Thai Journal of Mathematics Volume 14 (2016) Number 2 : 341–351

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

On the Strong and \triangle -Convergence of NSP-Iteration on CAT(0) Spaces

Piyanan Pasom † and Asawathep Cuntavepanit ‡,1

[†]Department of Mathematics, Faculty of Science, Mahidol University, Rama IV Road, Ratchathewi District, Bangkok 10400, Thailand e-mail: piyanan.pas@mahidol.ac.th

[‡]Division of Sciences and Liberal Arts, Mahidol University Kanchanaburi Campus, Sai Yok District, Kanchanaburi 71150, Thailand e-mail : asawathep.cun@mahidol.ac.th

Abstract: Let C be a nonempty closed convex subset of a complete CAT(0) space X. We define a modified NSP-iteration for a nonexpansive selfmapping T on C as follows: $x_1 \in C$, and for each $n \in \mathbb{N}$,

 $\begin{cases} z_n &= (1-c_n)x_n \oplus c_n Tx_n \\ y_n &= (1-b_n)x_n \oplus b_n((1-\beta_n)z_n \oplus \beta_n Tz_n) \\ x_{n+1} &= (1-a_n)x_n \oplus a_n((1-\alpha_n)y_n \oplus \alpha_n Ty_n). \end{cases}$

The strong and Δ -convergence of the above iteration scheme under some certain conditions of the sequences $\{a_n\}, \{b_n\}, \{c_n\}, \{\alpha_n\}$ and $\{\beta_n\}$ in [0, 1] are shown. Our results extend and generalize many results in the literature.

Keywords : nonexpansive mappings; NSP-iteration; Δ -convergence; strong convergence ; CAT(0) spaces.

2010 Mathematics Subject Classification : 47H09; 47H10.

Copyright \bigodot 2016 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

1 Introduction

A mapping T on a subset C of a metric space X is said to be *nonexpansive* if

$$d(Tx, Ty) \le d(x, y),\tag{1.1}$$

for all $x, y \in C$. An element $x \in C$ is said to be a fixed point of T if Tx = x. The set of all fixed points of T will be denoted by F(T). The fixed point theorem for nonexpansive mappings in a special metric space, so called CAT(0) space, was shown by Kirk (see [1, 2]). He proved that any nonexpansive selfmapping $T: C \to C$, where C is a nonempty bounded closed convex subset of a complete CAT(0) space, has a fixed point. The iteration for finding the fixed point of this mapping have developed in parallel. It is worth mentioning that fixed point theorems in CAT(0) spaces (specially in \mathbb{R} -trees) can be applied to graph theory, biology and computer science (see e.g., [3–7]).

Dhompongsa and Panyanak [8] defined the Mann iteration process in a CAT(0) space by $x_1 \in C$,

$$x_{n+1} = (1 - t_n)x_n \oplus t_n T x_n, \quad n \in \mathbb{N}$$

$$(1.2)$$

where $\{t_n\}$ is a sequence in [0, 1], and also defined the Ishikawa iteration process as follows: $x_1 \in C$,

$$\begin{cases} y_n = (1 - s_n)x_n \oplus s_n T x_n, \\ x_{n+1} = (1 - t_n)x_n \oplus t_n T y_n, \end{cases}$$
(1.3)

for all $n \in \mathbb{N}$, where $\{t_n\}$ and $\{s_n\}$ are sequences in [0, 1]. They proved the convergence theorems for Mann and Ishikawa iteration processes on a nonempty bounded closed convex subset C of a complete CAT(0) space X.

Xu and Noor [9] defined the three-step iteration scheme for an asymptotically nonexpansive mapping, a generalization of nonexpansive mapping, in Banach space setting as follows: $x_1 \in C$, and

$$\begin{cases} z_n = (1 - \gamma_n) x_n + \gamma_n T x_n, \\ y_n = (1 - \beta_n) x_n + \beta_n T z_n, \\ x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T y_n, \end{cases}$$
(1.4)

for all $n \in \mathbb{N}$, where $\{\alpha_n\}$, $\{\beta_n\}$, and $\{\gamma_n\}$ are sequences in [0,1]. We can see that (1.4) reduces to the Ishikawa iteration if we set $\gamma_n = 0$ for all n and it becomes the Mann iteration if $\beta_n = \gamma_n = 0$ for all n.

