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Abstract : Let C be a nonempty closed convex subset of a complete CAT(0)
space X. We define a modified NSP-iteration for a nonexpansive selfmapping T

on C as follows: x1 ∈ C, and for each n ∈ N,











zn = (1− cn)xn ⊕ cnTxn

yn = (1− bn)xn ⊕ bn((1− βn)zn ⊕ βnTzn)

xn+1 = (1− an)xn ⊕ an((1 − αn)yn ⊕ αnTyn).

The strong and ∆-convergence of the above iteration scheme under some certain
conditions of the sequences {an}, {bn}, {cn}, {αn} and {βn} in [0, 1] are shown.
Our results extend and generalize many results in the literature.
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1 Introduction

A mapping T on a subset C of a metric space X is said to be nonexpansive if

d(Tx, T y) ≤ d(x, y), (1.1)

for all x, y ∈ C. An element x ∈ C is said to be a fixed point of T if Tx = x.

The set of all fixed points of T will be denoted by F (T ). The fixed point theorem
for nonexpansive mappings in a special metric space, so called CAT(0) space,
was shown by Kirk (see [1, 2]). He proved that any nonexpansive selfmapping
T : C → C, where C is a nonempty bounded closed convex subset of a complete
CAT(0) space, has a fixed point. The iteration for finding the fixed point of
this mapping have developed in parallel. It is worth mentioning that fixed point
theorems in CAT(0) spaces (specially in R−trees) can be applied to graph theory,
biology and computer science (see e.g., [3–7]).

Dhompongsa and Panyanak [8] defined the Mann iteration process in a CAT(0)
space by x1 ∈ C,

xn+1 = (1− tn)xn ⊕ tnTxn, n ∈ N (1.2)

where {tn} is a sequence in [0, 1], and also defined the Ishikawa iteration process
as follows: x1 ∈ C,

{

yn = (1− sn)xn ⊕ snTxn,

xn+1 = (1− tn)xn ⊕ tnTyn,
(1.3)

for all n ∈ N, where {tn} and {sn} are sequences in [0, 1]. They proved the conver-
gence theorems for Mann and Ishikawa iteration processes on a nonempty bounded
closed convex subset C of a complete CAT(0) space X .

Xu and Noor [9] defined the three-step iteration scheme for an asymptotically
nonexpansive mapping, a generalization of nonexpansive mapping, in Banach space
setting as follows: x1 ∈ C, and











zn = (1 − γn)xn + γnTxn,

yn = (1 − βn)xn + βnTzn,

xn+1 = (1 − αn)xn + αnTyn,

(1.4)

for all n ∈ N, where {αn}, {βn}, and {γn} are sequences in [0,1]. We can see that
(1.4) reduces to the Ishikawa iteration if we set γn = 0 for all n and it becomes
the Mann iteration if βn = γn = 0 for all n.

Phuengrattana and Suantai [10] defined the SP-iteration which are indepen-
dent of Mann and Ishikawa iterations for continuous and nondecreasing function
T on an arbitrary interval in R by x1 ∈ C,











zn = (1− γn)xn + γnTxn,

yn = (1− βn)zn + βnTzn,

xn+1 = (1− αn)yn + αnTyn,

(1.5)
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for all n ∈ N, where {αn}, {βn}, {γn} are sequences in [0,1].They showed that
the Mann, Ishikawa, Noor and SP-iterations are equivalent and the SP-iteration
converges faster than the others.

Şahin and Başarır [11] modified the SP-iteration in a CAT(0) space by x1 ∈ C,
for all n ∈ N,











zn = (1 − γn)xn ⊕ γnTxn,

yn = (1 − βn)zn ⊕ βnTzn,

xn+1 = (1 − αn)yn ⊕ αnTyn,

(1.6)

where C is a nonempty convex subset of a CAT(0) space, T : C → C is nonexpan-
sive {αn}, {βn} and {γn} are sequences in [0,1].

By using the idea of the SP-iteration and Noor iteration, Cholamjiak and
Pholasa [12] defined the new iteration scheme, called the NSP-iteration process,
as follows: x1 ∈ C, for n ∈ N,











zn = (1 − µn)xn + µnTxn,

yn = (1 − τn − βn)xn + τnzn + βnTzn,

xn+1 = (1 − γn − αn)xn + γnyn + αnTyn,

(1.7)

where T is a continuous real-valued function on an interval C in R, {αn}, {βn},
{γn}, {µn} and {τn} are sequences in [0,1].

