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Abstract : We obtain in this paper the solutions of the difference equation
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where k is a positive number and initial conditions are non zero real numbers with
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1 Introduction

Recently there has been a lot of interest in studying the solution of nonlinear
difference equations. For some results in this area, see for example [IHI4].
Cinar [2] investigated the positive solutions of the rational difference equation

Tn—1

Tptl = —F]————.
-1 + TpnTn—1
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Elsayed [3] investigated the qualitative behavior of the solution of the difference

equation
Ln

Tnt1 = Tp_1(Tp £ 1)

Alogeili [I] studied the solutions, stability character, semi-cycle behavior of

the difference equation
Tn—1
Tn41 =
4 — Tp—-1Tn

and gave the following formulation

n
ﬁ a? " 1(1—a)—(1—a* " Va_1x0
0o a?2i(l—a)—(1—a?)z_1z9

n even,
Ty =

2

H a? " t(1—a)—(1—a?*)z_120 n odd.

+1 1— a) (1 a2z+1)x 120

Hamza et al. [4] studied the global stability, periodic nature, oscillation and
the boundedness of solutions of the difference equation

AHklxn 2i—1
B+CH l:Cn 2

Tn+1 =

Elabbasy et al. [5] investigated some qualitative behavior of the solutions of

the recursive sequence
ALp—k

%
ﬂ + Y H Tn—i
=0

Tnt1l =

Karatas [6] studied the dynamics of the solution of the difference equation

Azp_m

2k+1 ’
B+C H Tp—i
1=0

Tni4l =
Our goal in this paper is to obtain the solutions of the difference equation

Tnpr = — " forn=10,1,2,.. (1.1)

a— I zn_;
1=0

where k is a positive number and initial conditions are non zero real numbers with

k
[[2z-i#a.
=0
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Let I be an interval of real numbers and let f : I¥*1 — I be a continuously
differentiable function. Then for every set of initial conditions x_g, x_g41,...,29 €
I, the difference equation

Tn+1 :f(xnaxn—17"'7xn—k)7 n=0,1,.. (1-2)

has a unique solution {z,} >, [7].

2 Main Results

k
Theorem 2.1. Let {z,},__, be a solution of Eq.(1.1) and assume that [ z_; =
i=0
p and p # a. Then forn=0,1, ...

ar_y H [a — (k+1)ip)

=1

(@—p) [J{a—[(k+1)i+1]p}

=1
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T(k+1)nt+2 = n =t s

(a—2p)[[fa—[(k+1)i+2]p}

i=1

z_ (k-2 (a—2p) [[{a = [(k+ 1)i +2] p}
T(k+1)n+3 = =t )

(a=3p)[[{a—[(k+1)i+3]p}

i=1

2 s (a—3p) [[{a = [(k+1)i + 3] p}
T(k+1)n4+4 = =1 s

(a—4p) [ fa—[(k+1)i+4]p}
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Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assump-
tion holds for n — 1. That is,

n—1

ar_y H [a — (k+1)ip]

i=1

(@=p) [ fo~ [k +1)i + 1))

T(k4+1)n—k — s

v e (=) [] {a— [+ 1)+ 11p)
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i=1

n—1
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L(k+1)n—(k—2) = n—1 ’

(@=3p) [T {a—[(k+1)i+3]p}

n—1

oo (0= 3p) [[ {a— (b + i +3]p)

T(k+1)n—(k—3) = Y s

(a—4p) [J {a—[(k+ 1)+ 4]p}

i=1

n—1

eoifa—(k=1)p] [T {a—[(k+1)i+k—1]p}

T(k+1)n—1 = o1 )
(a—kp) [T fa—[(k+1)i+ K p}
=1
n—1
o (a—kp) [] fa—[(k+1)i+ k] p}
L(k+1)n = ,:,:11 .
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i=1
Now, it follows from Eq.(1.1) that
AT (k4-1)n—k

T(k4+1)n+1 =
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Hence, we have

n—1

ax_j H[a—(k+1)ip]

i=1

a
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(a-p) | Jta-1k+1)i4110)
i=1
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Hence, we have
ax_g H [a— (k+1)ip]

T(k+1)n+1 = nlL:l .

(a*p)H{a* [(k+1)i+1]p}

Similarly, we get from Eq(1.1) that
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Then
n—1
az_ge—ny(a—p) | [ o[+ 1)it11p)
a —=!
(a=2p) | [ta- 1044210
T(k+1)n4+2 = =

ap [ Jlo— s+ 1yim)
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Hence, we have

ax_,—1y (a —p) H {a—[(k+1)i+ 1] p}

T(k4+1)n4+2 = n =L
(a—2p) [T {a—[(k+1)i+2]p}
i=1
Similarly, one can obtain the other cases. Thus, the proof is completed. O

Theorem 2.2. Eq.(1.1) has periodic solutions of period (k + 1) iff one of the
initial condition is zero and will be take the form

{x_k, I—(k—l); ey L1, L0y L1y L2y evey Th+2, } .

Proof. Firstly, assume that there exists a prime period (k + 1) solution z_j,
T (k—1)s -y T—1,00, L1, L2, ..., Thy2, ... of Fq.(1.1). We have from the form of solu-
tion of Eq.(1.1) that

axr_j . T (k) (a—p) o zo(a — kp)
a_pv —(k—1) a—2p y eees L0 a—(k:—i—l)p

T_ —

Then p = 0. That is, one of the initial condition is zero.
Now suppose that one of the initial condition is zero. Then we have

T(k4+1)n+1 = T—k> L(k+1)n+2 = L—(k—1)) =-> L(k+1)n+k+1 = L0,
T(k+1)n+k+2 = L—ks T(k+1)n+k+3 = L—(k—1)s -+ T(k+1)n+2(k+1) = L0-

Thus, we obtain a period (k + 1) solution. The proof is complete. O
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