Phuengrattana and Suantai [10] defined the SP-iteration which are independent of Mann and Ishikawa iterations for continuous and nondecreasing function T on an arbitrary interval in \mathbb{R} by $x_1 \in C$,

$$\begin{cases} z_n = (1 - \gamma_n) x_n + \gamma_n T x_n, \\ y_n = (1 - \beta_n) z_n + \beta_n T z_n, \\ x_{n+1} = (1 - \alpha_n) y_n + \alpha_n T y_n, \end{cases}$$
(1.5)

On the Strong and Δ -Convergence of NSP-Iteration ...

for all $n \in \mathbb{N}$, where $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ are sequences in [0,1]. They showed that the Mann, Ishikawa, Noor and SP-iterations are equivalent and the SP-iteration converges faster than the others.

Sahin and Başarır [11] modified the SP-iteration in a CAT(0) space by $x_1 \in C$, for all $n \in \mathbb{N}$,

$$\begin{cases} z_n = (1 - \gamma_n) x_n \oplus \gamma_n T x_n, \\ y_n = (1 - \beta_n) z_n \oplus \beta_n T z_n, \\ x_{n+1} = (1 - \alpha_n) y_n \oplus \alpha_n T y_n, \end{cases}$$
(1.6)

where C is a nonempty convex subset of a CAT(0) space, $T: C \to C$ is nonexpansive $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ are sequences in [0,1].

By using the idea of the SP-iteration and Noor iteration, Cholamjiak and Pholasa [12] defined the new iteration scheme, called the NSP-iteration process, as follows: $x_1 \in C$, for $n \in \mathbb{N}$,

$$\begin{cases} z_n &= (1 - \mu_n) x_n + \mu_n T x_n, \\ y_n &= (1 - \tau_n - \beta_n) x_n + \tau_n z_n + \beta_n T z_n, \\ x_{n+1} &= (1 - \gamma_n - \alpha_n) x_n + \gamma_n y_n + \alpha_n T y_n, \end{cases}$$
(1.7)

where T is a continuous real-valued function on an interval C in \mathbb{R} , $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$, $\{\mu_n\}$ and $\{\tau_n\}$ are sequences in [0,1].

Motivated by the NSP-iteration defined by Cholamjiak and Pholasa, we introduce an iteration scheme for a nonexpansive mapping T in a CAT(0) space by $x_1 \in C$, and for $n \in \mathbb{N}$,

$$\begin{cases} z_n = (1 - c_n)x_n \oplus c_n T x_n, \\ y_n = (1 - b_n)x_n \oplus b_n((1 - \beta_n)z_n \oplus \beta_n T z_n), \\ x_{n+1} = (1 - a_n)x_n \oplus a_n((1 - \alpha_n)y_n \oplus \alpha_n T y_n), \end{cases}$$
(1.8)

where $\{a_n\}, \{b_n\}, \{c_n\}, \{\alpha_n\}$ and $\{\beta_n\}$ are sequences in [0, 1]. Our iteration generalizes the SP-iteration in CAT(0) space defined by Sahin and Başarır, indeed by letting $a_n = b_n = 1$ for all n, our iteration reduces to the iteration (1.6).

In this paper, we give the sufficient conditions to ensure strong convergence and Δ -convergence of our iteration scheme.