Motivated by the NSP-iteration defined by Cholamjiak and Pholasa, we in-
troduce an iteration scheme for a nonexpansive mapping T in a CAT(0) space by
x1 ∈ C, and for n ∈ N,











zn = (1− cn)xn ⊕ cnTxn,

yn = (1− bn)xn ⊕ bn((1 − βn)zn ⊕ βnTzn),

xn+1 = (1− an)xn ⊕ an((1 − αn)yn ⊕ αnTyn),

(1.8)

where {an}, {bn}, {cn}, {αn} and {βn} are sequences in [0, 1]. Our iteration gen-
eralizes the SP-iteration in CAT(0) space defined by Şahin and Başarır, indeed by
letting an = bn = 1 for all n, our iteration reduces to the iteration (1.6).

In this paper, we give the sufficient conditions to ensure strong convergence
and ∆-convergence of our iteration scheme.

2 Preliminaries

A metric space X is a CAT(0) space if it is geodesically connected, and if
every geodesic triangle in X is at least as ‘thin’ as its comparison triangle in
the Euclidean plane. The precise definition is stated below. Any complete, sim-
ply connected Riemannian manifold having nonpositive sectional curvature and
R−trees are examples of CAT(0) space. A thorough discussion in these spaces
and the important role they play in many branches in mathematics hemicompact,
see in [13].
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Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or,
more briefly, a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R

to X such that c(0) = x, c(l) = y, and d(c(t), c(t′)) = |t− t′| for all t, t′ ∈ [0, l]. In
particular, c is an isometry and d(x, y) = l. The image α of c is called a geodesic
(or metric) segment joining x and y. When it is unique this geodesic is denoted by
[x, y]. The space (X, d) is said to be a geodesic space if every two points of X are
joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one
geodesic joining x and y for each x, y ∈ X. A subset Y ⊂ X is said to be convex
if Y includes every geodesic segment joining any two of its points. A geodesic
triangle △(x1, x2, x3) in a geodesic space (X, d) consists of three points x1, x2, x3

in X (the vertices of △) and a geodesic segment between each pair of vertices (the
edges of △). A comparison triangle for geodesic triangle △(x1, x2, x3) in (X, d)
is a triangle △(x1, x2, x3) := △(x̄1, x̄2, x̄3) in the Euclidean plane E

2 such that
dE2 (x̄i, x̄j) = d(xi, xj) for i, j ∈ {1, 2, 3} . A geodesic space is said to be a CAT(0)
space if all geodesic triangles satisfy the following comparison axiom.

CAT(0) : Let △ be a geodesic triangle in X and let △ be a comparison
triangle for △. Then △ is said to satisfy the CAT(0) inequality if for all x, y ∈ △,

and all comparison points x̄, ȳ ∈ △,

d(x, y) ≤ dE2(x̄, ȳ).

If x, y1, y2 are points in a CAT(0) space and if y0 is the midpoint of the segment
[y1, y2], then the CAT(0) inequality implies

d(x, y0)
2 ≤

1

2
d(x, y1)

2 +
1

2
d(x, y2)

2 −
1

4
d(y1, y2)

2. (2.1)

This is the (CN) inequality of Bruhat and Tits [14]. In fact (see [13], p. 163), a
geodesic space is a CAT(0) space if and only if it satisfies the (CN) inequality.

Let x, y ∈ X, by Lemma 2.1(iv) of [8], for each t ∈ [0, 1], there exists a unique
point z ∈ [x, y] such that

d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y). (2.2)

From now on we will use the notation (1− t)x⊕ ty for the unique point z satisfying
(2.2). Let {xn} be a bounded sequence in a CAT(0) space X . For x ∈ X , we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}.

The asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.
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It is known that in a complete CAT(0) space, A({xn}) consists of exactly one
point (see [15],Proposition 7). Also, every CAT(0) space has the Opial property,
i.e., if {xn} is a sequence in C and ∆-limn→∞ xn = x, then for each y(6= x) ∈ C,

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y).

We now give the definition and collect some basic properties of the ∆-convergence.

Definition 2.1. A sequence {xn} in a CAT(0) space X is said to be ∆-convergent
to x ∈ X if x is the unique asymptotic center of {un} for every subsequence {un}
of {xn}. In this case, we write ∆-limn→∞ xn = x and x is called the ∆-limit of
{xn}.

Lemma 2.2 ([8], Lemma 2.7). (i) Every bounded sequence in a complete CAT(0)
space always has a ∆-convergent subsequence.

(ii) Let C be a nonempty closed convex subset of a complete CAT(0) space and
let {xn} be a bounded sequence in C. Then the asymptotic center of {xn}
is in C.

