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1 Introduction

Let X be a real Banach space. We consider the inclusion problem:
Find x̂ ∈ X such that

0 ∈ (A+B)x̂, (1.1)

where A : X → X is an operator and B : X → 2X is a set-valued operator. This
problem includes, as special cases, convex programming, variational inequalities,
split feasibility problem and minimization problem. To be more precise, some con-
crete problems in machine learning, image processing and linear inverse problem
can be modeled mathematically as this form.
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A classical method for solving the problem (1.1) is the forward-backward split-
ting method [1–4] which is defined by the following manner: for any fixed x1 ∈ X,

xn+1 = (I + rB)−1(xn − rAxn)

for each n ≥ 1, where r > 0. We see that each step of the iteration involves only
with A as the forward step and B as the backward step, but not the sum of B. In
fact, this method includes, in particular, the proximal point algorithm [5–9] and
the gradient method [10, 11]. In 1979, Lions-Mercier [2] introduced the following
splitting iterative methods in a real Hilbert space:

xn+1 = (2JAr − I)(2JBr − I)xn

and
xn+1 = JAr (2JBr − I)xn + (I − JBr )xn

for each n ≥ 1, where JTr = (I+rT )−1. The first one is often called the Peaceman-
Rachford algorithm [12] and the second one is called the Douglas-Rachford algo-
rithm [13]. We note that both algorithms can be weakly convergent in general [3].

In 2006, Hong-Kun Xu [14] proved some strong convergence theorems for a
maximal monotone operator in a Hilbert space H, which is defined by the following
manner: for any x1 ∈ H,

xn+1 = JTrn((1− αn)xn + αnu+ en), (1.2)

for each n ≥ 1, where u ∈ H, {rn} ⊆ (0,∞), {αn} ⊆ (0, 1) and {en} is a sequence
of errors satisfy the following conditions:

(a) limn→∞ αn = 0;

(b)
∑∞
n=1 αn =∞;

(c)
∑∞
n=1 |αn+1 − αn| <∞;

(d) there are constants 0 < r ≤ r such that r ≤ rn ≤ r for all n ≥ 0, and∑∞
n=1 |rn+1 − rn| <∞;

(e)
∑∞
n=1 ‖en‖ <∞,

then the sequence {xn} generated by (1.2) converges strongly to PT−1(0)u.
Recently, López et al. [15] introduced the following Halpern-type forward-

backward method: for any x1 ∈ X,

xn+1 = αnu+ (1− αn)(JBrn(xn − rn(Axn + an)) + bn) (1.3)

for each n ≥ 1, where u ∈ X, A is an α-inverse strongly accretive mapping on
X and B is an m-accretive operator on X, {rn} ⊆ (0,∞), {αn} ⊆ (0, 1] and
{an}, {bn} are the error sequences in X. They proved that the sequence {xn}
generated by (1.3) strongly converges to a zero point of the sum of A and B under
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some appropriate conditions. There have been many works concerning the problem
of finding zero points of the sum of two monotone operators (in Hilbert spaces)
and accretive operators (in Banach spaces). For more details, see [4, 16–18].

In this paper, we study the modified regularization methods (1.2) for solving
the problem (1.1) for accretive operators and inverse strongly accretive operators
in Banach spaces and prove its strong convergence for the proposed methods under
some mild conditions. We also give some applications and numerical examples to
support our main results.

Remark 1.1. We note that our obtained results can be viewed as the improve-
ment of the results of Hong-Kun Xu [14]. In fact, we remove the conditions that∑∞
n=1 |αn+1−αn| <∞ and there are constants 0 < r ≤ r such that r ≤ rn ≤ r for

all n ≥ 0, and
∑∞
n=1 |rn+1 − rn| < ∞ in our results. Moreover, we extend their

results in Hilbert spaces to certain Banach spaces.

2 Preliminaries

In this section, we provide some basic concepts, definitions and lemmas which
will be used in the sequel. The modulus of convexity of a Banach space X is the
function δX : (0, 2]→ [0, 1] defined by

δX(ε) = inf
{

1− ‖x+ y‖
2

: ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε
}
.