2 Preliminaries

A metric space X is a CAT(0) space if it is geodesically connected, and if every geodesic triangle in X is at least as 'thin' as its comparison triangle in the Euclidean plane. The precise definition is stated below. Any complete, simply connected Riemannian manifold having nonpositive sectional curvature and \mathbb{R} -trees are examples of CAT(0) space. A thorough discussion in these spaces and the important role they play in many branches in mathematics hemicompact, see in [13]. Let (X, d) be a metric space. A geodesic path joining $x \in X$ to $y \in X$ (or, more briefly, a geodesic from x to y) is a map c from a closed interval $[0, l] \subset \mathbb{R}$ to X such that c(0) = x, c(l) = y, and d(c(t), c(t')) = |t - t'| for all $t, t' \in [0, l]$. In particular, c is an isometry and d(x, y) = l. The image α of c is called a geodesic (or metric) segment joining x and y. When it is unique this geodesic is denoted by [x, y]. The space (X, d) is said to be a geodesic space if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each $x, y \in X$. A subset $Y \subset X$ is said to be convex if Y includes every geodesic segment joining any two of its points. A geodesic triangle $\Delta(x_1, x_2, x_3)$ in a geodesic space (X, d) consists of three points x_1, x_2, x_3 in X (the vertices of Δ) and a geodesic segment between each pair of vertices (the edges of Δ). A comparison triangle for geodesic triangle $\Delta(x_1, x_2, x_3)$ in (X, d)is a triangle $\overline{\Delta}(x_1, x_2, x_3) := \Delta(\overline{x}_1, \overline{x}_2, \overline{x}_3)$ in the Euclidean plane \mathbb{E}^2 such that $d_{\mathbb{E}^2}(\overline{x}_i, \overline{x}_j) = d(x_i, x_j)$ for $i, j \in \{1, 2, 3\}$. A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the following comparison axiom.

CAT(0): Let \triangle be a geodesic triangle in X and let $\overline{\triangle}$ be a comparison triangle for \triangle . Then \triangle is said to satisfy the CAT(0) inequality if for all $x, y \in \triangle$, and all comparison points $\overline{x}, \overline{y} \in \overline{\triangle}$,

$$d(x,y) \le d_{\mathbb{E}^2}(\bar{x},\bar{y}).$$

If x, y_1, y_2 are points in a CAT(0) space and if y_0 is the midpoint of the segment $[y_1, y_2]$, then the CAT(0) inequality implies

$$d(x, y_0)^2 \le \frac{1}{2}d(x, y_1)^2 + \frac{1}{2}d(x, y_2)^2 - \frac{1}{4}d(y_1, y_2)^2.$$
(2.1)

This is the (CN) inequality of Bruhat and Tits [14]. In fact (see [13], p. 163), a geodesic space is a CAT(0) space if and only if it satisfies the (CN) inequality.

Let $x, y \in X$, by Lemma 2.1(iv) of [8], for each $t \in [0, 1]$, there exists a unique point $z \in [x, y]$ such that

$$d(x,z) = td(x,y)$$
 and $d(y,z) = (1-t)d(x,y).$ (2.2)

From now on we will use the notation $(1-t)x \oplus ty$ for the unique point z satisfying (2.2). Let $\{x_n\}$ be a bounded sequence in a CAT(0) space X. For $x \in X$, we set

$$r(x, \{x_n\}) = \limsup_{n \to \infty} d(x, x_n).$$

The asymptotic radius $r(\{x_n\})$ of $\{x_n\}$ is given by

$$r(\{x_n\}) = \inf\{r(x, \{x_n\}) : x \in X\}.$$

The asymptotic center $A(\{x_n\})$ of $\{x_n\}$ is the set

$$A(\{x_n\}) = \{x \in X : r(x, \{x_n\}) = r(\{x_n\})\}.$$

On the Strong and Δ -Convergence of NSP-Iteration ...

It is known that in a complete CAT(0) space, $A(\{x_n\})$ consists of exactly one point (see [15], Proposition 7). Also, every CAT(0) space has the *Opial* property, *i.e.*, if $\{x_n\}$ is a sequence in C and Δ -lim $_{n\to\infty} x_n = x$, then for each $y \neq x \in C$,

$$\limsup_{n \to \infty} d(x_n, x) < \limsup_{n \to \infty} d(x_n, y).$$

We now give the definition and collect some basic properties of the Δ -convergence.

Definition 2.1. A sequence $\{x_n\}$ in a CAT(0) space X is said to be Δ -convergent to $x \in X$ if x is the unique asymptotic center of $\{u_n\}$ for every subsequence $\{u_n\}$ of $\{x_n\}$. In this case, we write Δ -lim_{$n\to\infty$} $x_n = x$ and x is called the Δ -limit of $\{x_n\}$.