(iii) Let K be a nonempty closed convex subset of a complete CAT(0) space X,
{xn} be a bounded sequence in C and let f : C → X be a nonexpansive
mapping. Then the conditions, {xn} ∆-converges to x and d(xn, f(xn)) →
0, imply x ∈ C and f(x) = x.

The following lemmas can be found in [8].

Lemma 2.3. Let X be a CAT(0) space. Then

d((1− t)x ⊕ ty, z) ≤ (1 − t)d(x, z) + td(y, z),

for all t ∈ [0, 1], and x, y, z ∈ X.

Lemma 2.4. Let X be a CAT(0) space. Then

d((1 − t)x⊕ ty, z)2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2,

for all t ∈ [0, 1], and x, y, z ∈ X.

3 Main Results

Before proving our main results, we need the following lemmas.

Lemma 3.1. Let X be a complete CAT(0) space, C be a nonempty closed convex
subset of X, and T be a nonexpansive selfmapping on C with F (T ) 6= ∅. Let
x1 ∈ C and {xn} be a sequence defined by (1.8), where {αn}, {βn}, {an}, {bn},
and {cn} are sequences in [0, 1] such that 0 < a ≤ an, bn ≤ 1 for some 0 < a < 1,
and cn ∈ [ǫ, 1− ǫ] for some ǫ ∈ (0, 1) for all n ∈ N. Then, limn→∞ d(xn, p) exists
for all p ∈ F (T ).
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Proof. Let p ∈ F (T ). Then by Lemma 2.3,

d(zn, p) = d((1 − cn)xn ⊕ cnTxn, p)

≤ (1 − cn)d(xn, p) + cnd(Txn, p)

≤ (1 − cn)d(xn, p) + cnd(xn, p)

= d(xn, p). (3.1)

And also,

d(yn, p) = d((1− bn)xn ⊕ bn((1− βn)zn ⊕ βnTzn), p)

≤ (1− bn)d(xn, p) + bnd((1 − βn)zn ⊕ βnTzn, p)

≤ (1− bn)d(xn, p) + bn
[

(1− βn)d(zn, p) + βnd(Tzn, p)
]

≤ (1− bn)d(xn, p) + bn
[

(1− βn)d(zn, p) + βnd(zn, p)
]

= (1− bn)d(xn, p) + bnd(zn, p). (3.2)

This, together with (3.1), we obtain that

d(yn, p) ≤ d(xn, p). (3.3)

Therefore

d(xn+1, p) = d((1− an)xn ⊕ an((1− αn)yn ⊕ αnTyn), p)

≤ (1− an)d(xn, p) + and((1 − αn)yn ⊕ αnTyn, p)

≤ (1− an)d(xn, p) + an
[

(1 − αn)d(yn, p) + αnd(Tyn, p)
]

≤ (1− an)d(xn, p) + an
[

(1 − αn)d(yn, p) + αnd(yn, p)
]

= (1− an)d(xn, p) + and(yn, p)

≤ d(xn, p). (3.4)

This implies that the sequence {d(xn, p)} is bounded below and nonincreasing.
Thus it is convergent which completes the proof.

Lemma 3.2. Let X, C, T , {αn}, {βn}, {an}, {bn}, and {cn} satisfy the hypothe-
ses of Lemma 3.1. Then limn→∞ d(xn, T xn) = 0.

Proof. Let p ∈ F (T ). By Lemma 3.1, there exists a number c with

lim
n→∞

d(xn, p) = c. (3.5)

Firstly, we will prove that limn→∞ d(yn, p) = c. We have from (3.4) that

d(xn+1, p) ≤ (1− an)d(xn, p) + and(yn, p).

Therefore

d(xn, p) ≤ d(yn, p) +
1

an

[

d(xn, p)− d(xn+1, p)
]

≤ d(yn, p) +
1

a

[

d(xn, p)− d(xn+1, p)
]

.
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By taking lim inf as n → ∞ both sides, we obtain that

c = lim inf
n→∞

d(xn, p) ≤ lim inf
n→∞

d(yn, p).

As a consequence of (3.3) and (3.5), lim supn→∞
d(yn, p) ≤ c. Therefore

c ≤ lim inf
n→∞

d(yn, p) ≤ lim sup
n→∞

d(yn, p) ≤ c.

Thus, limn→∞ d(yn, p) = c.

Next, we will show limn→∞ d(zn, p) = c. From (3.2), we have

d(yn, p) ≤ (1− bn)d(xn, p) + bnd(zn, p).

This implies that

d(xn, p) ≤ d(zn, p) +
1

bn

[

d(xn, p)− d(yn, p)
]

≤ d(zn, p) +
1

a

[

d(xn, p)− d(yn, p)
]

.

