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Abstract : We obtain in this paper the solutions of the difference equation

xn+1 =
axn−k

a−
k
∏

i=0

xn−i

for n = 0, 1, 2, ...

where k is a positive number and initial conditions are non zero real numbers with
∏k

i=0 x−i 6= a.
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1 Introduction

Recently there has been a lot of interest in studying the solution of nonlinear
difference equations. For some results in this area, see for example [1–14].

Cinar [2] investigated the positive solutions of the rational difference equation

xn+1 =
xn−1

−1 + xnxn−1
.
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Elsayed [3] investigated the qualitative behavior of the solution of the difference
equation

xn+1 =
xn

xn−1 (xn ± 1)
.

Aloqeili [1] studied the solutions, stability character, semi-cycle behavior of
the difference equation

xn+1 =
xn−1

a− xn−1xn

and gave the following formulation

xn =



















x0

n

2
∏

i=1

a2i−1(1−a)−(1−a2i−1)x
−1x0

a2i(1−a)−(1−a2i)x
−1x0

, n even,

x−1

n+1
2
∏

i=0

a2i−1(1−a)−(1−a2i)x
−1x0

a2i+1(1−a)−(1−a2i+1)x
−1x0

, n odd.

Hamza et al. [4] studied the global stability, periodic nature, oscillation and
the boundedness of solutions of the difference equation

xn+1 =
A
∏k

i=l xn−2i−1

B + C
∏k−1

i=l xn−2i

.

Elabbasy et al. [5] investigated some qualitative behavior of the solutions of
the recursive sequence

xn+1 =
αxn−k

β + γ
k
∏

i=0

xn−i

.

Karatas [6] studied the dynamics of the solution of the difference equation

xn+1 =
Axn−m

B + C
2k+1
∏

i=0

xn−i

.

Our goal in this paper is to obtain the solutions of the difference equation

xn+1 =
axn−k

a−
k
∏

i=0

xn−i

for n = 0, 1, 2, ... (1.1)

where k is a positive number and initial conditions are non zero real numbers with
k
∏

i=0

x−i 6= a.
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Let I be an interval of real numbers and let f : Ik+1 → I be a continuously
differentiable function. Then for every set of initial conditions x−k, x−k+1, ..., x0 ∈
I, the difference equation

xn+1 = f (xn, xn−1, ..., xn−k) , n = 0, 1, ... (1.2)

has a unique solution {xn}
∞
n=−k [7].

2 Main Results

Theorem 2.1. Let {xn}
∞
n=−k be a solution of Eq.(1.1) and assume that

k
∏

i=0

x−i =

p and p 6= a. Then for n = 0, 1, ...

x(k+1)n+1 =

ax
−k

n∏

i=1

[a− (k + 1) ip]

(a− p)

n∏

i=1

{a− [(k + 1) i+ 1] p}

,

x(k+1)n+2 =

x
−(k−1) (a− p)

n∏

i=1

{a− [(k + 1) i+ 1] p}

(a− 2p)

n∏

i=1

{a− [(k + 1) i+ 2] p}

,

x(k+1)n+3 =

x
−(k−2) (a− 2p)

n∏

i=1

{a− [(k + 1) i+ 2] p}

(a− 3p)
n∏

i=1

{a− [(k + 1) i+ 3] p}

,

x(k+1)n+4 =

x
−(k−3) (a− 3p)

n∏

i=1

{a− [(k + 1) i+ 3] p}

(a− 4p)
n∏

i=1

{a− [(k + 1) i+ 4] p}

,

.

.

.

x(k+1)n+k =

x
−1 [a− (k − 1) p]

n∏

i=1

{a− [(k + 1) i+ k − 1] p}

(a− kp)

n∏

i=1

{a− [(k + 1) i+ k] p}

,

x(k+1)n+k+1 =

x0 (a− kp)

n∏

i=1

{a− [(k + 1) i+ k] p}

[a− (k + 1) p]
n∏

i=1

{a− [(k + 1) i+ k + 1] p}

.
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Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assump-
tion holds for n− 1. That is,

x(k+1)n−k =

ax
−k

n−1∏

i=1

[a− (k + 1) ip]

(a− p)

n−1∏

i=1

{a− [(k + 1) i+ 1] p}

,

x(k+1)n−(k−1) =

x
−(k−1) (a− p)

n−1∏

i=1

{a− [(k + 1) i+ 1] p}

(a− 2p)

n−1∏

i=1

{a− [(k + 1) i+ 2] p}

,

x(k+1)n−(k−2) =

x
−(k−2) (a− 2p)

n−1∏

i=1

{a− [(k + 1) i+ 2] p}

(a− 3p)

n−1∏

i=1

{a− [(k + 1) i+ 3] p}

,

x(k+1)n−(k−3) =

x
−(k−3) (a− 3p)

n−1∏

i=1

{a− [(k + 1) i+ 3] p}

(a− 4p)

n−1∏

i=1

{a− [(k + 1) i+ 4] p}

,

...