- **Lemma 2.2** ([8], Lemma 2.7). (i) Every bounded sequence in a complete CAT(0) space always has a Δ -convergent subsequence.
- (ii) Let C be a nonempty closed convex subset of a complete CAT(0) space and let {x_n} be a bounded sequence in C. Then the asymptotic center of {x_n} is in C.
- (iii) Let K be a nonempty closed convex subset of a complete CAT(0) space X, {x_n} be a bounded sequence in C and let f : C → X be a nonexpansive mapping. Then the conditions, {x_n} Δ-converges to x and d(x_n, f(x_n)) → 0, imply x ∈ C and f(x) = x.

The following lemmas can be found in [8].

Lemma 2.3. Let X be a CAT(0) space. Then

 $d((1-t)x \oplus ty, z) \le (1-t)d(x, z) + td(y, z),$

for all $t \in [0, 1]$, and $x, y, z \in X$.

Lemma 2.4. Let X be a CAT(0) space. Then

$$l((1-t)x \oplus ty, z)^2 \le (1-t)d(x, z)^2 + td(y, z)^2 - t(1-t)d(x, y)^2,$$

for all $t \in [0, 1]$, and $x, y, z \in X$.

3 Main Results

Before proving our main results, we need the following lemmas.

Lemma 3.1. Let X be a complete CAT(0) space, C be a nonempty closed convex subset of X, and T be a nonexpansive selfmapping on C with $F(T) \neq \emptyset$. Let $x_1 \in C$ and $\{x_n\}$ be a sequence defined by (1.8), where $\{\alpha_n\}, \{\beta_n\}, \{a_n\}, \{b_n\},$ and $\{c_n\}$ are sequences in [0,1] such that $0 < a \le a_n, b_n \le 1$ for some 0 < a < 1, and $c_n \in [\epsilon, 1-\epsilon]$ for some $\epsilon \in (0,1)$ for all $n \in \mathbb{N}$. Then, $\lim_{n\to\infty} d(x_n, p)$ exists for all $p \in F(T)$. *Proof.* Let $p \in F(T)$. Then by Lemma 2.3,

$$d(z_n, p) = d((1 - c_n)x_n \oplus c_n T x_n, p) \leq (1 - c_n)d(x_n, p) + c_n d(T x_n, p) \leq (1 - c_n)d(x_n, p) + c_n d(x_n, p) = d(x_n, p).$$
(3.1)

And also,

$$d(y_n, p) = d((1 - b_n)x_n \oplus b_n((1 - \beta_n)z_n \oplus \beta_n T z_n), p) \leq (1 - b_n)d(x_n, p) + b_nd((1 - \beta_n)z_n \oplus \beta_n T z_n, p) \leq (1 - b_n)d(x_n, p) + b_n[(1 - \beta_n)d(z_n, p) + \beta_nd(T z_n, p)] \leq (1 - b_n)d(x_n, p) + b_n[(1 - \beta_n)d(z_n, p) + \beta_nd(z_n, p)] = (1 - b_n)d(x_n, p) + b_nd(z_n, p).$$
(3.2)

This, together with (3.1), we obtain that

$$d(y_n, p) \le d(x_n, p). \tag{3.3}$$

Therefore

$$d(x_{n+1}, p) = d((1 - a_n)x_n \oplus a_n((1 - \alpha_n)y_n \oplus \alpha_n Ty_n), p)$$

$$\leq (1 - a_n)d(x_n, p) + a_nd((1 - \alpha_n)y_n \oplus \alpha_n Ty_n, p)$$

$$\leq (1 - a_n)d(x_n, p) + a_n[(1 - \alpha_n)d(y_n, p) + \alpha_n d(Ty_n, p)]$$

$$\leq (1 - a_n)d(x_n, p) + a_n[(1 - \alpha_n)d(y_n, p) + \alpha_n d(y_n, p)]$$

$$= (1 - a_n)d(x_n, p) + a_nd(y_n, p)$$

$$\leq d(x_n, p).$$
(3.4)

This implies that the sequence $\{d(x_n, p)\}$ is bounded below and nonincreasing. Thus it is convergent which completes the proof.

