : C1 → X and T2 : C2 → X be two asymptot-
ically perturbed P -nonexpansive and Q-nonexpansive nonself-mappings satisfying
the ball condition and C2 ⊇ (1 − λ)C1 + λT1(C1) for each λ ∈ [ǫ, 1 − ǫ) for some
ǫ > 0 with sequences {kn}, {ln} ⊂ [1− ǫ,∞) for some ǫ > 0 such that kn → 1− ǫ,

ln → 1− ǫ as n → ∞, respectively and F (T1)∩F (T2) 6= ∅. Suppose that {αn} and
{βn} are real sequences in [ǫ, 1−ǫ) for some ǫ > 0. From an arbitrary x1 ∈ C1∩C2,
define the sequences {xn} and {yn} using (1.10). Then for all u, v ∈ F (T1)∩F (T2),
the limit limn→∞ ‖txn − (1 − t)u− v‖ exists for all t ∈ [0, 1].

Proof. Since T1(PT1)
n−1 and T2(QT2)

n−1 are Lipschitzian with Lipschitzian con-
stants Kn = (1 + kn)(supi≥1 ki)

−1 + 1, Ln = (1 + ln)(supi≥1 li)
−1 + 1 ∈ [1,∞),

respectively. Set 1+k
′

n = Kn and 1+ l
′

n = Ln. It follows from Lemma 3.1 that the
sequence {xn} is bounded. Then there exists R > 0 such that {xn} ⊂ BR(0)∩C1.

Let an(t) := ‖txn + (1 − t)u − v‖ where t ∈ [0, 1]. Then limn→∞ an(0) = ‖u − v‖
and by Lemma 3.1, limn→∞ an(1) = limn→∞ ‖xn − v‖ exists. Without loss of the
generality, we may assume that limn→∞ ‖xn − v‖ = r for some positive number r.
Let x ∈ C1 and t ∈ (0, 1). For each n ≥ 1, define An : C1 → C1 by

Anx = P ((1− αn)yn(x) + αnT2(QT2)
n−1yn(x)),where

yn(x) = (1− βn)x+ βnT1(PT1)
n−1x.

For x, z ∈ C1, we have

‖Anx−Anz‖ = ‖P ((1− αn)yn(x) + αnT2(QT n−1
2 )yn(x))

− P ((1 − αn)yn(z) + αnT2(QT2)
n−1)yn(z))‖

≤ ‖(1− αn)(yn(x)− yn(z)) + αn(T2(QT2)
n−1yn(x)

− T2(QT2)
n−1yn(z))‖

≤ (1 − αn)‖yn(x)− yn(z)‖+ αnLn‖yn(x) − yn(z)‖

= (1 − αn)‖yn(x)− yn(z)‖+ αn(1 + l
′

n)‖yn(x)− yn(z)‖
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≤ (1 + l
′

n)‖yn(x)− yn(z)‖ (3.15)

and

‖yn(x) − yn(z)‖ = ‖((1 − βn)x+ βnT1(PT1)
n−1x)

− ((1 − βn)z + βnT1(PT1)
n−1z)‖

= ‖(1− βn)(x − z) + βn(T1(PT1)
n−1x− T1(PT1)

n−1z)‖

≤ (1 − βn)‖x− z‖+ βn‖T1(PT1)
n−1x− T1(PT1)

n−1z‖

≤ (1 − βn)‖x− z‖+ βnKn‖x− z‖

= (1 − βn)‖x− z‖+ βn(1 + k
′

n)‖x− z‖

≤ (1 + k
′

n)‖x− z‖. (3.16)

Using (3.15) and (3.16), we have

‖Anx−Anz‖ ≤ (1 + k
′

n + l
′

n + k
′

nl
′

n)‖x− z‖.

