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Abstract : In this paper, we firstly characterize the relationship between the
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in ordered Γ-semigroups. Finally, we give some characterizations of semilattice
congruences and ordered semilattice congruences on ordered Γ-semigroups and
prove that

1. n is the least semilattice congruence,
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1 Preliminaries

In 1998, Gao [8] gives some characterizations of semilattice congruences and
ordered semilattice congruences on ordered semigroups. Now we also character-
ize the semilattice congruences and ordered semilattice congruences on ordered
Γ-semigroups and give some characterizations of semilattice congruences and or-
dered semilattice congruences on ordered Γ-semigroups analogous to the character-
izations of semilattice congruences and ordered semilattice congruences on ordered
semigroups.

Let M and Γ be any two nonempty sets. M is called a Γ-semigroup [3, 4] if
there exists a mapping M × Γ×M −→ M , written as (a, γ, b) −→ aγb, satisfying
the following identity (aαb)βc = aα(bβc) for all a, b, c ∈ M and α, β ∈ Γ. A Γ-
semigroup M is called a commutative Γ-semigroup if aγb = bγa for all a, b ∈ M
and γ ∈ Γ. A nonempty subset K of a Γ-semigroup M is called a sub-Γ-semigroup
of M if aγb ∈ K for all a, b ∈ K and γ ∈ Γ.

For examples of Γ-semigroups, see [1, 3, 4].

A partially ordered Γ-semigroup M is called an ordered Γ-semigroup (po-Γ-
semigroup) if for any a, b, c ∈ M and γ ∈ Γ, a ≤ b implies aγc ≤ bγc and cγa ≤ cγb.
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Example 1. For a, b ∈ [0, 1], let M = [0, a] and Γ = [0, b]. Then M is an ordered
Γ-semigroup under usual multiplication and usual partial order relation.

Example 2. Fix m ∈ Z, let M be the set of all integers of the form mn + 1 and
Γ denote the set of all integers of the form mn + m − 1 where n is an integer.
Then M is an ordered Γ-semigroup under usual addition and usual partial order
relation.

Throughout this paper, M stands for an ordered Γ-semigroup. For nonempty
subsets A and B of M and a nonempty subset Γ′ of Γ, let AΓ′B := {aγb : a ∈
A, b ∈ B and γ ∈ Γ′}. If A = {a}, then we also write {a}Γ′B as aΓ′B, and
similarly if B = {b} or Γ′ = {γ}. A nonempty subset A of M is called a left (right)
ideal of M [7] if MΓA ⊆ A (AΓM ⊆ A). A is called an ideal of M if it is both a
left ideal and a right ideal of M . A left ideal (right ideal, ideal) A of M is called
an ordered left ideal (right ideal, ideal) of M if for any b ∈ M and a ∈ A, b ≤ a
implies b ∈ A.

The following definitions in this paper are introduced analogous some defini-
tions in [5, 7, 8].

A left ideal (right ideal, ideal) A of M is called an s-prime left ideal (right
ideal, ideal) of M if for any a, b ∈ M and γ ∈ Γ, aγb ∈ A implies a ∈ A or b ∈ A.
Equivalently, for any subsets B and C of M and γ ∈ Γ, BγC ⊆ A implies B ⊆ A
or C ⊆ A. An s-prime left ideal (right ideal, ideal) A of M is called an ordered
s-prime left ideal (right ideal, ideal) of M if A is an ordered left ideal (right ideal,
ideal) of M . Let

SP (M) := {A : A is an s-prime ideal of M},
OSP (M) := {A : A is an ordered s-prime ideal of M}.

Then ∅ 6= OSP (M) ⊆ SP (M).

For a subset H of M and a ∈ M , denote (H] := {t ∈ M : t ≤ h for some
h ∈ H}, [H) := {t ∈ M : h ≤ t for some h ∈ H} and a ∪ H := {a} ∪ H. For
H = {a}, we also write ({a}] as (a]. Clearly, H ⊆ (H], ((H]] = (H] and for any
subsets A and B of M with A ⊆ B, we have (A] ⊆ (B]. A sub-Γ-semigroup F
of M is called a left (right) filter of M if for any a, b ∈ M and γ ∈ Γ, aγb ∈ F
implies b ∈ F (a ∈ F ). F is called a filter of M if it is both a left filter and a right
filter of M . A left filter (right filter, filter) F of M is called an ordered left filter
(right filter, filter) of M if for any b ∈ M and a ∈ F, a ≤ b implies b ∈ F . The
intersection of all filters (ordered filters) of M containing a nonempty subset A of
M is the filter (ordered filter) of M generated by A. For A = {x}, let

n(x) denote the filter of M generated by {x},
N(x) denote the ordered filter of M generated by {x}.