Lemma 3.2. Let X, C, T, $\{\alpha_n\}$, $\{\beta_n\}$, $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$ satisfy the hypotheses of Lemma 3.1. Then $\lim_{n\to\infty} d(x_n, Tx_n) = 0$.

Proof. Let $p \in F(T)$. By Lemma 3.1, there exists a number c with

$$\lim_{n \to \infty} d(x_n, p) = c. \tag{3.5}$$

Firstly, we will prove that $\lim_{n\to\infty} d(y_n, p) = c$. We have from (3.4) that

 $d(x_{n+1}, p) \le (1 - a_n)d(x_n, p) + a_n d(y_n, p).$

Therefore

$$d(x_n, p) \le d(y_n, p) + \frac{1}{a_n} \left[d(x_n, p) - d(x_{n+1}, p) \right]$$

$$\le d(y_n, p) + \frac{1}{a} \left[d(x_n, p) - d(x_{n+1}, p) \right].$$

On the Strong and $\Delta\text{-}\mathsf{Convergence}$ of NSP-Iteration ...

By taking limit as $n \to \infty$ both sides, we obtain that

$$c = \liminf_{n \to \infty} d(x_n, p) \le \liminf_{n \to \infty} d(y_n, p).$$

As a consequence of (3.3) and (3.5), $\limsup_{n\to\infty} d(y_n,p) \leq c.$ Therefore

$$c \le \liminf_{n \to \infty} d(y_n, p) \le \limsup_{n \to \infty} d(y_n, p) \le c.$$

Thus, $\lim_{n\to\infty} d(y_n, p) = c$.

Next, we will show $\lim_{n\to\infty} d(z_n, p) = c$. From (3.2), we have

$$d(y_n, p) \le (1 - b_n)d(x_n, p) + b_n d(z_n, p).$$

This implies that

$$d(x_n, p) \le d(z_n, p) + \frac{1}{b_n} \left[d(x_n, p) - d(y_n, p) \right] \le d(z_n, p) + \frac{1}{a} \left[d(x_n, p) - d(y_n, p) \right].$$

This yields

$$c = \liminf_{n \to \infty} d(x_n, p) \le \liminf_{n \to \infty} d(z_n, p).$$
(3.6)

By taking $\limsup as n \to \infty$ both sides of (3.1), we obtain that

$$\limsup_{n \to \infty} d(z_n, p) \le \limsup_{n \to \infty} d(x_n, p) = c.$$

This, together with (3.6), yields

$$\lim_{n \to \infty} d(z_n, p) = c. \tag{3.7}$$

It follows from Lemma 2.4 that

$$d(z_n, p)^2 = d((1 - c_n)x_n \oplus c_n T x_n, p)^2$$

$$\leq (1 - c_n)d(x_n, p)^2 + c_n d(T x_n, p)^2 - c_n (1 - c_n)d(x_n, T x_n)^2$$

$$\leq (1 - c_n)d(x_n, p)^2 + c_n d(x_n, p)^2 - c_n (1 - c_n)d(x_n, T x_n)^2$$

$$= d(x_n, p)^2 - c_n (1 - c_n)d(x_n, T x_n)^2,$$

so we get

$$d(x_n, Tx_n)^2 \le \frac{1}{c_n(1-c_n)} \left[d(x_n, p)^2 - d(z_n, p)^2 \right] \le \frac{1}{\epsilon^2} \left[d(x_n, p)^2 - d(z_n, p)^2 \right].$$

By using (3.5) and (3.7), $\limsup_{n \to \infty} d(x_n, Tx_n) \le 0$ and hence, $\lim_{n \to \infty} d(x_n, Tx_n) = 0$ as desired.

Now, we are ready to prove the strong and Δ -convergence theorem of NSP-iteration on a CAT(0) space.