x(k+1)n−1 =

x
−1 [a− (k − 1) p]

n−1∏

i=1

{a− [(k + 1) i+ k − 1] p}

(a− kp)
n−1∏

i=1

{a− [(k + 1) i+ k] p}

,

x(k+1)n =

x0 (a− kp)
n−1∏

i=1

{a− [(k + 1) i+ k] p}

[a− (k + 1) p]
n−1∏

i=1

{a− [(k + 1) i+ k + 1] p}

.

Now, it follows from Eq.(1.1) that

x(k+1)n+1 =
ax(k+1)n−k

a−
k
∏

i=0

x(k+1)n−i

.
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Hence, we have

x(k+1)n+1 =

a

ax
−k

n−1
∏

i=1

[a−(k+1)ip]

(a−p)

n−1
∏

i=1

{a−[(k+1)i+1]p}

a−

ap

n−1
∏

i=1

[a−(k+1)ip]

[a−(k+1)p]

n−1
∏

i=1

{a−[(k+1)i+k+1]p}

=

a

ax
−k

n−1
∏

i=1

[a−(k+1)ip]

(a−p)

n−1
∏

i=1

{a−[(k+1)i+1]p}

a−

ap

n−1
∏

i=2

[a−(k+1)ip]

n−1
∏

i=2

[a−(k+1)ip]

=

ax−k

n−1
∏

i=1

[a− (k + 1) ip]

(a− p)
n−1
∏

i=1

{a− [(k + 1) i+ 1] p}

.
a− (k + 1)np

a− [(k + 1)n+ 1] p
.

Hence, we have

x(k+1)n+1 =

ax−k

n
∏

i=1

[a− (k + 1) ip]

(a− p)

n
∏

i=1

{a− [(k + 1) i+ 1] p}

.

Similarly, we get from Eq(1.1) that

x(k+1)n+2 =
ax(k+1)n−(k−1)

a−

k−1
∏

i=−1

x(k+1)n−i

.
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Then

x(k+1)n+2 =

a

ax
−(k−1)(a−p)

n−1
∏

i=1

{a−[(k+1)i+1]p}

(a−2p)

n−1
∏

i=1

{a−[(k+1)i+2]p}

a−

ap

n
∏

i=1

[a−(k+1)ip]

{a−[(k+1)n+1]p}[a−(k+1)p]

n−1
∏

i=1

{a−[(k+1)i+k+1]p}

= a

ax−(k−1) (a− p)

n−1
∏

i=1

{a− [(k + 1) i+ 1] p}

(a− 2p)

n−1
∏

i=1

{a− [(k + 1) i+ 2] p}

.
a− [(k + 1)n+ 1] p

a {a− [(k + 1)n+ 2] p}
.

Hence, we have

x(k+1)n+2 =

ax−(k−1) (a− p)

n
∏

i=1

{a− [(k + 1) i+ 1] p}

(a− 2p)
n
∏

i=1

{a− [(k + 1) i+ 2] p}

.

Similarly, one can obtain the other cases. Thus, the proof is completed.

Theorem 2.2. Eq.(1.1) has periodic solutions of period (k + 1) iff one of the

initial condition is zero and will be take the form

{

x−k, x−(k−1), ..., x−1, x0, x1, x2, ..., xk+2, ...
}

.

Proof. Firstly, assume that there exists a prime period (k + 1) solution x−k,

x−(k−1), ..., x−1, x0, x1, x2, ..., xk+2, ... of Eq.(1.1). We have from the form of solu-
tion of Eq.(1.1) that

x−k =
ax−k

a− p
, x−(k−1) =

x−(k−1) (a− p)

a− 2p
, ..., x0 =

x0(a− kp)

a− (k + 1)p
.

Then p = 0. That is, one of the initial condition is zero.
Now suppose that one of the initial condition is zero. Then we have

x(k+1)n+1 = x−k, x(k+1)n+2 = x−(k−1), ..., x(k+1)n+k+1 = x0,

x(k+1)n+k+2 = x−k, x(k+1)n+k+3 = x−(k−1), ..., x(k+1)n+2(k+1) = x0.

Thus, we obtain a period (k + 1) solution. The proof is complete.
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