An equivalence relation σ on M is called a congruence [2] if for any a, b, c ∈ M
and γ ∈ Γ, (a, b) ∈ σ implies (aγc, bγc) ∈ σ and (cγa, cγb) ∈ σ. A congruence σ
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on M is called a semilattice congruence [6] if for all a, b ∈ M and γ ∈ Γ, (aγa, a) ∈
σ and (aγb, bγa) ∈ σ. A semilattice congruence σ on M is called an ordered
semilattice congruence if for any a, b ∈ M and γ ∈ Γ, a ≤ b implies (a, aγb) ∈ σ.
Now, let

SC(M) := {σ : σ is a semilattice congruence on M},
OSC(M) := {σ : σ is an ordered semilattice congruence on M}.

Then ∅ 6= OSC(M) ⊆ SC(M).

For a nonempty subset A of M , define equivalence relations on M as follows:

σA := {(x, y) ∈ M ×M : x, y ∈ A or x, y 6∈ A},
n := {(x, y) ∈ M ×M : n(x) = n(y)},
N := {(x, y) ∈ M ×M : N(x) = N(y)}.

We note here that σA = σM\A.

For any congruence σ on M and x ∈ M , let

f(x)σ denote the filter of M generated by σ-class (x)σ,

t denote the filter of M generated by
⋃

y∈(x)σ

n(y),

F (x)σ denote the ordered filter of M generated by σ-class (x)σ,

T denote the ordered filter of M generated by
⋃

y∈(x)σ

N(y).

The following results are also necessary for our considerations.

Theorem 1.1. Let F be a nonempty subset of M. Then F is a left filter of M if
and only if M \ F = ∅ or M \ F is an s-prime left ideal of M.

Proof. Assume that F is a left filter of M and M \ F 6= ∅. First to show that
M \ F is a left ideal of M , let x ∈ M, y ∈ M \ F and γ ∈ Γ. Since F is a left
filter of M and y 6∈ F, xγy ∈ M \ F . Thus M \ F is a left ideal of M . Next, let
x, y ∈ M and γ ∈ Γ be such that xγy ∈ M \ F. Since F is a sub-Γ-semigroup of
M,x ∈ M \ F or y ∈ M \ F . Thus M \ F is an s-prime left ideal of M .

Conversely, if M \ F = ∅, then F = M. Hence F is a left filter of M . Assume
that M \F is an s-prime left ideal of M . First to show that F is a sub-Γ-semigroup
of M , let x, y ∈ F and γ ∈ Γ. Then xγy ∈ F because M \ F is an s-prime left
ideal of M . Thus F is a sub-Γ-semigroup of M . Next, let x, y ∈ M and γ ∈ Γ be
such that xγy ∈ F . Then y ∈ F because M \ F is a left ideal of M , so F is a left
filter of M . ¤

A similar result holds if we replace the word “left” by “right”. Then we get
the following.
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Corollary 1.2. Let F be a nonempty subset of M. Then F is a filter of M if and
only if M \ F = ∅ or M \ F is an s-prime ideal of M.

Theorem 1.3. Let F be a nonempty subset of M. Then F is an ordered left filter of
M if and only if M \ F = ∅ or M \ F is an ordered s-prime left ideal of M.

Proof. Assume that F is an ordered left filter of M and M \F 6= ∅. By Theorem
1.1, M \ F is an s-prime left ideal of M . Now, let x ∈ M and y ∈ M \ F be such
that x ≤ y. Then x ∈ M \ F because F is an ordered left filter of M , so M \ F is
an ordered s-prime left ideal of M .

Conversely, if M \F = ∅, then F = M. Hence F is an ordered left filter of M .
Assume that M \ F is an ordered s-prime left ideal of M . By Theorem 1.1, F is
a left filter of M . Now, let x ∈ M and y ∈ F be such that y ≤ x. Then x ∈ F
because M \F is an ordered left ideal of M , so F is an ordered left filter of M . ¤

Corollary 1.4. Let F be a nonempty subset of M. Then F is an ordered filter of
M if and only if M \ F = ∅ or M \ F is an ordered s-prime ideal of M.

