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Abstract : Let there be n students, and n row seats. For n days, a seat is
arranged for each student on each day, and each student is required to sit on
different seat on each of the n days. Also for these n days, it is required that each
student shall has one chance to sit next to every other (n− 1) students on one of
his side, and shall has one chance to sit next to every other (n − 1) students on
the other one of his side. In this paper, we provide sufficient conditions and an
algorithm for the arrangements.
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1 Introduction

Let 1, 2, 3, . . . , n be n different objects. From the set of all n! possible arrange-
ments, numbers of questions can be asked about some subsets of the arrangements.
Some known results are about the number of arrangements which require that some
particular objects are not allowed to be placed at certain positions. A particu-
lar case of this kind of arrangement, known as derangement, can be found from

the formula Dn = n!

n∑
i=0

(−1)
i

i!
, where Dn represent the number of arrangements

of n objects which require that each object is not allowed to be placed on the
original position. See [1–4], for more details. The more generalized formula is
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D(n, r, k) =

(
r
k

)
(n− r)!

r−k∑
i=0

(−1)
i

(
r − k
i

)
(n− k − i)!, where D(n, r, k) is the num-

ber of arrangements of r objects from n objects that allow each object to be placed
on original position for k times. These widely known arrangements are discussed
in some elementary texts on combinatorics, see [2], for examples.

In this paper, we propose questions and answers related to some arrangements.
For motivation, we shall name the problems as Seat Arrangement Problems (SAP).
Suppose a teacher wants to arrange n row seats for n students for n days. It is
natural enough that each student wants to know who shall sit next to him on
each day, and each may want to have different seat every day. The teacher, for
social reason, may want to arrange seats such that all pairs of students shall have
at least one day to sit next to each other. Let 1, 2, 3, . . . , n be n students, and
s1, s2, s3, . . . , sn be n row seats. For example, when n = 4, let 1, 2, 3, 4 be four
students.

The teacher may arrange row seats for the four students for four days as follow:

s1 s2 s3 s4
1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

For another example, when n = 6, the teacher may try to arrange seats as follow:

s1 s2 s3 s4 s5 s6
1 2 3 4 5 6
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
5 3 1 6 4 2
6 5 4 3 2 1

For simple obvious case, when n = 2, the arrangements for two days are

s1 s2
1 2
2 1

We can see that the arrangements of the cases n = 2, n = 4, and n = 6 above
satisfy the following conditions of which we call Seat Arrangement Conditions
(SAC).

1. Every student has different seat every day, so each student has a chance to
sit on all n seats in n days.

2. Every student has two chances to sit next to every other students, once on
one of his side and once on the other one of his side.
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One may try to construct the above arrangements, and would soon find that,
without proper algorithm, it is not an obvious work to do. If n = 3, there are
6 permutations 123, 132, 213, 231, 312, 321 of which no three permutations can
be used for the three day seat arrangements that satisfies SAC. For the cases
n = 5, and n = 7, since we have not provided any proof here, we can only say
that we hypothesize that it is not possible to do the required arrangements for
these cases. We have seen that the arrangements are possible when n = 2, 4, and
6, so one may expect that the case when n = 8 would also be possible for the
required arrangement. However, when n = 8, we have reasons for hypothesizing
that the required arrangements are not possible. From these, we can see that
for some values of n it is not possible to construct the required arrangements.
Now, the first question is about the values of n that are certainly possible for the
arrangements. The next question is, when possible, how to construct the required
arrangements. In section 2, we find sufficient conditions for the values of n that
are possible for the arrangements and find an algorithm that can be used for the
arrangements.