Set Sn,m := An+m−1An+m−2 ...An, n,m ≥ 1, and bn,m = ‖Sn,m(txn + (1− t)u)−
(tSn,mxn + (1 − t)u)‖, where 0 ≤ t ≤ 1. Also

‖Sn,mx− Sn,my‖ ≤ ‖An+m−1(An+m−2...Anx)−An+m−1(An+m−2...Any)‖

≤ (1 + k
′

n+m−1 + l
′

n+m−1 + k
′

n+m−1l
′

n+m−1)

‖An+m−2(An+m−3...Anx) −An+m−2(An+m−3...Any)‖

...

≤
n+m−1
∏

j=n

(1 + k
′

j + l
′

j + k
′

j l
′

j)‖x− y‖.

Since
∑∞

n=1(Kn − 1) < ∞,
∑∞

n=1(Ln − 1) < ∞, so
∑∞

n=1 k
′

n < ∞,
∑∞

n=1 l
′

n < ∞.

It follows that k
′

n → 0 and l
′

n → 0 as n → ∞. Applying Lemma 2.6 with x = xn,

y = u, S = Sn,m and limn→∞ ‖xn − x∗‖ exists for all x∗ ∈ F (T1) ∩ F (T2). We
obtain limn→∞ bn,m = 0. Observe that

an+m(t) = ‖txn+m + (1− t)u− v‖

= ‖tSn,mxn + (1 − t)u− Sn,mv‖

= ‖Sn,mv − (tSn,mxn + (1− t)u)‖

= ‖Sn,mv − Sn,m(txn + (1− t)u) + Sn,m(txn + (1− t)u)

− (tSn,mxn + (1− t)u)‖

≤ ‖Sn,mv − Sn,m(txn + (1− t)u)‖+ bn,m

= ‖Sn,m(txn + (1− t)u)− Sn,mv‖+ bn,m

≤ ‖txn + (1− t)u− v‖+ bn,m

= an(t) + bn,m.
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Consequently,

lim sup
m→∞

am(t) = lim sup
m→∞

an+m(t)

≤ lim sup
m→∞

(bn,m + an(t))

≤ γ−1(‖xn − u‖ − lim
m→∞

‖xm − u‖) + an(t)

and

lim sup
n→∞

an(t) ≤ lim inf
n→∞

an(t).

This implies that limn→∞ an(t) exists for all t ∈ [0, 1]. This completes the proof.

Theorem 3.7. Let X be a uniformly convex Banach space and C1, C2 two nonempty
closed convex subsets of X. Let T1 : C1 → X and T2 : C2 → X be two asymptot-
ically perturbed P -nonexpansive and Q-nonexpansive nonself-mappings satisfying
the ball condition and C2 ⊇ (1 − λ)C1 + λT1(C1) for each λ ∈ [ǫ, 1 − ǫ) for some
ǫ > 0 with sequences {kn}, {ln} ⊂ [1− ǫ,∞) for some ǫ > 0 such that kn → 1− ǫ,

ln → 1 − ǫ as n → ∞, respectively and F (T1) ∩ F (T2) 6= ∅. Suppose that {αn}
and {βn} are real sequences in [ǫ, 1 − ǫ) for some ǫ > 0. Then the sequence {xn}
defined by the iterative scheme (1.10) converges weakly to a fixed point of T1 and
T2.

Proof. It follows from Lemma 3.1 that the sequence {xn} and {yn} both are
bounded. By Lemma 3.2, we have limn→∞ ‖xn − yn‖ = limn→∞ ‖xn − T1xn‖ =
limn→∞ ‖yn − T2yn‖ = 0. Since X is uniformly convex, applying Lemma 2.3,
then there exists a subsequence {xnj

} of {xn} converging weakly to a point x∗ ∈
F (T1) ∩ F (T2). It remains to show that {xn} converges weakly to x∗. Suppose
that {xni

} is another subsequence of {xn} converging weakly to some y∗. Then
x∗, y∗ ∈ ωw(xn) ∩ F (T1) ∩ F (T2). By Theorem 3.6,

lim
n→∞

‖txn − (1− t)x∗ − y∗‖

exists for all t ∈ [0, 1]. It follows from Lemma 2.5 that x∗ = y∗. As a result, ωw(xn)
is a singleton, and so {xn} converges weakly to a fixed point of T1 and T2.
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