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1 Introduction

The theory of variational inequalities is a branch of the mathematical sciences
dealing with general equilibrium problems. It has a wide range of applications in
economics, operations research, industry, physical, and engineering sciences. Many
research papers have been written lately, both on the theory and applications of
this field. Important connection with main areas of pure and applied science have
been made, see for example [1–3] and the references cited therein.

Variational inequalities theory, which was introduce by Stampacchia [4], pro-
vides us with a simple, natural general and unified framework to study a wide class
of problems arising in pure and applied science. The development of variational
inequality theory can be viewed as the simultaneous pursuit of two different lines
of research. On the one hand, it reveals the fundamental facts on the qualitative
aspects of the solutions to important classes of problems. On the other hand, it
also enables us to develop highly efficient and powerful new numerical methods for
solving, for example, obstacle, unilateral, free, moving, and complex equilibrium
problems.

Moreover, Noor [5], Moudafi [6] and Pang et al. [7] have also considered the
variational inequality problems over these nonconvex sets. In [5,8], Noor has shown
that the projection technique can be extended to nonconvex variational inequalities
and has established the equivalence between the nonconvex variational inequalities
and fixed point problems by using the projection technique.

In this work we consider necessary and sufficient condition for proof the iter-
ative scheme which modified a mapping T with is Lipschitz continuous but not
strongly monotone mapping and proof the strong convergence of iterative schemes
to the solution of the strongly nonlinear general nonconvex variational inequalities.

2 Preliminaries

Let C be a closed subset of a real Hilbert space H with inner product 〈·, ·〉
and norm ‖ · ‖ respectively. Let us recall the following well-known definitions and
some auxiliary results of nonlinear convex analysis and nonsmooth analysis.

Definition 2.1. Let u ∈ H be a point not lying in C. A point v ∈ C is called a
closest point or a projection of u onto C if dC(u) = ‖u − v‖ when dC is a usual
distance. The set of all such closest points is denoted by PC(u); that is,

PC(u) = {v ∈ C : dC(u) = ‖u− v‖}. (2.1)

Definition 2.2. Let C be a subset of H . The proximal normal cone to C at x is
given by

NP
C (x) = {z ∈ H : ∃ρ > 0;x ∈ PC(x+ ρz)}. (2.2)

The following characterization of NP
C (x) can be found in [9].
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Lemma 2.3. Let C be a closed subset of a Hilbert space H. Then

z ∈ NP
C (x) if and only if ∃σ > 0, 〈z, y − x〉 ≤ σ‖y − x‖2, ∀y ∈ C. (2.3)

Clark et al. [10] and Poliquin et al. [11] have introduced and studied a new
class of nonconvex sets, which are called uniformly prox-regular sets. This class
or uniformly prox-regular sets has played an important part in many nonconvex
applications such as optimization, dynamic systems, and differential inclusions.

Definition 2.4. For a given r ∈ (0,+∞], a subset C of H is said to be uniformly
prox-regular with respect to r if, for all x ∈ C and for all 0 6= z ∈ NP

C (x), one has

〈 z

‖z‖ , x− x〉 ≤ 1

2r
‖x− x‖2, ∀x ∈ C. (2.4)

It is well known that a closed subset of a Hilbert space is convex if and only
if it is proximally smooth of radius r > 0. Thus, in Definition 2.4, in the case of
r = ∞, the uniform r-prox-regularity C is equivalent to convexity of C. Then, it
is clear that the class of uniformly prox-regular sets is sufficiently large to include
the class p-convex sets, C1,1 submanifolds (possibly with boundary) of H , the
images under a C1,1 diffeomorphism of convex sets, and many other nonconvex
sets; see [10, 11].

Let Cr be a uniformly r-prox-regular(nonconvex) set. For given nonlinear
mappings T,A, g : Cr → H , we consider the problem of finding u ∈ Cr : g(u) ∈ Cr

such that

〈Tu, g(v)− g(u)〉+ λ‖g(v)− g(u)‖2 ≥ 〈A(u), g(v) − g(u)〉, ∀v ∈ Cr : g(v) ∈ Cr.

(2.5)
which is called the strongly nonlinear general nonconvex variational inequality
(SNGNVI), introduced by Eman [12].