2 Seat Arrangement Algorithm (SAA)

First, for examples, we provide an algorithm that we have used for the case
n = 6, and after that we shall prove that the algorithm can be used for more
general cases. Let 1, 2, 3, 4, 5, 6 represent the six students, and 0 represent the
teacher. Let s0 be the seat for the teacher, and let s1, s2, s3, s4, s5, s6 be six seats
for six students. To serve our proof, we arrange the seats s0, s1, s2, s3, s4, s5, and
s6 in circular form as follow:

Arrangement for the first day
Figure 2.1

All seats shall be fixed as shown in Figure 2.1, teacher shall sit on s0 every
day, but in each day teacher shall assign students for their seats. For the first
day, students 1, 2, 3, 4, 5, 6 are assigned to sit on s1, s2, s3, s4, s5, s6 respectively,
see Figure 2.1. Though the main goal is about arrranging 6 students on 6 row
seats s1, s2, s3, s4, s5, s6, it is helpful to arrange 7 circular seats for 7 persons, i.e.
to arrange seats s0, s1, s2, s3, s4, s5, s6 for teacher 0, and students 1, 2, 3, 4, 5, 6 re-
spectively.
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We use teacher seat as reference point, and use students and their seats on
day 1 arrangement in referring for other day arrangements. We define that any
two consecutive seats have distance one. Teacher can count the distances of seats
from s0, in clockwise direction, around all seven seats. So, on day 1, if teacher
counts from s0 with distance 4, he shall arrive s4 where student 4 is sitting. If he
counts with distance 7 or 14, he shall arrive back at his seat s0. If he counts with
distances 3, or 10, or 17 he shall arrive at seat s3 where student 3 is sitting. So,
for any day k arrangement, we shall use the day 1 arrangement for our reference,
that is when we want to assign students to have seat s1, s2, s3, s4, s5, s6 we shall
use his distance, on day 1, from s0 in referring the students. We note that teacher
can also count the distances of seats from s0, in anticlockwise direction, around
all 7 seats but the distances would have minus signs. For examples, if teacher
counts from s0 with distance -4, he shall arrive s3, and if he counts from s0 with
distance -9, he shall arrive s5. If we plus distance i to the distance of seat sj , we
mean that we move further, in clockwise direction, to the distance j + i, and if we
minus distance i to the distance of seat sj , we mean that we move backward, in
anticlockwise direction, to the distance j − i.

We have the first day arrangement as described above where students on
s1, s2, s3, s4, s5, s6 are 1, 2, 3, 4, 5, 6 respectively. Every day the teacher sits at s0
and he shall assign 6 students to sit at seats s1, s2, s3, s4, s5, s6. For the first day,
we write down the teacher and students on seats s0, s1, s2, s3, s4, s5, s6, s0 and we
have the arrangement for the first day as

0 1 2 3 4 5 6 0

We note that, since we use circular arrangement, it is helpful to write down
teacher 0 at s0 at the left end and at the right end of arrangement so that we can
identify two students who sit next to the teacher on that day.

For second day arrangement, using the first day arrangement as reference,
teacher shall assign students whose distances from s0 are 2, 4, 6, 8, 10, 12, i.e. stu-
dents 2, 4, 6, 1, 3, 5, to sit on seats s1, s2, s3, s4, s5, s6 respectively. So, the second
day arrangement is

0 2 4 6 1 3 5 0

For the third day arrangement, using the first day arrangement as reference,
teacher shall assign students whose distances from s0 are 3, 6, 9, 12, 15, 18, i.e.
students 3, 6, 2, 5, 1, 4, to sit on seats s1, s2, s3, s4, s5, s6 respectively. So, the third
day arrangement is

0 3 6 2 5 1 4 0

For the fourth day arrangement, using the first day arrangement as reference,
teacher shall assign students whose distances from s0 are 4, 8, 12, 16, 20, 24, i.e.
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students 4, 1, 5, 2, 6, 3, to sit on seats s1, s2, s3, s4, s5, s6 respectively. So the fourth
day arrangement is

0 4 1 5 2 6 3 0

For the fifth day arrangement, using the first day arrangement as reference,
teacher shall assign students whose distances from s0 are 5, 10, 15, 20, 25, 30, i.e.
students 5, 3, 1, 6, 4, 2 to sit on seats s1, s2, s3, s4, s5, s6 respectively. So the fifth
day arrangement is

0 5 3 1 6 4 2 0

Finally, for the sixth day arrangement, using the first day arrangement as
reference, teacher shall assign students whose distances from s0 are 6, 12, 18, 24, 30,
i.e. students 6, 5, 4, 3, 2, 1 to sit on seats s1, s2, s3, s4, s5, s6 respectively. So the
sixth day day arrangement is

0 6 5 4 3 2 1 0

If we remove teacher 0 from the above 6 day arrangements, we then obtain
the required arrangements for the 6 students. Next, we describe SAA for general
cases. Theorem 2.1 provides the values of n that can be used with the algorithm.
Let 0 represent the teacher, and 1, 2, 3, . . . , n represent n students. According to
Theorem 2.1, the values of n = p− 1, where p is any prime number which is equal
or greater than 3. Let s0 be the seat for the teacher, and s1, s2, s3, . . . , sp−1 be n
seats provided for students. Let the seats be arranged in circle as follow.