2 Semilattice Congruences and Ordered Semilat-
tice Congruences

In this section, we characterize the relationship between the semilattice con-
gruences, filters and s-prime ideals in ordered Γ-semigroups. Likewise, the rela-
tionship between the ordered semilattice congruences, ordered filters and ordered
s-prime ideals in ordered Γ-semigroups are characterized.

The following lemmas are necessary for the main results and the first two
lemmas are easy to verify.

Lemma 2.1. An equivalence relation σ on M is a congruence if and only if for
any a, b, c, d ∈ M and γ ∈ Γ, (a, b) ∈ σ and (c, d) ∈ σ imply (aγc, bγd) ∈ σ.

Lemma 2.2. If σ ∈ SC(M), then the following statements hold.

(a) For each x ∈ M , the σ-class (x)σ is a sub-Γ-semigroup of M .

(b) The set M/σ := {(x)σ : x ∈ M} is a commutative Γ-semigroup under the
multiplication defined by (x)σγ(y)σ = (xγy)σ for all (x)σ, (y)σ ∈ M/σ and
γ ∈ Γ.

Lemma 2.3. Let A be a subset of M and σA ∈ SC(M). If x ∈ M \A and a ∈ A
with xµa 6∈ A (resp. aµx 6∈ A) for some µ ∈ Γ, then xγa 6∈ A (resp. aγx 6∈ A) for
all γ ∈ Γ.

Proof. Assume that x ∈ M \ A, a ∈ A and xµa 6∈ A for some µ ∈ Γ. Then
(x, xµa) ∈ σA, so (x)σA

= (xµa)σA
. Suppose that there exists γ ∈ Γ such that
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xγa ∈ A. Then (a, xγa) ∈ σA. Thus (a)σA
= (xγa)σA

. By Lemma 2.2 (b),
(x)σA

= (xµa)σA
= (xµxγa)σA

= (xγa)σA
= (a)σA

. Thus (x, a) ∈ σA, so a 6∈ A.
This is a contradiction. Therefore xγa 6∈ A for all γ ∈ Γ. ¤

As a consequence of this result, we obtain

Lemma 2.4. Let A be a nonempty subset of M. Then σA ∈ SC(M) if and only
if one of A or M \A is an s-prime ideal of M.

Proof. Assume that σA ∈ SC(M). If A = M , then A ∈ SP (M). Suppose that
A ⊂ M. Then M \ A 6= ∅. First to show that A and M \ A are sub-Γ-semigroups
of M , let x, y ∈ A and γ ∈ Γ. Then (xγy, yγy) ∈ σA and (yγy, y) ∈ σA because
(x, y) ∈ σA, so (xγy, y) ∈ σA. Hence xγy ∈ A, so A is a sub-Γ-semigroup of M .
The same argument applies to M \A, we have M \A is a sub-Γ-semigroups of M .
Next, consider the following two cases:
Case 1: MΓA ⊆ A. Then AΓM ⊆ A because (xγa, aγx) ∈ σA and xγa ∈ A for
all x ∈ M, a ∈ A and γ ∈ Γ. Hence A is an ideal of M .
Case 2: MΓA 6⊆ A. Then there exist x ∈ M,a ∈ A,µ ∈ Γ but xµa 6∈ A. Since A
is a sub-Γ-semigroup of M , x 6∈ A. By Lemma 2.3, xγa 6∈ A for all γ ∈ Γ. Thus
(x, xγa) ∈ σA for all γ ∈ Γ. By Lemma 2.2 (b), (x)σA = (xγa)σA = (x)σAγ(a)σA

for all γ ∈ Γ. Obviously, M \ A = (x)σA and A = (a)σA , so M \ A = (M \ A)γA
for all γ ∈ Γ. This implies that

M \A =
⋃

γ∈Γ

(M \A)γA = (M \A)ΓA.

Therefore

(M \A)ΓM = (M \A)Γ(A ∪ (M \A)) ⊆ ((M \A)ΓA) ∪ (M \A) = M \A,

so M \A is a right ideal of M . Since (xµa, aµx) ∈ σA and xµa 6∈ A, aµx 6∈ A. By
symmetry, M \A is a left ideal of M . This proves that M \A is an ideal of M .