It is worth mentioning that if g = I, the identity mapping, then problem (2.5)
is equivalent to finding u ∈ Cr such that

〈Tu, v − u〉+ λ‖v − u‖2 ≥ 〈A(u), v − u〉, ∀v ∈ Cr, (2.6)

which is known as strongly nonlinear nonconvex variational inequality introduced
and studied by Noor [8]. If A(u) ≡ 0, then problem (2.5) is equivalent to finding
u ∈ Cr such that

〈Tu, g(v)− g(u)〉+ λ‖g(v)− g(u)‖2 ≥ 0, ∀v ∈ Cr : g(v) ∈ Cr, (2.7)

which is called the nonconvex variational inequality. If g = I and λ = 0, then
problem (2.7) is equivalent to finding u ∈ Cr such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ Cr, (2.8)

is called general nonconvex variational inequality introduce by Bounkhel et. al. [13]
and Noor [5, 8].



334 Thai J. Math. 14 (2016)/ C. Sudsukh and I. Inchan

It is known that problem (2.5) is equivalent to finding u ∈ Cr such that

0 ∈ Tu−A(u) +NP
Cr

g(u), (2.9)

which NP
Cr

g(u) denote the normal cone of Cr at g(u). The problem (2.9) is called
the the nonconvex variational inclusion problem associated with nonconvex varia-
tional inequalities (2.5).

Let C be a closed subset of a real Hilbert space H . A mapping T : C → H is
called γ − strongly monotone if there exists a constant γ > 0 such that

〈Tx− Ty, x− y〉 ≥ γ‖x− y‖2, (2.10)

for all x, y ∈ C. A mapping T is called µ− Lipschitz continuous if there exists a
constant µ > 0 such that

‖Tx− Ty‖ ≤ µ‖x− y‖, (2.11)

for all x, y ∈ C.

Lemma 2.5 ([14]). Let C be a nonempty closed subset of H, r ∈ (0,+∞] and set
Cr; = {x ∈ H : d(x,C) < r}. If C is uniform r-prox-regular, then the following
hold:

(1) for all x ∈ Cr, PC(x) 6= ∅,
(2) for all s ∈ (0, r), PC is Lipschitz continuous with constant ts =

r
r−s

on Cs,
(3) the proximal normal cone is closed as a set-valued mapping.

Lemma 2.6. In a real Hilbert space H, there holds the inequality

1. ‖x+y‖2 ≤ ‖x‖2+2〈y, x+y〉 x, y ∈ H and ‖x−y‖2 = ‖x‖2−2〈x, y〉+‖y‖2,
2. ‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2, ∀t ∈ [0, 1].

3 Main Results

In this section we first establish the equivalent between the strongly nonlinear
general nonconvex variational inequalities (2.5) and the fixed point problem with
the projection technique.

Lemma 3.1 ([12]). For given x∗ ∈ Cr is a solution of the strongly nonlinear
general nonconvex variational inequalities (2.5), if and only if

g(x∗) = PC [g(x
∗)− ρTx∗ + ρA(x∗)], (3.1)

where PC is the projection of H onto the uniformly prox-regular set Cr.

Proof. Let x∗ ∈ Cr be a solution of (2.5) , from (2.9) and for a constant ρ > 0, we
have

0 ∈ g(x∗)+ρN
P

Cr
g(x∗)−(g(x∗)−ρ(Tx∗−A(x∗)) = (I+ρN

P

Cr
)g(x∗)−(g(x∗)−ρTx

∗+ρA(x∗))
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if and only if

g(x∗) = (I + ρNP
Cr

)−1[g(x∗)− ρTx∗ + ρA(x∗)] = PC [g(x
∗)− ρTx∗ − ρA(x∗)],

where we have used the well-known fact that PC = (I + ρNP
Cr

)−1.

We now consider the problem of solving the nonconvexWiener-Hopf equations.
To be more precise, let PC be the projection of H onto nonconvex set C and
QC = I − PC , where I is identity mapping. For given nonlinear operators T,A, g
consider the problem of finding z ∈ H such that

Tg−1PCz + ρ−1QCz = A(g−1PCz), (3.2)

where we have used the fact that g−1 exists. Equation (3.2) is called the strongly
nonlinear nonconvex Wiener-Hopf equation.

Lemma 3.2 ([12]). The nonconvex Wiener-Hopf equation (3.2) has a solution
x∗ ∈ H if and only if strongly nonlinear general nonconvex variational inequality
(2.5) has a solution u ∈ Cr, provided

u = g−1PCx
∗,

x∗ = g(u)− ρ(Tu−A(u)), (3.3)

where PC is the projection of H onto the closed nonconvex set Cr.