Then X is said to be uniformly convex if δX(ε) > 0 for any ε ∈ (0, 2].
The modulus of smoothness of X is the function ρX : R+ → R+ defined by

ρX(t) = sup
{‖x+ ty‖+ ‖x− ty‖

2
− 1 : ‖x‖ = 1, ‖y‖ = 1

}
.

ThenX is said to be uniformly smooth if ρ′X(0) = lim
t→0

ρX(t)

t
= 0. For any q ∈ (1, 2],

a Banach space X is said to be q-uniformly smooth if there exists a constant cq > 0
such that ρX(t) > cqt

q for any t > 0.
The subdifferential of a proper convex function f : X → (−∞,+∞] is the

set-valued operator ∂f : X → 2X defined as

∂f(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉+ f(x) ≤ f(y)}.

If f is proper convex and lower semicontinuous, then the subdifferential ∂f(x) 6= ∅
for any x ∈ intD(f), the interior of the domain of f .

The generalized duality mapping Jq : X → 2X
∗

is defined by

Jq(x) = {j(x) ∈ X∗〈jq(x), x〉 = ‖x‖q, ‖jq(x)‖ = ‖x‖q−1}.

If q = 2, then the corresponding duality mapping is called the normalized
duality mapping and denoted by J . We know that the following subdifferential
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inequality holds: for any x, y ∈ X,

‖x+ y‖q ≤ ‖x‖q + q〈y, jq(x+ y)〉, jq(x+ y) ∈ Jq(x+ y). (2.1)

In particular, it follows that, for all x, y ∈ X,

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉, j(x+ y) ∈ J(x+ y).

Proposition 2.1 ([19]). Let 1 < q <∞. Then we have the following:
(1) The Banach space X is smooth if and only if the duality mapping Jq is

single valued.
(2) The Banach space X is uniformly smooth if and only if the duality mapping

Jq is single valued and norm-to-norm uniformly continuous on bounded sets of X.

A set-valued operator A : X → 2X with the domain D(A) and the range R(A)
is said to be accretive if, for all t > 0 and x, y ∈ D(A),

‖x− y‖ ≤ ‖x− y + t(u− v)‖

for all u ∈ Ax and v ∈ Ay.
Recall that A is accretive if and only if, for each x, y ∈ D(A), there exists

j(x− y) ∈ J(x− y) such that

〈u− v, j(x− y)〉 ≥ 0

for all u ∈ Ax and v ∈ Ay. An accretive operator A is said to be m-accretive if
the range

R(I + λA) = X

for some λ > 0. It can be shown that an accretive operator A is m-accretive if
and only if

R(I + λA) = X

for all λ > 0.
For any α > 0 and q ∈ (1,∞), we say that an accretive operator A is α-inverse

strongly accretive (shortly, α-isa) of order q if, for each x, y ∈ D(A), there exists
jq(x− y) ∈ Jq(x− y) such that

〈u− v, jq(x− y)〉 ≥ α‖u− v‖q

for all u ∈ Ax and v ∈ Ay.

Let C be a nonempty closed and convex subset of a real Banach space X and
K be a nonempty subset of C. A mapping T : C → K is called a retraction of C
onto K if Tx = x for all x ∈ K. We say that T is sunny if, for each x ∈ C and
t ≥ 0,

T (tx+ (1− t)Tx) = Tx,

whenever tx+(1−t)Tx ∈ C. A sunny nonexpansive retraction is a sunny retraction
which is also nonexpansive.
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Theorem 2.2 ([20]). Let X be a uniformly smooth Banach space and T : C → C
be a nonexpansive mapping with a fixed point. For each fixed u ∈ C and t ∈ (0, 1),
the unique fixed point xt ∈ C of the contraction C 3 x 7→ tu+ (1− t)Tx converges
strongly as t → 0 to a fixed point of T . Define a mapping Q : C → D by Qu =
s− limt→0 xt. Then Q is the unique sunny nonexpansive retract from C onto D.