Arrangement for the first day
Figure 2.2

For convenience, we may represent the above circular arrangement of seats in
one line as

s0 s1 s2 s3 . . . sp−2 sp−1 s0

For k day arrangements, we can have day k arrangement by assigning proper
students to sit on seat s1, s2, s3, . . . , sp−1 respectively. The SAA for p− 1 days is
as follow:
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1. Every day the teacher sits at s0.

2. For first day arrangement, teacher shall assign students 1, 2, 3, . . . , p−1 to sit
on s1, s2, s3, . . . , sp−1 respectively. So, the distances of students 1, 2, 3, . . . , p−
1 from s0 are 1, 2, 3, 4, . . . , p − 1 respectively. Therefore, corresponding to
positions of seats s0, s1, s2, s3, . . . , sp−1, s0, the first day arrangement is

0 1 2 3 4 . . . p− 1 0.

3. For day k arrangements (k = 2, 3, 4, . . . , p− 1), using the first day arrange-
ment as reference, teacher shall assign students whose distances from s0 are
k, 2k, 3k, . . . , (p− 1)k to sit on seats s1, s2, s3, . . . , sp−1 respectively. So, for
day k arrangement , using distances of students in assigning them to sit on
s1, s2, s3, . . . , sp−1, we have the day k arrangement as

0 k 2k 3k 4k . . . (p− 1)k 0.

Next, in Theorem 2.1, we explain why the arrangements are possible when
using SAA.

Theorem 2.1. The SAA are possible when the number of students n = p− 1 for
any given prime number p ≥ 3.

Proof. Let 0 represents the teacher, and 1, 2, 3, . . . , p− 1 represent p− 1 students.
Let seats of the teacher be s0 and student seats be s1, s2, s3, . . . , sp−1 and the seats
be arranged in circle as described in Figure 2.2.

In order to prove that the SAC for the arrangement are satisfied, we need to
show that the following (1), (2), (3) are satisfied for the n = p−1 day arrangements

1. Every day all students shall have their own seats for sitting.

2. For all n students, each has a chance to sit on all n seats

3. Each student has a chance to sit next to all other n − 1 students once on
one of his side, and once on the other of his side.

Remind that, using the distances of the first day arrangement as references, the
arrangements, for example on day k, are distances (of the first day arrangement)
of (p − 1) students who shall be assigned on day k to sit on s1, s2, s3, . . . , sp−1

respectively. That is, students whose distances are 1k, 2k, 3k, . . . , (p − 1)k shall
be assigned for seat s1, s2, s3, . . . , sp−1 respectively on day k. So, on any day k,
referring to the first day arrangement, the distance of any two consecutive people
is equal to k.

Each row of the following is the distances of teacher and all p − 1 students
from s0. The 1st, 2nd, . . ., (p−1)-th rows are for day 1, day 2, day 3,. . ., day p−1
respectively.
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s0 s1 s2 s3 . . . sp−1 s0

Day 1 0 1 · 1 2 · 1 3 · 1 . . . (p− 1) · 1 0
Day 2 0 1 · 2 2 · 2 3 · 2 . . . (p− 1) · 2 0
Day 3 0 1 · 3 2 · 3 3 · 3 . . . (p− 1) · 3 0

...
Day k 0 1 · k 2 · k 3 · k . . . (p− 1) · k 0

...
Day p− 2 0 1 · (p− 2) 2 · (p− 2) 3 · (p− 2) . . . (p− 1) · (p− 2) 0
Day p− 1 0 1 · (p− 1) 2 · (p− 1) 3 · (p− 1) . . . (p− 1) · (p− 1) 0

Since on each day for the arrangement of seats, no difference of any two dis-
tances are multiple of p, so each of the assigned students will be on different seats,
i.e. each student on any day shall have his own seat for sitting. Similarly, on each
column of day 1, day 2, day 3,. . ., day p−1 arrangements the difference of any two
values in the column is not the multiple value of p, so for any particular student
seat, for p − 1 days, there would have p − 1 different students to sit on. That is,
no student occupies any given seat twice or more. From the above arguments, we
can conclude that every student has his own different seat every day.