In this paper we introduce a mapping with define by T = T1+T2 where T1 is a
Lipschitz continuous and strongly monotone mapping, T2 is a Lipschitz continuous
mapping. Then we have a mapping T is a Lipschitz continuous mapping but not
strongly monotone mapping and we have the following algorithm.

Algorithm 3.1. For arbitrarily chosen initial points x0 ∈ Cr, T1, T2 : C → H

with T = T1 + T2, the sequence {xn+1} defined by

g(un) = PCxn, n = 0, 1, 2, 3, ...

xn+1 = (1− αn)xn + αn[g(un − ρTun + ρA(un)], n = 0, 1, 2, 3, ..., (3.4)

where {αn} is a sequence in [0, 1].

Now, we suggest and analyze the algorithm (3.1) for solving the strongly non-
linear general nonconvex variational inequalities (2.5). Thus, from now on, without
loss of generality we will always assume that µ2 + β < µ1.

Theorem 3.3. Let C be a uniformly r-prox-regular closed subset of a Hilbert space
H, and let T1, T2, g, A : C → H be such that T1 is a µ1-Lipschitz continuous and
γ-strongly monotone mapping, T2 is a µ2-Lipschitz continuous mapping, g is a σ-
Lipschitz continuous and η-strongly monotone and A is a β-Lipschitz continuous.
If T = T1 + T2 and there exists constant ρ > 0 and s ∈ (Mρ,ηδT (C), ξ), such that

γts − (1 − k)(µ2 + β)ts
ts(µ2

1 − (µ2 + β)2)
−△ts < ρ <

γts − (1− k)(µ2 + β)ts
ts(µ2

1 − (µ2 + β)2)
+△ts , (3.5)
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where ts = r
r−s

, s ∈ (0, r), △ts =

√
(γts−(1−k)(µ2+β)ts)2−(µ2

1
−(µ2+β)2)(t2

s
−(1−kts)2)

ts(µ2

1
−(µ2+β)2)

,

γtsρ > 1, h < 1 with k =
√

1− 2η + σ2

and γts > (1 − k)(µ2 + β)ts +
√

(µ2
1 − (µ2 + β)2(t2s − (1− kts)2). If the sequence

of positive real number αn ∈ [0, 1] with Σ∞

n=0αn = ∞, then the sequences {xn}
obtained from Algorithm 3.1 converge to a solution of the strongly nonlinear general
nonconvex variational inequalities (2.5).

Proof. Let x∗ ∈ Cr be a solution of Wiener-Hopf equation (3.2) and from Lemma
3.1, we have

x∗ = (1− αn)x
∗ + αn(g(u)− ρ(Tu−Au)).

From the algorithm 3.1, we have

‖xn+1 − x
∗‖ = ‖(1− αn)xn + αn(g(un)− ρTun + ρA(un))− x

∗‖

= ‖(1− αn)xn + αn(g(un)− ρTun + ρA(un))− ((1− αn)x
∗

+αn(g(u)− ρ(Tu− Au)))‖

≤ (1− αn)‖xn − x
∗‖

+αn‖g(un)− ρTun + ρA(un)− g(u) + ρTu− ρAu‖

≤ (1− αn)‖xn − x
∗‖

+αn‖g(un)− g(u)− ρTun + ρTu‖+ αnρ‖Aun − Au‖

≤ (1− αn)‖xn − x
∗‖

+αn‖(un − u)− ρ(Tun − Tu)− (un − u) + (g(un)− g(u))‖

+αnρ‖Aun − Au‖

≤ (1− αn)‖xn − x
∗‖

+αn‖(un − u)− ρ(Tun − Tu)‖+ αn‖(un − u)− (g(un)− g(u))‖

+αnρ‖Aun − Au‖

≤ (1−αn)‖xn − x
∗‖+αn‖(un − u)−ρ(T1un − T1u)‖+αnρ‖T2un−T2u‖

+αn‖(un − u)− (g(un)− g(u))‖+ αnρ‖Aun −Au‖. (3.6)

From T1 are both µ1-Lipschitz continuous and γ-strongly monotone mapping and
from Lemma 2.6, we obtain

‖(un − u)− ρ(T1un − T1u)‖
2 ≤ ‖un − u‖2 − 2ρ〈un − u, T1un − T1u〉+ ρ

2‖T1un−T1u‖
2

≤ ‖un − u‖2 − 2ργ‖un − u‖2 + ρ
2
µ
2
1‖un − u‖2

= (1− 2ργ + ρ
2
µ
2
1)‖un − u‖2.