Lemma 2.3 ([21], Lemma 3.1). Let {an}, {cn} ⊂ R+, {αn} ⊂ (0, 1) and {bn} ⊂ R
be the sequences such that

an+1 ≤ (1− αn)an + bn + cn

for all n ≥ 1. Assume that
∑∞
n=1 cn <∞. Then the following results hold:

(1) If bn ≤ αnM where M ≥ 0, then {an} is a bounded sequence.
(2) If

∑∞
n=1 αn =∞ and lim supn→∞

bn
αn
≤ 0, then limn→∞ an = 0.

Lemma 2.4 ([22]). Let {sn} be a sequence of nonnegative real numbers such that

sn+1 ≤ (1− γn)sn + γnτn

and
sn+1 ≤ sn − ηn + ρn

for all n ≥ 1, where {γn} is a sequence in (0, 1), {ηn} is a sequence of nonnegative
real numbers, {τn} and {ρn} are real sequences such that

(a)
∑∞
n=1 γn =∞;

(b) limn→∞ ρn = 0;
(c) limk→∞ ηnk

= 0 implies lim supk→∞ τnk
≤ 0 for any subsequence {nk} ⊂

{n}.
Then limn→∞ sn = 0.

Lemma 2.5 ([15], Lemm 3.1). For any r > 0, if

Tr := JBr (I − rA) = (I + rB)−1(I − rAx),

then Fix(Tr) = (A+B)−1(0).

Lemma 2.6 ([15], Lemma 3.2). For any s ∈ (0, r] and x ∈ X, we have

‖x− Tsx‖ ≤ 2‖x− Trx‖.

Lemma 2.7 ([15], Lemma 3.3). Let X be a uniformly convex and q-uniformly
smooth Banach space for some q ∈ (1, 2]. Assume that A is a single-valued α-isa
of order q in X. Then, for any s > 0, there exists a continuous, strictly increasing
and convex function φq : R+ → R+ with φq(0) = 0 such that, for all x, y ∈ Br,

‖Trx− Try‖q ≤ ‖x− y‖q − r(αq − rq−1κq)‖Ax−Ay‖q

− φq(‖(I − Jr)(I − rA)x− (I − Jr)(I − rA)y‖),

where κq is the q-uniform smoothness coefficient of X.
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3 Main Results

We next prove the main result in this paper.

Theorem 3.1. Let X be a uniformly convex and q-uniformly smooth Banach
space. Let A : X → X be an α-isa of order q and B : X → 2X be an m-accretive
operator. Assume that S = (A+ B)−1(0) 6= ∅. We define a sequence {xn} by the
iterative scheme: u, x1 ∈ X,

zn = αnu+ (1− αn)xn

xn+1 = JBrn(zn − rnAzn), (3.1)

for each n ≥ 1, JBrn = (I + rnB)−1, {αn} ⊂ (0, 1) and {rn} ⊂ (0,+∞). Assume
that the following conditions are satisfied:

(a) limn→∞ αn = 0,
∑∞
n=1 αn =∞;

(b) 0 < lim infn→∞ rn ≤ lim supn→∞ rn < (αqκq
)

1
q−1 .

Then the sequence {xn} converges strongly to a point z = Q(u), where Q is the
sunny nonexpansive retraction of X onto S.

Proof. Let z = Q(u). Put Tn = JBrn(I − rnA) for each n ≥ 1. Then we have,

‖zn − z‖ = ‖αn(u− z) + (1− αn)(xn − z)‖
≤ αn‖u− z‖+ (1− αn)‖xn − z‖.

So we obtain, by Lemma 2.5 and condition (b),

‖xn+1 − z‖ = ‖JBrn(zn − rnAzn)− z‖
= ‖Tnzn − z‖
≤ ‖zn − z‖
≤ αn‖u− z‖+ (1− αn)‖xn − z‖.