This yields
c = lim inf

n→∞

d(xn, p) ≤ lim inf
n→∞

d(zn, p). (3.6)

By taking lim sup as n → ∞ both sides of (3.1), we obtain that

lim sup
n→∞

d(zn, p) ≤ lim sup
n→∞

d(xn, p) = c.

This, together with (3.6), yields

lim
n→∞

d(zn, p) = c. (3.7)

It follows from Lemma 2.4 that

d(zn, p)
2 = d

(

(1− cn)xn ⊕ cnTxn, p
)2

≤ (1− cn)d(xn, p)
2 + cnd(Txn, p)

2 − cn(1− cn)d(xn, T xn)
2

≤ (1− cn)d(xn, p)
2 + cnd(xn, p)

2 − cn(1 − cn)d(xn, T xn)
2

= d(xn, p)
2 − cn(1− cn)d(xn, T xn)

2,

so we get

d(xn, T xn)
2 ≤

1

cn(1− cn)

[

d(xn, p)
2 − d(zn, p)

2
]

≤
1

ǫ2

[

d(xn, p)
2 − d(zn, p)

2
]

.

By using (3.5) and (3.7), lim sup
n→∞

d(xn, T xn) ≤ 0 and hence, lim
n→∞

d(xn, T xn) = 0

as desired.

Now, we are ready to prove the strong and ∆-convergence theorem of NSP-
iteration on a CAT(0) space.
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Theorem 3.3. Let X be a complete CAT(0) space, C be a nonempty closed convex
subset of X, and T be a nonexpansive selfmapping on C with F (T ) 6= ∅. Let x1 ∈ C

and {xn} be a sequence defined by (1.8), where {αn}, {βn}, {an}, {bn}, and {cn}
are sequences in [0, 1] such that 0 < a ≤ an, bn ≤ 1 for some 0 < a < 1, and
cn ⊂ [ǫ, 1− ǫ] for some ǫ ∈ (0, 1) for all n ∈ N. Then {xn} ∆-converges to a fixed
point of T.

Proof. By Lemma 3.1 and Lemma 3.2, we have lim
n→∞

d(xn, p) = 0 exists for all

p ∈ F (T ) and lim
n→∞

d(xn, T xn) = 0, respectively. Thus {xn} is bounded. Let

ω∆(xn) :=
⋃

A({un}), where the union is taken over all subsequences {un} of
{xn}.

To show that ω∆(xn) ⊂ F (T ), let u ∈ ω∆(xn). Then there exists a subsequence
{un} of {xn} such that A({un}) = {u}. By Lemma 2.2(i) and (ii), there exists
a subsequence {vn} of {un} such that ∆-limn→∞ vn = v ∈ C. It follows from
Lemma 2.2(iii) that v ∈ F (T ). And so limn→∞ d(xn, v) exists by Lemma 3.1.
Now, we claim that u = v. If u 6= v, then we get from the Opial property of X
that

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn, u)

≤ lim sup
n→∞

d(un, u)

< lim sup
n→∞

d(un, v)

= lim sup
n→∞

d(xn, v)

= lim sup
n→∞

d(vn, v), (3.8)

which is a contradiction. Therefore u = v ∈ F (T ) and thus ω∆(xn) ⊂ F (T ).
Finally we will show that the sequence {xn} ∆-converges to a fixed point of

T. It suffices to show that ω∆(xn) consists of exactly one point. Let {un} be
a subsequence of {xn} with A({un}) = {u} and let A({xn}) = {x}. We have
already that u = v and v ∈ F (T ). Finally, we claim that x = v. If x 6= v, then the
same argument as (3.8) gives a contradiction and hence x = v ∈ F (T ). Therefore,
ω∆(xn) = {x}. This implies that {xn} ∆-converges to a fixed point of T .

Theorem 3.4. Let X, C, T , {αn}, {βn}, {an}, {bn} and {cn} satisfy the hypothe-
ses of Theorem 3.3. Then the iteration process {xn} defined by (1.8) converges
strongly to a fixed point of T if and only if

lim inf
n→∞

d(xn, F (T )) = 0,

where d(x, F (T )) := inf{d(x, p) : p ∈ F (T )}.

Proof. Necessity is obvious. Conversely, assume that lim infn→∞ d(xn, F (T )) = 0.
We have from the proof of Lemma 3.1 that

d(xn+1, p) ≤ d(xn, p),
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for all p ∈ F (T ). It follows that

d(xn+1, F (T )) ≤ d(xn, F (T )),

which implies that the sequence {d(xn, F (T ))} is nonincreasing and bounded be-
low. Thus lim

n→∞

d(xn, F (T )) exists. By the hypothesis, we can conclude that

lim
n→∞

d(xn, F (T )) = 0.

