Thai Journal of Mathematics
Volume 14 (2016) Number 2 : 391-397
http://thaijmath.in.cmu.ac.th
ISSN 1686-0209

On the Solutions of the Recursive Sequence

$$
x_{n+1}=\frac{a x_{n-k}}{a-\prod_{i=0}^{k} x_{n-i}}
$$

Saniye Ergin and Ramazan Karatass 1

Akdeniz University, Education Faculty Mathematics Department, 07058, Konyaaltı, Antalya, Turkiye e-mail : saniye.86@hotmail.com.tr (S. Ergin)
rkaratas@akdeniz.edu.tr (R. Karataş)
Abstract : We obtain in this paper the solutions of the difference equation

$$
x_{n+1}=\frac{a x_{n-k}}{a-\prod_{i=0}^{k} x_{n-i}} \text { for } n=0,1,2, \ldots
$$

where k is a positive number and initial conditions are non zero real numbers with $\prod_{i=0}^{k} x_{-i} \neq a$.

Keywords : difference equation; solution; periodicity.
2010 Mathematics Subject Classification : 39A11.

1 Introduction

Recently there has been a lot of interest in studying the solution of nonlinear difference equations. For some results in this area, see for example [1] 14].

Cinar [2] investigated the positive solutions of the rational difference equation

$$
x_{n+1}=\frac{x_{n-1}}{-1+x_{n} x_{n-1}}
$$

${ }^{1}$ Corresponding author.
Copyright © 2016 by the Mathematical Association of Thailand. All rights reserved.

Elsayed [3] investigated the qualitative behavior of the solution of the difference equation

$$
x_{n+1}=\frac{x_{n}}{x_{n-1}\left(x_{n} \pm 1\right)}
$$

Aloqeili [1] studied the solutions, stability character, semi-cycle behavior of the difference equation

$$
x_{n+1}=\frac{x_{n-1}}{a-x_{n-1} x_{n}}
$$

and gave the following formulation

$$
x_{n}= \begin{cases}x_{0} \prod_{i=1}^{\frac{n}{2}} \frac{a^{2 i-1}(1-a)-\left(1-a^{2 i-1}\right) x_{-1} x_{0}}{a^{2 i}(1-a)-\left(1-a^{2 i}\right) x_{-1} x_{0}}, & n \text { even } \\ x_{-1} \prod_{i=0}^{\frac{n+1}{2}} \frac{a^{2 i-1}(1-a)-\left(1-a^{2 i}\right) x_{-1} x_{0}}{a^{2 i+1}(1-a)-\left(1-a^{2 i+1}\right) x_{-1} x_{0}}, & n \text { odd }\end{cases}
$$

Hamza et al. 4] studied the global stability, periodic nature, oscillation and the boundedness of solutions of the difference equation

$$
x_{n+1}=\frac{A \prod_{i=l}^{k} x_{n-2 i-1}}{B+C \prod_{i=l}^{k-1} x_{n-2 i}}
$$

Elabbasy et al. [5] investigated some qualitative behavior of the solutions of the recursive sequence

$$
x_{n+1}=\frac{\alpha x_{n-k}}{\beta+\gamma \prod_{i=0}^{k} x_{n-i}}
$$

Karatas [6] studied the dynamics of the solution of the difference equation

$$
x_{n+1}=\frac{A x_{n-m}}{B+C \prod_{i=0}^{2 k+1} x_{n-i}}
$$

Our goal in this paper is to obtain the solutions of the difference equation

$$
\begin{equation*}
x_{n+1}=\frac{a x_{n-k}}{a-\prod_{i=0}^{k} x_{n-i}} \text { for } n=0,1,2, \ldots \tag{1.1}
\end{equation*}
$$

where k is a positive number and initial conditions are non zero real numbers with $\prod_{i=0}^{k} x_{-i} \neq a$.

Let I be an interval of real numbers and let $f: I^{k+1} \rightarrow I$ be a continuously differentiable function. Then for every set of initial conditions $x_{-k}, x_{-k+1}, \ldots, x_{0} \in$ I, the difference equation

$$
\begin{equation*}
x_{n+1}=f\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right), n=0,1, \ldots \tag{1.2}
\end{equation*}
$$

has a unique solution $\left\{x_{n}\right\}_{n=-k}^{\infty}$ [7].

2 Main Results

Theorem 2.1. Let $\left\{x_{n}\right\}_{n=-k}^{\infty}$ be a solution of Eq.(1.1) and assume that $\prod_{i=0}^{k} x_{-i}=$ p and $p \neq a$. Then for $n=0,1, \ldots$