Theorem 3.3. Let X be a complete CAT(0) space, C be a nonempty closed convex subset of X, and T be a nonexpansive selfmapping on C with $F(T) \neq \emptyset$. Let $x_1 \in C$ and $\{x_n\}$ be a sequence defined by (1.8), where $\{\alpha_n\}, \{\beta_n\}, \{a_n\}, \{b_n\}, and \{c_n\}$ are sequences in [0,1] such that $0 < a \leq a_n, b_n \leq 1$ for some 0 < a < 1, and $c_n \subset [\epsilon, 1-\epsilon]$ for some $\epsilon \in (0,1)$ for all $n \in \mathbb{N}$. Then $\{x_n\}$ Δ -converges to a fixed point of T.

Proof. By Lemma 3.1 and Lemma 3.2, we have $\lim_{n\to\infty} d(x_n, p) = 0$ exists for all $p \in F(T)$ and $\lim_{n\to\infty} d(x_n, Tx_n) = 0$, respectively. Thus $\{x_n\}$ is bounded. Let $\omega_{\Delta}(x_n) := \bigcup A(\{u_n\})$, where the union is taken over all subsequences $\{u_n\}$ of $\{x_n\}$.

To show that $\omega_{\Delta}(x_n) \subset F(T)$, let $u \in \omega_{\Delta}(x_n)$. Then there exists a subsequence $\{u_n\}$ of $\{x_n\}$ such that $A(\{u_n\}) = \{u\}$. By Lemma 2.2(i) and (ii), there exists a subsequence $\{v_n\}$ of $\{u_n\}$ such that Δ -lim $_{n\to\infty} v_n = v \in C$. It follows from Lemma 2.2(iii) that $v \in F(T)$. And so $\lim_{n\to\infty} d(x_n, v)$ exists by Lemma 3.1. Now, we claim that u = v. If $u \neq v$, then we get from the Opial property of X that

$$\limsup_{n \to \infty} d(v_n, v) < \limsup_{n \to \infty} d(v_n, u)$$

$$\leq \limsup_{n \to \infty} d(u_n, u)$$

$$< \limsup_{n \to \infty} d(u_n, v)$$

$$= \limsup_{n \to \infty} d(x_n, v)$$

$$= \limsup_{n \to \infty} d(v_n, v), \qquad (3.8)$$

which is a contradiction. Therefore $u = v \in F(T)$ and thus $\omega_{\Delta}(x_n) \subset F(T)$.

Finally we will show that the sequence $\{x_n\}$ Δ -converges to a fixed point of T. It suffices to show that $\omega_{\Delta}(x_n)$ consists of exactly one point. Let $\{u_n\}$ be a subsequence of $\{x_n\}$ with $A(\{u_n\}) = \{u\}$ and let $A(\{x_n\}) = \{x\}$. We have already that u = v and $v \in F(T)$. Finally, we claim that x = v. If $x \neq v$, then the same argument as (3.8) gives a contradiction and hence $x = v \in F(T)$. Therefore, $\omega_{\Delta}(x_n) = \{x\}$. This implies that $\{x_n\}$ Δ -converges to a fixed point of T.

Theorem 3.4. Let $X, C, T, \{\alpha_n\}, \{\beta_n\}, \{a_n\}, \{b_n\}$ and $\{c_n\}$ satisfy the hypotheses of Theorem 3.3. Then the iteration process $\{x_n\}$ defined by (1.8) converges strongly to a fixed point of T if and only if

$$\liminf_{n \to \infty} d(x_n, F(T)) = 0,$$

where $d(x, F(T)) := \inf\{d(x, p) : p \in F(T)\}.$

Proof. Necessity is obvious. Conversely, assume that $\liminf_{n\to\infty} d(x_n, F(T)) = 0$. We have from the proof of Lemma 3.1 that

$$d(x_{n+1}, p) \le d(x_n, p),$$

On the Strong and Δ -Convergence of NSP-Iteration ...

for all $p \in F(T)$. It follows that

$$d(x_{n+1}, F(T)) \le d(x_n, F(T)),$$

which implies that the sequence $\{d(x_n, F(T))\}$ is nonincreasing and bounded below. Thus $\lim_{n\to\infty} d(x_n, F(T))$ exists. By the hypothesis, we can conclude that $\lim_{n\to\infty} d(x_n, F(T)) = 0.$

Next, we will show that $\{x_n\}$ is a Cauchy sequence in C. Let $\varepsilon > 0$ be arbitrarily chosen. Since $\lim_{n \to \infty} d(x_n, F(T)) = 0$, there exists a positive integer n_0 such that

$$d(x_n, F(T)) < \frac{\varepsilon}{2}$$
, for all $n \ge n_0$.