Assume that A is an ideal of M . Let x, y ∈ M and γ ∈ Γ be such that
xγy ∈ A. If x, y 6∈ A, then (x, y) ∈ σA. Thus (xγx, x) ∈ σA and (xγx, xγy) ∈ σA,
so (x, xγy) ∈ σA. Thus xγy 6∈ A, which is impossible. Hence A ∈ SP (M).
Similarly, we can show that if M \A is an ideal of M , then M \A ∈ SP (M).

Conversely, assume that A ∈ SP (M). Now, let x, y ∈ M be such that (x, y) ∈
σA, c ∈ M and γ ∈ Γ. Then we have the following two cases:
Case 1: x, y ∈ A. Then cγx, cγy, xγc, yγc ∈ A because A is an ideal of M . Thus
(cγx, cγy) ∈ σA and (xγc, yγc) ∈ σA.
Case 2: x, y 6∈ A. Then cγx ∈ A if and only if cγy ∈ A. Thus (cγx, cγy) ∈ σA.
By symmetry, (xγc, yγc) ∈ σA.

Hence σA is a congruence on M . Next, let a, b ∈ M and γ ∈ Γ. Then a ∈ A
if and only if aγa ∈ A, so (a, aγa) ∈ σA. Similarly, we have aγb ∈ A if and only
if bγa ∈ A, so (aγb, bγa) ∈ σA. This proves that σA ∈ SC(M). Similarly, we can
show that if M \A ∈ SP (M), then σA ∈ SC(M).
Hence the proof is completed. ¤
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Lemma 2.5. If A is a nonempty subset of M, then the following statements are
equivalent.

(a) σA ∈ OSC(M).

(b) One of A or M \A is an ordered s-prime ideal of M.

Proof. Assume that σA ∈ OSC(M). By Lemma 2.4, A ∈ SP (M) or M \ A ∈
SP (M). Assume that A ∈ SP (M). Now, let x ∈ M and a ∈ A be such that x ≤ a
and γ ∈ Γ. Then (x, xγa) ∈ σA, so x ∈ A because xγa ∈ A. Hence A ∈ OSP (M).
Similarly, we can show that if M \A ∈ SP (M), then M \A ∈ OSP (M).

Conversely, assume that A ∈ OSP (M). Then σA ∈ SC(M) by Lemma 2.4.
Now, let a, b ∈ M be such that a ≤ b and γ ∈ Γ. If a ∈ A, then aγb ∈ A. If a 6∈ A,
then b 6∈ A and so aγb 6∈ A. Hence (a, aγb) ∈ σA, so σA ∈ OSC(M). Similarly, we
can show that if M \A ∈ OSP (M), then σA ∈ OSC(M).
Hence the proof is completed. ¤

Lemma 2.6. If x ∈ M and σ ∈ SC(M), then the following statements hold.

(a) f(x)σ = {a ∈ M : a ∈ (x)σ or uγa ∈ (x)σ for some u ∈ f(x)σ and γ ∈ Γ}.
(b) f(x)σ = t.

(c) If b ∈ f(x)σ, then f(b)σ ⊆ f(x)σ.

(d) σ = {(x, y) ∈ M ×M : f(x)σ = f(y)σ}.

Proof. (a) Let

N := {a ∈ M : a ∈ (x)σ or uγa ∈ (x)σ for some u ∈ f(x)σ and γ ∈ Γ}.

It is clear that (x)σ ⊆ N ⊆ f(x)σ. Conversely, to show that N is a filter of M , let
a, b ∈ N and γ ∈ Γ. If u1γ1a, u2γ2b ∈ (x)σ for some u1, u2 ∈ f(x)σ and γ1, γ2 ∈ Γ,
then u1γ1aγu2γ2b ∈ (x)σ by Lemma 2.2 (a). It follows from Lemma 2.2 (b) that

(x)σ = (u1γ1aγu2γ2b)σ = (u1γ1aγbγ2u2)σ = (u1γ1u2γ2aγb)σ.