By Lemma 2.3 gives that {xn} is bounded. Using (2.1), we have

‖zn − z‖q = ‖αn(u− z) + (1− αn)(xn − z)‖p

≤ (1− αn)q‖xn − z‖q + qαn〈u− z, Jq(zn − z)〉
≤ (1− αn)‖xn − z‖q + qαn〈u− z, Jq(zn − z)〉. (3.2)

So, by Lemma 2.7 and (3.2), we obtain

‖xn+1 − z‖q = ‖JBrn(zn − rnAzn)− z‖q

= ‖Tnzn − z‖q

≤ ‖zn − z‖q − rn(αq − rq−1n κq)‖Azn −Az‖q

−φq(‖(I − JBrn)(I − rnA)zn − (I − JBrn)(I − rnA)z‖)
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= ‖zn − z‖q − rn(αq − rq−1n κq)‖Azn −Az‖q

−φq(‖zn − Tnzn − rnAzn + rnAz‖)
≤ (1− αn)‖xn − z‖q + qαn〈u− z, Jq(zn − z)〉
−rn(αq − rq−1n κq)‖Azn −Az‖q

−φq(‖zn − Tnzn − rnAzn + rnAz‖). (3.3)

By condition (b), we see that rn(αq − rq−1n κq) is positive. Then, by (3.3), it
follows that

‖xn+1 − z‖q ≤ (1− αn)‖xn − z‖q + qαn〈u− z, Jq(zn − z)〉 (3.4)

and also

‖xn+1 − z‖q ≤ ‖xn − z‖q + qαn〈u− z, Jq(zn − z)〉
−rn(αq − rq−1n κq)‖Azn −Az‖q

−φq(‖zn − Tnzn − rnAzn + rnAz‖). (3.5)

For each n ≥ 1, set

sn = ‖xn − z‖q,
γn = αn,

τn = q〈u− z, Jq(zn − z)〉,
ηn = rn(αq − rq−1n κq)‖Azn −Az‖q

+φq(‖zn − Tnzn − rnAzn + rnAz‖),
ρn = qαn〈u− z, Jq(zn − z)〉.

From (3.4) and (3.5), it follows that

sn+1 ≤ (1− γn)sn + γnτn

and
sn+1 ≤ sn − ηn + ρn

for each n ≥ 1. We see that
∑∞
n=1 γn = ∞. By the boundedness of {zn} and

limn→∞ αn = 0, we see that limn→∞ ρn = 0.
In order to complete the proof, using Lemma 2.4, it remains to show that

limk→∞ ηnk
= 0 implies lim supk→∞ τnk

≤ 0 for any subsequence {nk} ⊂ {n}. Let
{nk} be a subsequence of {n} such that limk→∞ ηnk

= 0. So, by our assumptions
and the property of φq, we can deduce that

lim
k→∞

‖Aznk
−Az‖ = lim

k→∞
‖znk

− rnk
Aznk

− Tnk
znk

+ rnk
Az‖ = 0,

which gives, by the triangle inequality, that

lim
k→∞

‖Tnk
znk
− znk

‖ = 0. (3.6)
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By the condition (b), there exists ε > 0 such that rn ≥ ε for all n > 0. Lemma
2.6, we yields tht

‖Tεznk
− znk

‖ ≤ 2‖Tnk
znk
− znk

‖.

It follows from (3.6) and (3.7) that

lim sup
k→∞

‖Tεznk
− znk

‖ ≤ 2 lim sup
k→∞

‖Tnk
znk
− znk

‖ = 0.

We conclude that
lim
k→∞

‖Tεznk
− znk

‖ = 0. (3.7)

Since ‖xnk
− znk

‖ → 0, we have ‖Tεxnk
− xnk

‖ → 0. Let zt = tu+ (1− t)Tεzt for
any t ∈ (0, 1). Employing Theorem 2.2, we have zt → Qu = z as t → 0. So we
obtain

‖zt − znk
‖q = ‖t(u− znk

) + (1− t)(Tεzt − znk
)‖q

≤ (1− t)q‖Tεzt − znk
‖q + qt〈u− znk

, Jq(zt − znk
)〉

= (1− t)q‖Tεzt − znk
‖q + qt〈u− zt, Jq(zt − znk

)〉
+qt〈zt − znk

, Jq(zt − znk
)〉

= (1− t)q‖Tεzt − Tεznk
+ Tεznk

− znk
‖q

+qt〈u− zt, Jq(zt − znk
)〉+ qt‖zt − znk

‖q

≤ (1− t)q
[
‖Tεzt − Tεznk

‖+ ‖Tεznk
− znk

‖
]q

+qt〈u− zt, Jq(zt − znk
)〉+ qt‖zt − znk

‖q

≤ (1− t)q
[
‖zt − znk

‖+ ‖Tεznk
− znk

‖
]q

+qt〈u− zt, Jq(zt − znk
)〉+ qt‖zt − znk

‖q.