In particular, $\inf\{d(x_{n_0}, p) : p \in F(T)\} < \frac{\varepsilon}{2}$. Thus there exists $p^* \in F(T)$ such that

$$d(x_{n_0}, p^*) < \frac{\varepsilon}{2}.$$

Now, for all $m, n \ge n_0$, we have

$$d(x_{n+m}, x_n) \le d(x_{n+m}, p^*) + d(x_n, p^*)$$
$$\le 2d(x_{n_0}, p^*)$$
$$< 2(\frac{\varepsilon}{2}) = \varepsilon.$$

Hence $\{x_n\}$ is a Cauchy sequence in *C*. Since *C* is closed in a complete CAT(0) space *X*, the sequence $\{x_n\}$ must be convergent to a point in *C*. Let $\lim_{n\to\infty} x_n = q \in C$. Since $\lim_{n\to\infty} d(x_n, F(T)) = 0$, give that d(q, F(T)) = 0. Moreover $q \in F(T)$ because F(T) is closed. Therefore, the sequence $\{x_n\}$ converges strongly to a fixed point *q* of *T*.

Senter and Dotson [16] introduced condition (I) as follows.

A mapping $T : C \to C$ is said to satisfy the condition (I) if there exists a nondecreasing function $f : [0, \infty) \to [0, \infty)$ with f(0) = 0, f(r) > 0 for all $r \in (0, \infty)$ such that $d(x, Tx) \ge f(d(x, F(T)))$ for all $x \in K$. It's worth mentioning that in the case of nonexpansive mappings T, the condition (I) is weaker than the requirement that T be hemicompact.

Theorem 3.5. Let $X, C, \{\alpha_n\}, \{\beta_n\}, \{a_n\}, \{b_n\} and \{c_n\} satisfy the hypotheses of Lemma 3.1 and let <math>T : C \to C$ be a nonexpansive mapping satisfying condition (I). Then the iteration process $\{x_n\}$ defined by (1.8) converges strongly to a fixed point of T.

Proof. Let $p \in F(T)$. By Lemma 3.1, there exists a real number c such that

$$\lim_{n \to \infty} d(x_n, p) = c.$$

If c = 0, then it's done. Suppose that c > 0. In the proof of Lemma 3.1, we have that

$$d(x_{n+1}, p) \le d(x_n, p),$$

for all $p \in F(T)$, thus $d(x_{n+1}, F(T)) \leq d(x_n, F(T))$. This implies that $\lim_{n \to \infty} d(x_n, F(T))$ exists. It follows by Lemma 3.2 and Condition (I) that

$$\lim_{n \to \infty} f(d(x_n, F(T))) \le \lim_{n \to \infty} d(x_n, Tx_n) = 0.$$

Thus,

$$\lim_{n \to \infty} f(d(x_n, F(T))) = 0$$

Since $f: [0, \infty) \to [0, \infty)$ is a nondecreasing function satisfying f(0) = 0, f(r) > 0 for all $r \in (0, \infty)$, we have

$$\lim_{n \to \infty} d(x_n, F(T)) = 0.$$

So the conclusion follows from Theorem 3.4,

Since the NSP-iteration reduces to the SP-iteration when $a_n = b_n = 1$ for all $n \in \mathbb{N}$ and to the Noor iteration when $\alpha_n = \beta_n = 1$ for all $n \in \mathbb{N}$, we have the following corollaries.