Thus aγb ∈ N because u1γ1u2 ∈ f(x)σ. Similarly, it is easy to verify in the remain
cases that aγb ∈ N . Hence N is a sub-Γ-semigroup of M . We note here that for
any a, b ∈ M and γ ∈ Γ, aγb ∈ N implies bγa ∈ N . Next, let a, b ∈ M and γ ∈ Γ
be such that aγb ∈ N. Since N ⊆ f(x)σ, we have a, b ∈ f(x)σ. Since aγb ∈ N ,
aγb ∈ (x)σ or uαaγb ∈ (x)σ for some u ∈ f(x)σ and α ∈ Γ. Thus b ∈ N . Since
bγa ∈ N, a ∈ N . Hence N is a filter of M , so f(x)σ ⊆ N . Therefore N = f(x)σ.

(b) From the fact that (x)σ ⊆
⋃

y∈(x)σ

n(y), we get f(x)σ ⊆ t. On the other hand,

we have n(y) ⊆ f(x)σ for all y ∈ (x)σ. Thus
⋃

y∈(x)σ

n(y) ⊆ f(x)σ, so t ⊆ f(x)σ.

Therefore f(x)σ = t.
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(c) Let b ∈ f(x)σ. By (a), we have b ∈ (x)σ or uαb ∈ (x)σ for some u ∈ f(x)σ

and α ∈ Γ. Thus (x)σ = (b)σ or (x)σ = (uαb)σ which implies that (b)σ ⊆ f(x)σ.
Therefore f(b)σ ⊆ f(x)σ.

(d) Let
τ := {(x, y) ∈ M ×M : f(x)σ = f(y)σ}.

It is clear that σ ⊆ τ. Conversely, let x, y ∈ M be such that (x, y) ∈ τ . Then
f(x)σ = f(y)σ, so x ∈ f(y)σ and y ∈ f(x)σ. By (a), if x ∈ (y)σ or y ∈ (x)σ,
then (x)σ = (y)σ. Let u1γ1x ∈ (y)σ and u2γ2y ∈ (x)σ for some u1, u2 ∈ f(x)σ =
f(y)σ and γ1, γ2 ∈ Γ. It follows from Lemma 2.2 (b) that (x)σ = (u2γ2y)σ =
(u2γ2yγ2y)σ = (xγ2y)σ = (xγ2u1γ1x)σ = (xγ2xγ1u1)σ = (xγ1u1)σ = (u1γ1x)σ =
(y)σ. Hence (x, y) ∈ σ, so σ = τ . ¤

Immediately from Lemma 2.6, we have

Corollary 2.7. If x ∈ M and σ ∈ SC(M), then f(x)σ = {a ∈ M : a ∈ (x)σ or
uγa ∈ (x)σ or aµv ∈ (x)σ or uγaµv ∈ (x)σ for some u, v ∈ f(x)σ and γ, µ ∈ Γ}.

Corollary 2.8. If x ∈ M , then the following statements hold.

(a) n ∈ SC(M).

(b) f(x)n = n(x).

(c) n(x) = {a ∈ M : a ∈ (x)n or uγa ∈ (x)n for some u ∈ n(x) and γ ∈ Γ}.

Proof. (a) Let a, b ∈ M be such that (a, b) ∈ n, c ∈ M and γ ∈ Γ. Then n(a) =
n(b). Since bγc ∈ n(bγc), we have b, c ∈ n(bγc). Thus n(a) = n(b) ⊆ n(bγc), so
a, c ∈ n(bγc). Hence aγc ∈ n(bγc), so n(aγc) ⊆ n(bγc). Similarly, n(bγc) ⊆ n(aγc).
Therefore n(aγc) = n(bγc), so (aγc, bγc) ∈ n. Similarly, (cγa, cγb) ∈ n. This
proves that n is a congruence on M . Next, let a, b, c ∈ M and γ ∈ Γ. Then
a ∈ n(aγa) because aγa ∈ n(aγa), so n(a) ⊆ n(aγa). Since a ∈ n(a), aγa ∈ n(a).
Hence n(aγa) ⊆ n(a), so n(aγa) = n(a). Therefore (aγa, a) ∈ n. Since aγb ∈
n(aγb), bγa ∈ n(aγb). Thus n(bγa) ⊆ n(aγb). Similarly, n(aγb) ⊆ n(bγa). Hence
n(aγb) = n(bγa), so (aγb, bγa) ∈ n. Therefore n ∈ SC(M).

(b) By (a) and Lemma 2.6 (b), f(x)n = t where t is the filter of M generated
by

⋃

y∈(x)n

n(y). We note here that

⋃

y∈(x)n

n(y) = n(x).