$$
\begin{aligned}
x_{(k+1) n+1}= & \frac{a x_{-k} \prod_{i=1}^{n}[a-(k+1) i p]}{(a-p) \prod_{i=1}^{n}\{a-[(k+1) i+1] p\}}, \\
x_{(k+1) n+2}= & \frac{x_{-(k-1)}(a-p) \prod_{i=1}^{n}\{a-[(k+1) i+1] p\}}{(a-2 p) \prod_{i=1}^{n}\{a-[(k+1) i+2] p\}}, \\
x_{(k+1) n+3}= & \frac{x_{-(k-2)}(a-2 p) \prod_{i=1}^{n}\{a-[(k+1) i+2] p\}}{(a-3 p) \prod_{i=1}^{n}\{a-[(k+1) i+3] p\}}, \\
x_{(k+1) n+4}= & \frac{x_{-(k-3)}(a-3 p) \prod_{i=1}^{n}\{a-[(k+1) i+3] p\}}{(a-4 p) \prod_{i=1}^{n}\{a-[(k+1) i+4] p\}}, \\
x_{(k+1) n+k}= & \frac{x_{-1}[a-(k-1) p] \prod_{i=1}^{n}\{a-[(k+1) i+k-1] p\}}{(a-k p) \prod_{i=1}^{n}\{a-[(k+1) i+k] p\}}, \\
x_{(k+1) n+k+1}^{n}= & \frac{x_{0}(a-k p) \prod_{i=1}^{n}\{a-[(k+1) i+k] p\}}{[a-(k+1) p] \prod_{i=1}^{n}\{a-[(k+1) i+k+1] p\}},
\end{aligned}
$$

Proof. For $n=0$ the result holds. Now suppose that $n>0$ and that our assumption holds for $n-1$. That is,

$$
\begin{aligned}
& x_{(k+1) n-k}=\frac{a x_{-k} \prod_{i=1}^{n-1}[a-(k+1) i p]}{(a-p) \prod_{i=1}^{n-1}\{a-[(k+1) i+1] p\}}, \\
& x_{(k+1) n-(k-1)}=\frac{x_{-(k-1)}(a-p) \prod_{i=1}^{n-1}\{a-[(k+1) i+1] p\}}{(a-2 p) \prod_{i=1}^{n-1}\{a-[(k+1) i+2] p\}}, \\
& x_{(k+1) n-(k-2)}=\frac{x_{-(k-2)}(a-2 p) \prod_{i=1}^{n-1}\{a-[(k+1) i+2] p\}}{(a-3 p) \prod_{i=1}^{n-1}\{a-[(k+1) i+3] p\}}, \\
& x_{(k+1) n-(k-3)}=\frac{x_{-(k-3)}(a-3 p) \prod_{i=1}^{n-1}\{a-[(k+1) i+3] p\}}{(a-4 p) \prod_{i=1}^{n-1}\{a-[(k+1) i+4] p\}}, \\
& \text { : } \\
& x_{(k+1) n-1}=\frac{x_{-1}[a-(k-1) p] \prod_{i=1}^{n-1}\{a-[(k+1) i+k-1] p\}}{(a-k p) \prod_{i=1}^{n-1}\{a-[(k+1) i+k] p\}}, \\
& x_{(k+1) n}=\frac{x_{0}(a-k p) \prod_{i=1}^{n-1}\{a-[(k+1) i+k] p\}}{[a-(k+1) p] \prod_{i=1}^{n-1}\{a-[(k+1) i+k+1] p\}} .
\end{aligned}
$$

Now, it follows from Eq.(1.1) that

$$
x_{(k+1) n+1}=\frac{a x_{(k+1) n-k}}{a-\prod_{i=0}^{k} x_{(k+1) n-i}}
$$

Hence, we have

$$
\begin{aligned}
x_{(k+1) n+1}=\frac{a-\frac{a x_{-k} \prod_{i=1}^{n-1}[a-(k+1) i p]}{(a-p) \prod_{i=1}^{n-1}\{a-[(k+1) i+1] p\}}}{a-\frac{a p \prod_{i=1}^{n-1}[a-(k+1) i p]}{a-(k+1) p] \prod_{i=1}^{n-1}\{a-[(k+1) i+k+1] p\}}} \\
=\frac{a-\frac{a x_{-k} \prod_{i=1}^{n-1}[a-(k+1) i p]}{(a-p) \prod_{i=1}^{n-1}\{a-[(k+1) i+1] p\}}}{a-\frac{a p \prod_{i=2}^{n-1}[a-(k+1) i p]}{\prod_{i=2}^{n-1}[a-(k+1) i p]}} \\
=\frac{a x-k \prod_{i=1}^{n-1}[a-(k+1) i p]}{(a-p) \prod_{i=1}^{n-1}\{a-[(k+1) i+1] p\}}
\end{aligned}
$$

Hence, we have

$$
x_{(k+1) n+1}=\frac{a x_{-k} \prod_{i=1}^{n}[a-(k+1) i p]}{(a-p) \prod_{i=1}^{n}\{a-[(k+1) i+1] p\}}
$$

Similarly, we get from $\mathrm{Eq}(1.1)$ that

$$
x_{(k+1) n+2}=\frac{a x_{(k+1) n-(k-1)}}{a-\prod_{i=-1}^{k-1} x_{(k+1) n-i}}
$$