It follows that

〈zt − u, Jq(zt − znk
)〉 (3.8)

≤ (1− t)q

qt

[
‖zt − znk

‖+ ‖Tεznk
− znk

‖
]q

+
(qt− 1)

qt
‖zt − znk

‖q.

From (3.7) and (3.8), it follows that

lim sup
k→∞

〈zt − u, Jq(zt − znk
)〉

≤ lim sup
k→∞

(1− t)q

qt

[
‖zt − znk

‖+ ‖Tεznk
− znk

‖
]q

+ lim sup
k→∞

(qt− 1)

qt
‖zt − znk

‖q

=
(1− t)q

qt
Mq +

(qt− 1)

qt
Mq

=
( (1− t)q + qt− 1

qt

)
Mq, (3.9)
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where M = lim supk→∞ ‖zt − znk
‖, t ∈ (0, 1). We see that (1−t)q+qt−1

qt → 0 as

t → 0. From Proposition 2.1 (2), we know that Jq is norm-to-norm uniformly
continuous on bounded subset of X. Since zt → z as t→ 0, we have

‖Jq(zt − znk
)− Jq(z − znk

)‖ → 0 as t→ 0.

On the other hand, we see that∣∣∣〈zt − u, Jq(zt − znk
)〉 − 〈z − u, Jq(z − znk

)〉
∣∣∣

=
∣∣∣〈(zt − z) + (z − u), Jq(zt − znk

)〉 − 〈z − u, Jq(z − znk
)〉
∣∣∣

≤
∣∣∣〈zt − z, Jq(zt − znk

)〉
∣∣∣+
∣∣∣〈z − u, Jq(zt − znk

)〉 − 〈z − u, Jq(z − znk
)〉
∣∣∣

≤ ‖zt − z‖‖zt − znk
‖q−1 + ‖z − u‖‖Jq(zt − znk

)− Jq(z − znk
)‖.

So, as t→ 0, we get

〈zt − u, Jq(zt − znk
)〉 → 〈z − u, Jq(z − znk

)〉. (3.10)

From (3.9) and (3.10), as t→ 0, we see that

lim sup
k→∞

〈z − u, Jq(z − znk
)〉 ≤ 0.

This shows that lim supk→∞ τnk
≤ 0. We conclude that limn→∞ sn = 0 by Lemma

2.4(c). Therefore xn → z as n→∞. We thus completes the proof.

We note that the following theorem can be proved in a similar fashion.

Theorem 3.2. Let X be a uniformly convex and q-uniformly smooth Banach
space. Let A : X → X be an α-isa of order q and B : X → 2X be an m-accretive
operator. Assume that S = (A+ B)−1(0) 6= ∅. We define a sequence {xn} by the
iterative scheme: u, x1 ∈ X,

zn = αnu+ (1− αn)xn + en

xn+1 = JBrn(zn − rnAzn + en), (3.11)

for each n ≥ 1, JBrn = (I + rnB)−1, {αn} ⊂ (0, 1) and {rn} ⊂ (0,+∞). Assume
that the following conditions are satisfied:

(a) limn→∞ αn = 0,
∑∞
n=1 αn =∞;

(b) 0 < lim infn→∞ rn ≤ lim supn→∞ rn < (αqκq
)

1
q−1 ;

(c)
∑∞
n=1 ‖en‖ <∞.