Hence t = n(x), so f(x)n = n(x).
(c) By (b) and Lemma 2.6 (a),

n(x) = f(x)n

= {a ∈ M : a ∈ (x)n or uγa ∈ (x)n for some u ∈ f(x)n and γ ∈ Γ}
= {a ∈ M : a ∈ (x)n or uγa ∈ (x)n for some u ∈ n(x) and γ ∈ Γ}.
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Hence the proof is completed. ¤

Lemma 2.9. If x ∈ M and σ ∈ OSC(M), then the following statements hold.

(a) F (x)σ = {a ∈ M : a ∈ [(x)σ) or uγa ∈ [(x)σ) for some u ∈ F (x)σ and
γ ∈ Γ}.

(b) F (x)σ = T.

(c) If b ∈ F (x)σ, then F (b)σ ⊆ F (x)σ.

(d) σ = {(x, y) ∈ M ×M : F (x)σ = F (y)σ}.

Proof. (a) Let

N := {a ∈ M : uγa ∈ [(x)σ) or a ∈ [(x)σ) for some u ∈ F (x)σ and γ ∈ Γ}.

It is clear that (x)σ ⊆ N ⊆ F (x)σ. Conversely, to show that N is an or-
dered filter of M , let a, b ∈ N and γ ∈ Γ. If u1γ1a, u2γ2b ∈ [(x)σ) for some
u1, u2 ∈ F (x)σ and γ1, γ2 ∈ Γ, then y1 ≤ u1γ1a and y2 ≤ u2γ2b for some y1, y2 ∈
(x)σ. Thus y1γy2 ≤ u1γ1aγu2γ2b and y1γy2 ∈ (x)σ by Lemma 2.2 (a). Hence
(y1γy2, y1γy2γu1γ1aγu2γ2b) ∈ σ which implies that (x, xγu1γ1aγu2γ2b) ∈ σ. It
follows from Lemma 2.2 (b) that

(x)σ = (xγu1γ1aγu2γ2b)σ = (xγu1γ1aγbγ2u2)σ = (xγu1γ1u2γ2aγb)σ.

Thus aγb ∈ N because xγu1γ1u2 ∈ F (x)σ. Similarly, it is easy to verify in the
remain cases that aγb ∈ N . Hence N is a sub-Γ-semigroup of M . We note here
that for any a, b ∈ M and γ ∈ Γ, aγb ∈ N implies bγa ∈ N . Let a, b ∈ M be such
that aγb ∈ N and γ ∈ Γ. Since N ⊆ F (x)σ, we have a, b ∈ F (x)σ. Since aγb ∈ N ,
aγb ∈ [(x)σ) or uαaγb ∈ [(x)σ) for some u ∈ F (x)σ and α ∈ Γ. Thus b ∈ N . Since
bγa ∈ N, a ∈ N . Hence N is a filter of M . Next, let b ∈ M and a ∈ N be such
that a ≤ b. Then a ∈ [(x)σ) or uαa ∈ [(x)σ) for some u ∈ F (x)σ and α ∈ Γ which
implies that b ∈ [(x)σ) or uαb ∈ [(x)σ). Thus b ∈ N , so N is an ordered filter of
M . Hence F (x)σ ⊆ N , so N = F (x)σ.

(b) It is similar to the proof of Lemma 2.6 (b).
(c) Let b ∈ F (x)σ and γ ∈ Γ. By (a), we have b ∈ [(x)σ) or uαb ∈ [(x)σ)

for some u ∈ F (x)σ and α ∈ Γ. Thus (x)σ = (xγb)σ or (x)σ = (xγuαb)σ which
implies that (b)σ ⊆ F (x)σ. Therefore F (b)σ ⊆ F (x)σ.

(d) Let

τ := {(x, y) ∈ M ×M : F (x)σ = F (y)σ}.

It is clear that σ ⊆ τ. Conversely, let x, y ∈ M be such that (x, y) ∈ τ and
γ ∈ Γ. Then F (x)σ = F (y)σ, so x ∈ F (y)σ and y ∈ F (x)σ. By (a), it suffices
to show that the following case is satisfied. If u1γ1x ∈ [(y)σ) and u2γ2y ∈ [(x)σ)
for some u1, u2 ∈ F (x)σ = F (y)σ and γ1, γ2 ∈ Γ, then (y, yγu1γ1x) ∈ σ and
(x, xγu2γ2y) ∈ σ. It follows from Lemma 2.2 (b) that
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(u2γ2y)σ = (u2γ2yγu1γ1x)σ = (u1γ1xγu2γ2y)σ = (u1γ1x)σ.