Next, we want to prove (3).

Consider any three peoples (teacher, or students) whose distances j− i, j, j+ i who
sit on three seats sj−i, sj , sj+i of day 1 (j = 0, 1, 2, 3, . . . , p−1; i = 1, 2, 3, . . . , p−1).
According to the algorithm, these three peoples shall be assigned to sit on some
three consecutive seats sr−1, sr and sr+1 of day i. That is, peoples (teacher or
students) with distances j − 1, j, and j + 1 would sit next to each other on day 1,
peoples with distances j−2, j, and j+2 would sit next to each other on day 2, . . .,
peoples with distances j − (p− 1), j, and j + (p− 1) would sit next to each other
on day p− 1. Consider Figure 2.2, with the above arguments for the people with
distance j, we can see that j shall has chances to sit next to every other people
once on one of his side, and once on the other of his side. Therefore, we have
proved the theorem.

To clarify the proof, consider the known case n = p−1 = 7−1 = 6. For exam-
ple, consider Figure 2.1, when j = 5, then peoples with distances j − 1 = 4, j = 5,
and j + 1 = 6 would sit next to each other on day 1, peoples with distances
j − 2 = 3, j = 5 and j + 2 = 7(= 0) would sit next to each other on day 2, peoples
with distances j−3 = 2, j = 5, and j + 3 = 8(= 1) would sit next to each other on
day 3, peoples with distances j−4 = 1, j = 5, and j+4 = 9(= 2) would sit next to
each other on day 4, peoples with distances j − 5 = 0, j = 5, and j + 5 = 10(= 3)
would sit next to each other on day 5, peoples with distances j− 6 = 6, j = 5 ,and
j + 6 = 11(= 4) would sit next to each other on day 6. So, we see that student 5
sit next on one of his side to all other persons (5 students and the teacher) in 6
days, and that the student 5 sit next, on his other side, to every other persons in
6 day arrangements.
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From the proof of Theorem 2.1, we can readily have the following corollary.

Corollary 2.2. If the number of student is n = p − 1, where p is any prime
number ≥ 3, then teacher can arrange round table seat s0, s1, s2, s3, . . . , sp−1 for
p−1 days such that in each day teacher sit on seat s0, students have different seats
every day, and every people has a chance to sit next to every other people on one
of his side, and has a chance to sit next to every other people on the other one of
his side.

Also, from the results of Theorem 2.1, with less conditions, we can readily
have Corollary 2.3.

Corollary 2.3. The first (p−1)
2 day arrangements of the SAA, for the row seat

arrangements, and round table seat arrangements, are the arrangements which
satisfy the conditions that each student has new seat every day, and that every
person has one chance to sit next to every other person.

See the first three day arrangements of the 6 day arrangements in the case
n = 6 above for verification of Corollary 2.3.

Acknowledgement : The authors would like to thank Professor S. Dhompongsa
for his useful comment.

References

[1] V.K. Balakrishnan, Combinatorics, Schaum’s Outline Series, Mc Graw-Hill,
New York, (1995).

[2] C. Chuan-Chong, K. Khee-Meng, Principles and Techniques in Combina-
torics, World Scientific Publishing Co. Pte. Ltd., Singapore, (2004).

[3] F.S. Robert, Applied Combinatorics, Prentice-Hall, New Jersy, (1984).

[4] J.H. Van Lint, R.M. Wilson, A Course in Combinatorics, Cambridge Univer-
sity Press, (2001).

(Received 21 May 2016)
(Accepted 5 July 2016)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

http://thaijmath.in.cmu.ac.th

	Introduction
	Seat Arrangement Algorithm (SAA)