Then the sequence {xn} converges strongly to a point z = Q(u), where Q is the
sunny nonexpansive retraction of X onto S.
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4 Applications and Numerical Examples

In this section, we apply Theorem 3.1 to the convex minimization problem.
Let H be a real Hilbert space. Let F : H → R be a convex smooth function
and G : H → R be a convex, lower-semicontinuous and nonsmooth function. We
consider the problem of finding x̂ ∈ H such that

F (x̂) +G(x̂) ≤ F (x) +G(x) (4.1)

for all x ∈ H. This problem (4.1) is equivalent, by Fermatfs rule, to the problem
of finding x̂ ∈ H such that

0 ∈ ∇F (x̂) + ∂G(x̂), (4.2)

where ∇F is a gradient of F and ∂G is a subdifferential of G. In this point of
view, we can set A = ∇F and B = ∂G in Theorem 3.1. This is because if ∇F
is (1/L)-Lipschitz continuous, then it is L-inverse strongly monotone and ∂G is
maximal monotone. So we obtain the following result.

Theorem 4.1. Let H be real Hilbert space. Let F : H → R be a bounded linear
operator with K-Lipschitz continuous gradient ∇F and G : H → R be a convex
and lower semi-continuous function which F +G attains a minimizer. Let J∂Grn =
(I + rn∂G)−1 and {xn} be a sequence generated by u, x1 ∈ H and

zn = αnu+ (1− αn)xn

xn+1 = J∂Grn (zn − rn∇F (zn)), (4.3)

for each n ≥ 1, where {αn} ⊂ (0, 1) and {rn} ⊂ (0,+∞). Assume that the
following conditions are satisfied:

(a) limn→∞ αn = 0,
∑∞
n=1 αn =∞;

(b) 0 < lim infn→∞ rn ≤ lim supn→∞ rn <
2
K .

Then the sequence {xn} converges strongly to a minimizer of F +G.

Example 4.2. Solve the following minimization:

min
x∈R3

‖Ax+ c‖2 +
1

2
xTx+ dTx+ 9 (4.4)

where

A =

 −3 −5 3
1 −1 7
−3 −2 4

 , x = (y1, y2, y3)T , c = (4, 2, 7)T , d = (1, 3, 9)T .

For each x ∈ R3, we set F (x) = 1
2x

Tx + dTx + 9 and G(x) = ‖Ax + c‖2. Then
∇F (x) = x+(1, 3, 9)T . We can check that F is convex and differentiable on R3 with
1-Lipschitz continuous gradient ∇F and G is convex and lower semi-continuous.
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We choose αn = 1
55n+1 , rn = 0.2, x1 = (1,−1, 4)T and u = (−3,−1, 0)T . We have

that, for r > 0,

(I + r∂G)−1(x) =

{ (
1−r
‖x‖2

)
x, if ‖x‖2 ≥ r,

0, otherwise.

Using algorithm (4.3) in Theorem 4.1, we obtain the following numerical results:

n xn F (xn) +G(xn) ‖xn+1 − xn‖2
1 (1.000000, -1.000000, 4.000000) 69.536764 4.926816E+00

50 (-0.084228, -0.251688 , -0.754691) 19.180642 7.707892E-06

100 (-0.084044,-0.251638, -0.754729) 19.180992 1.908388E-06

150 (-0.083983, -0.251621, -0.754741) 19.181108 8.454559E-07

200 (-0.083953, -0.251613, -0.754747) 19.181167 4.748087E-07

250 (-0.083935, -0.251608, -0.754751) 19.181202 3.035865E-07

300 (-0.083923, -0.251605, -0.754753) 19.181225 2.106894E-07
...

...
...

...

800 (-0.083885, -0.251594, -0.754761) 19.181298 2.956922E-08

850 (-0.083884, -0.251594, -0.754761) 19.181301 2.619097E-08

900 (-0.083883, -0.251594, -0.754761) 19.181303 2.336024E-08

950 (-0.083882, -0.251594, -0.754761) 19.181305 2.096480E-08

1000 (-0.083881, -0.251593, -0.754761) 19.181307 1.891978E-08

Table 1. Numerical results of Example 4.4

From Table 1, we see that x1000 = (−0.083881,−0.251593,−0.754761) is an ap-
proximation of the minimizer of F + G with an error 1.891978E − 08 and its
minimum value is approximately 19.181307.

Figure 1. Errors of Example 4.4
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