It follows that

‖(un − u)− ρ(T1un − T1u)‖ ≤
√

1− 2ργ + ρ2µ2
1‖un − u‖. (3.7)

On the other hand, from T2 is µ2-Lipschitz continuous, we have

‖T2un − T2u‖ ≤ µ2‖un − u‖. (3.8)
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From g are both σ-Lipschitz continuous and η-strongly monotone mapping and
from Lemma 2.6, we get

‖(un − u) − ρ(g(un)− g(u))‖2
≤ ‖un − u‖2 − 2〈un − u, g(un)− g(u)〉+ ‖g(un)− g(u)‖2
≤ ‖un − u‖2 − 2η‖un − u‖2 + σ2‖un − u‖2
= (1 − 2η + σ2)‖un − u‖2.

It follows that

‖(un − u)− ρ(g(un)− g(u))‖ ≤
√

1− 2η + σ2‖un − u‖. (3.9)

Since A is β-Lipschitz continuous, we have

‖Aun −Au‖ ≤ β‖un − u‖. (3.10)

Thus, by (3.6), (3.7), (3.8), (3.9) and (3.10), we have

‖xn+1−x
∗‖≤ (1−αn)‖xn−x

∗‖+αn(
√

1−2ργ + ρ2µ2
1+ρµ2+

√

1−2η + σ2+ρβ)‖un−u‖.

(3.11)

From algorithm 3.1, (3.9) and definition of PC , we have

‖un − u‖ = ‖(un − u)− (g(un)− g(u)) + (PCxn − PCx
∗)‖

≤ ‖(un − u)− (g(un)− g(u))‖+ ‖PCxn − PCx
∗‖

≤ ‖(un − u)− (g(un)− g(u))‖+ ts‖xn − x∗‖
≤ (

√

1− 2η + σ2)‖un − u‖+ ts‖xn − x∗‖.

Hence,

‖un − u‖ ≤ ts

(1− k)
‖xn − x∗‖. (3.12)

It follows that

‖xn+1 − x∗‖ ≤ (1− αn)‖xn − x∗‖+ αn(
√

1− 2ργ + ρ2µ2
1 + ρµ2 + k

+ρβ)
ts

(1− k)
‖xn − x∗‖

= (1− αn)‖xn − x∗‖+ αnθ‖xn − x∗‖, (3.13)

where θ := (
√

1− 2ργ + ρ2µ2
1 + ρµ2 + k + ρβ) ts

(1−k) , it follows that

‖xn+1 − x∗‖ ≤ (1− αn)‖xn − x∗‖+ αnθ‖xn − x∗‖
= (1− (1− θ)αn)‖xn − x∗‖

≤
n
∏

i=0

(1− (1 − θ)αi)‖x0 − x∗‖. (3.14)
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Since Σ∞

n=0αn = ∞ and conditions (3.5), we obtain

lim
n→∞

n
∏

i=0

(1− (1− θ)αi) = 0. (3.15)

It follows from (3.14) and (3.15), we have

lim
n→∞

‖xn − x∗‖ = 0. (3.16)

Which is x∗ ∈ Cr satisfying the strongly nonlinear general nonconvex variational
inequalities (2.5). This completes the proof.

Corollary 3.4 ([12]). Let PK be the Lipschitz continuous operator with constant
δ = r

r−r′
. Let T, g be strongly monotone with constant α > 0, η > 0, respectively,

and Lipschitz continuous with constant β > 0, σ > 0, respectively. Let the operator
A be Lipschitz continuous with constant γ > 0. If there exists a constant ρ such
that

|ρ−
(αδ − γ(1− (1 + δ)k))

δ(β2 − γ2)
|

<

√

(αδ − γ(1− (1 + δ)k))2 − (β2 − γ2)(δ2 − (1− (1 + δ)k)2)

δ(β2 − γ2)
, (3.17)

δρα > 1, k < 1, k =
√

1− 2η + σ2,

δα > γ(1− (1 + δ)k) +
√

(β2 − γ2)(δ2 − (1− (1 + δ)k)2),

and αn ∈ [0, 1], ∀n ≥ 0; Σ∞

n=0αn = ∞, then the approximate solution xn obtained
from Algorithm 3.1 converges to a solution z ∈ H satisfying the nonconvex Wiener-
Hopf equation (3.2).

Proof. From Theorem 3.3, let T2 ≡ 0 it follows that T = T1, then we have the
result of [12].
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