Then

$$
\begin{gathered}
x_{(k+1) n+2}=\frac{a \frac{a x_{-(k-1)}(a-p) \prod_{i=1}^{n-1}\{a-[(k+1) i+1] p\}}{(a-2 p) \prod_{i=1}^{n-1}\{a-[(k+1) i+2] p\}}}{a-\frac{a p \prod_{i=1}^{n}[a-(k+1) i p]}{\{a-[(k+1) n+1] p\}[a-(k+1) p] \prod_{i=1}^{n-1}\{a-[(k+1) i+k+1] p\}}} \\
=a-\frac{a x_{-(k-1)}(a-p) \prod_{i=1}^{n-1}\{a-[(k+1) i+1] p\}}{(a-2 p) \prod_{i=1}^{n-1}\{a-[(k+1) i+2] p\}} \cdot \frac{a-[(k+1) n+1] p}{a\{a-[(k+1) n+2] p\}}
\end{gathered}
$$

Hence, we have

$$
x_{(k+1) n+2}=\frac{a x_{-(k-1)}(a-p) \prod_{i=1}^{n}\{a-[(k+1) i+1] p\}}{(a-2 p) \prod_{i=1}^{n}\{a-[(k+1) i+2] p\}}
$$

Similarly, one can obtain the other cases. Thus, the proof is completed.
Theorem 2.2. Eq.(1.1) has periodic solutions of period $(k+1)$ iff one of the initial condition is zero and will be take the form

$$
\left\{x_{-k}, x_{-(k-1)}, \ldots, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots, x_{k+2}, \ldots\right\}
$$

Proof. Firstly, assume that there exists a prime period $(k+1)$ solution x_{-k}, $x_{-(k-1)}, \ldots, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots, x_{k+2}, \ldots$ of $E q .(1.1)$. We have from the form of solution of Eq.(1.1) that

$$
x_{-k}=\frac{a x_{-k}}{a-p}, x_{-(k-1)}=\frac{x_{-(k-1)}(a-p)}{a-2 p}, \ldots, x_{0}=\frac{x_{0}(a-k p)}{a-(k+1) p} .
$$

Then $p=0$. That is, one of the initial condition is zero.
Now suppose that one of the initial condition is zero. Then we have

$$
\begin{aligned}
x_{(k+1) n+1} & =x_{-k}, x_{(k+1) n+2}=x_{-(k-1)}, \ldots, x_{(k+1) n+k+1}=x_{0} \\
x_{(k+1) n+k+2} & =x_{-k}, x_{(k+1) n+k+3}=x_{-(k-1)}, \ldots, x_{(k+1) n+2(k+1)}=x_{0}
\end{aligned}
$$

Thus, we obtain a period $(k+1)$ solution. The proof is complete.

References

[1] M. Aloqeili, Dynamics of a rational difference equation, Appl. Math. Comput. 176 (2) (2006) 768-774.
[2] C. Cinar, On the positive solutions of the difference equation $x_{n+1}=$ $\frac{x_{n-1}}{-1+x_{n} x_{n-1}}$, Appl. Math. Comput. 158 (2004) 813-816.
[3] E.M. Elsayed, On the solutions of the recursive sequence of order two, Fasciculi Mathematici 40 (2008) 5-13.
[4] A.E. Hamza, R. Khalaf-Allah, On the recursive sequence $x_{n+1}=$ $\frac{A \prod_{i=1}^{k} x_{n-2 i-1}}{B+C \prod_{i=l}^{k-1} x_{n-2 i}}$, Comput. Math. Appl. 56 (2008) 1726-1731.
[5] E.M. Elabbasy, H. El-Metwally, E.M. Elsayed, On the difference equation $x_{n+1}=\frac{\alpha x_{n-k}}{\beta+\gamma \prod_{i=0}^{k} x_{n-i}}$, J. Conc. Appl. Math. 5 (2) (2007) 101-113.
[6] R. Karatas, Global behavior of a higher order difference equation, Comput. Math. Appl. 60 (2010) 830-839.
[7] V.L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of High Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
[8] E.M. Elabbasy, H. El-Metwally, E.M. Elsayed, Some properties and expressions of solutions for a class of nonlinear difference equation, Utilitas Mathematica 87 (2012) 93-110.
[9] E.M. Elsayed, Qualitative properties for a fourth order rational diffference equation, Acta Appl. Math. 110 (2010) 589-604.
[10] E.M. Elsayed, Qualitative behavior of difference equation of order two, Math. Comput. Model. 50 (2009) 1130-1141.
[11] A.E. Hamza, R. Khalaf-Allah, Global behavior of a higher order difference equation, J. Math. Stat. 3 (1) (2007) 17-20.
[12] R. Karatas, On the solutions of the recursive sequence $x_{n+1}=$ $\frac{a x_{n-(2 k+1)}}{-a+x_{n-k} x_{n-(2 k+1)}}$, Fasciculi Mathematici 45 (2010) 37-45.
[13] C. Karatas, İ. Yalçınkaya, On the solutions of the difference equation $x_{n+1}=$ $\frac{A x_{n-(2 k+1)}^{2 k+1}}{-A+\prod_{i=0}^{2 k+1} x_{n-i}}$, Thai J. Math. 9 (1) (2011) 121-126.
[14] T.I. Saary, Modern Nonlinear Equations, McGraw Hill, Newyork, 1967.
(Received 5 September 2012)
(Accepted 3 September 2013)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