Next, we will show that {xn} is a Cauchy sequence in C. Let ε > 0 be
arbitrarily chosen. Since lim

n→∞

d(xn, F (T )) = 0, there exists a positive integer n0

such that
d(xn, F (T )) <

ε

2
, for all n ≥ n0.

In particular, inf{d(xn0
, p) : p ∈ F (T )} < ε

2
. Thus there exists p∗ ∈ F (T ) such

that
d(xn0

, p∗) <
ε

2
.

Now, for all m,n ≥ n0, we have

d(xn+m, xn) ≤ d(xn+m, p∗) + d(xn, p
∗)

≤ 2d(xn0
, p∗)

< 2(
ε

2
) = ε.

Hence {xn} is a Cauchy sequence in C. Since C is closed in a complete CAT(0)
space X , the sequence {xn} must be convergent to a point in C. Let limn→∞ xn =
q ∈ C. Since limn→∞ d(xn, F (T )) = 0, give that d(q, F (T )) = 0. Moreover
q ∈ F (T ) because F (T ) is closed. Therefore, the sequence {xn} converges strongly
to a fixed point q of T .

Senter and Dotson [16] introduced condition (I) as follows.
A mapping T : C → C is said to satisfy the condition (I) if there exists

a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for all
r ∈ (0,∞) such that d(x, Tx) ≥ f

(

d(x, F (T ))
)

for all x ∈ K. It’s worth mentioning
that in the case of nonexpansive mappings T , the condition (I) is weaker than the
requirement that T be hemicompact.

Theorem 3.5. Let X, C, {αn}, {βn}, {an}, {bn} and {cn} satisfy the hypotheses
of Lemma 3.1 and let T : C → C be a nonexpansive mapping satisfying condition
(I). Then the iteration process {xn} defined by (1.8) converges strongly to a fixed
point of T .

Proof. Let p ∈ F (T ). By Lemma 3.1, there exists a real number c such that

lim
n→∞

d(xn, p) = c.

If c = 0, then it’s done. Suppose that c > 0. In the proof of Lemma 3.1, we have
that

d(xn+1, p) ≤ d(xn, p),
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for all p ∈ F (T ), thus d(xn+1, F (T )) ≤ d(xn, F (T )). This implies that
lim
n→∞

d(xn, F (T )) exists. It follows by Lemma 3.2 and Condition (I) that

lim
n→∞

f
(

d(xn, F (T ))
)

≤ lim
n→∞

d(xn, T xn) = 0.

Thus,

lim
n→∞

f
(

d(xn, F (T ))
)

= 0.

Since f : [0,∞) → [0,∞) is a nondecreasing function satisfying f(0) = 0, f(r) > 0
for all r ∈ (0,∞), we have

lim
n→∞

d(xn, F (T )) = 0.

So the conclusion follows from Theorem 3.4,

Since the NSP-iteration reduces to the SP-iteration when an = bn = 1 for all
n ∈ N and to the Noor iteration when αn = βn = 1 for all n ∈ N, we have the
following corollaries.

Corollary 3.6. Let X be a complete CAT(0) space, C be a nonempty closed convex
subset of X, and T be a nonexpansive selfmapping on C with F (T ) 6= ∅. Let x1 ∈ C

and {xn} be the sequence of SP-iteration process defined by (1.6), where {αn},
{βn}, {an}, {bn}, and {cn} are sequences in [0, 1] such that 0 < a ≤ an, bn ≤ 1
for some 0 < a < 1 and cn ⊂ [ǫ, 1− ǫ] for some ǫ ∈ (0, 1) for all n ∈ N. Then {xn}
∆-converges to a fixed point of T. Furthurmore, if T satisfies condition (I), then
{xn} converges strongly to a fixed point of T.

Corollary 3.7. Let X be a complete CAT(0) space, C be a nonempty closed
convex subset of X, and T be a nonexpansive selfmapping on C with F (T ) 6= ∅.
Let x1 ∈ C and {xn} be the sequence of Noor iteration process defined by (1.4)
(replacing + with ⊕), where {αn}, {βn}, {an}, {bn}, and {cn} are sequences in
[0, 1] such that 0 < a ≤ an, bn ≤ 1 for some 0 < a < 1 and cn ⊂ [ǫ, 1− ǫ] for some
ǫ ∈ (0, 1) for all n ∈ N. Then {xn} ∆-converges to a fixed point of T. Furthurmore,
if T satisfies condition (I), then {xn} converges strongly to a fixed point of T.
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