Corollary 3.6. Let X be a complete CAT(0) space, C be a nonempty closed convex subset of X, and T be a nonexpansive selfmapping on C with $F(T) \neq \emptyset$. Let $x_1 \in C$ and $\{x_n\}$ be the sequence of SP-iteration process defined by (1.6), where $\{\alpha_n\}$, $\{\beta_n\}$, $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$ are sequences in [0,1] such that $0 < a \leq a_n, b_n \leq 1$ for some 0 < a < 1 and $c_n \subset [\epsilon, 1-\epsilon]$ for some $\epsilon \in (0,1)$ for all $n \in \mathbb{N}$. Then $\{x_n\}$ Δ -converges to a fixed point of T. Furthurmore, if T satisfies condition (I), then $\{x_n\}$ converges strongly to a fixed point of T.

Corollary 3.7. Let X be a complete CAT(0) space, C be a nonempty closed convex subset of X, and T be a nonexpansive selfmapping on C with $F(T) \neq \emptyset$. Let $x_1 \in C$ and $\{x_n\}$ be the sequence of Noor iteration process defined by (1.4) (replacing + with \oplus), where $\{\alpha_n\}$, $\{\beta_n\}$, $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$ are sequences in [0,1] such that $0 < a \le a_n, b_n \le 1$ for some 0 < a < 1 and $c_n \subset [\epsilon, 1-\epsilon]$ for some $\epsilon \in (0,1)$ for all $n \in \mathbb{N}$. Then $\{x_n\}$ Δ -converges to a fixed point of T. Furthurmore, if T satisfies condition (I), then $\{x_n\}$ converges strongly to a fixed point of T.

Acknowledgements : The authors are grateful to a referee for his/her careful reading and valuable comments and suggestions which led to improve the presentation in the paper. This research was supported by Mahidol University

References

 W.A. Kirk, Geodesic geometry and fixed point theory, in: Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), in: Colecc. Abierta, vol. 64, Univ. Sevilla Secr. Publ. Seville (2003), 195-225.

350

On the Strong and $\Delta\text{-}\mathsf{Convergence}$ of NSP-Iteration ...

- [2] W.A. Kirk, Geodesic geometry and fixed point theory II, in: International Conference on Fixed Point Theory Appl., Yokohama Publ., Yokohama (2004), 113-142.
- [3] W. A. Kirk, Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory Appl. 4 (2004) 309-316.
- [4] W. A. Kirk, Some recent results in metric fixed point theory, Journal of Fixed Point Theory and Applications 2 (2) (2007) 195-207.
- [5] M. Bestvina, R-trees in topology, geometry, and group theory, in Handbook of Geometric Topology, North-Holland, Amsterdam, The Netherlands (2002), 55-91.
- [6] R. Espinola, W.A. Kirk, Fixed point theorems in R-trees with applications to graph theory, Topology and Its Appl. 153 (7) (2006) 1046-1055.
- [7] C. Semple, M. Steel, Phylogenetics, of Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, Oxford, UK, 2003.
- [8] S. Dhompongsa, B. Panyanak, On Δ-convergence theorems in CAT(0) spaces, Comput. Math. Appl. 56 (2008) 2572-2579.
- [9] B. Xu, MA. Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 267 (2002) 444-453.
- [10] W. Phuengrattana, S. Suantai, On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval, J. Comput. Appl. Math. 235 (2011) 3006-3014.
- [11] A. Şahin, M. Başarır, On the strong and Δ -convergence of SP-iteration on CAT(0) space, Journal of Inequalities and Applications 2013, 2013:311.
- [12] P. Cholamjiak, N. Pholasa, Convergence theorems for continuous functions on an arbitrary interval, Rend. Circ. Mat. Palermo (2013) 253-260.
- [13] M. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer-Verlag, Berlin, Heidelberg, 1999.
- [14] F. Bruhat, J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Etudes Sci. Publ. Math. 41 (1972) 5-251.
- [15] S. Dhompongsa, W.A. Kirk, B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal. 65 (2006) 762-772.
- [16] H.F. Senter, W.G. Dotson, Approximating fixed points of nonexpansive mappings. Proc. Am. Math. Soc. 44 (1974) 375-380.

(Received 12 April 2015) (Accepted 15 March 2016)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th