Hence (x)σ = (xγu2γ2y)σ = (u2γ2yγx)σ = (u1γ1xγx)σ = (u1γ1x)σ = (u2γ2y)σ =
(u2γ2yγy)σ = (yγu2γ2y)σ = (yγu1γ1x)σ = (y)σ, so (x, y) ∈ σ. Similarly, it is easy
to verify in the remain cases that (x, y) ∈ σ. Therefore σ = τ . ¤

Immediately from Lemma 2.9, we have

Corollary 2.10. If x ∈ M and σ ∈ OSC(M), then F (x)σ = {a ∈ M : a ∈ [(x)σ)
or uγa ∈ [(x)σ) or aµv ∈ [(x)σ) or uγaµv ∈ [(x)σ) for some u, v ∈ F (x)σ and
γ, µ ∈ Γ}.

Corollary 2.11. If x ∈ M , then the following statements hold.

(a) N ∈ OSC(M).

(b) F (x)N = N(x).

(c) N(x) = {a ∈ M : a ∈ [(x)N ) or uγa ∈ [(x)N ) for some u ∈ N(x) and
γ ∈ Γ}.

Proof. (a) By the similarity of the proof of Corollary 2.8 (a), we have N ∈
SC(M). Now, let a, b ∈ M be such that a ≤ b and γ ∈ Γ. Then a ∈ N(aγb)
because aγb ∈ N(aγb), so N(a) ⊆ N(aγb). Since a ∈ N(a), b ∈ N(a). Thus aγb ∈
N(a), so N(aγb) ⊆ N(a). Hence N(a) = N(aγb), so (a, aγb) ∈ N . Therefore
N ∈ OSC(M).

(b) It is similar to the proof of Corollary 2.8 (b).
(c) It is similar to the proof of Corollary 2.8 (c).

Hence the proof is completed. ¤

3 Main Results

In last section, we characterize the least semilattice congruences and ordered
semilattice congruences on ordered Γ-semigroups and show that N is not the least
semilattice congruence on ordered Γ-semigroups in general.

Theorem 3.1.

(a) n =
⋂

I∈SP (M)

σI .

(b) N =
⋂

I∈OSP (M)

σI .

(b) n ⊆ N .

Proof. (a) Let
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τ :=
⋂

I∈SP (M)

σI .

Let x, y ∈ M be such that (x, y) ∈ n. Then n(x) = n(y). Suppose that there
exists I ∈ SP (M) such that (x, y) 6∈ σI . By Corollary 1.2, M \ I is a filter of
M . Without loss of generality, we may assume that x ∈ I and y ∈ M \ I. Then
x ∈ n(x) = n(y) ⊆ M\I, which is impossible. Hence (x, y) ∈ σI for all I ∈ SP (M),
so (x, y) ∈ τ . Conversely, let x, y ∈ M be such that (x, y) ∈ τ . Then (x, y) ∈ σI

for all I ∈ SP (M). Suppose that (x, y) 6∈ n. Then n(x) 6= n(y). By Corollary 2.8
(b), f(x)n = n(x) 6= n(y) = f(y)n. Without loss of generality, we may assume
that f(x)n 6⊆ f(y)n. By Lemma 2.6 (c), x 6∈ f(y)n. Then (x, y) 6∈ σM\f(y)n

.
Since M \ f(y)n 6= ∅, it follows from Corollary 1.2 that M \ f(y)n ∈ SP (M). This
implies that (x, y) ∈ σM\f(y)n

, which is impossible. Hence (x, y) ∈ n, this proves
that n =

⋂{σI : I ∈ SP (M)}.
(b) It is similar to the proof of (a).
(c) Since OSP (M) ⊆ SP (M), it follows from (a) and (b) that n ⊆ N .

Hence the theorem is proved. ¤

Theorem 3.2. If σ ∈ SC(M), then the following statements hold.

(a) σ =
⋂

x∈M

σM\f(x)σ
.

(b) n ⊆ σ, i.e., n is the least element of SC(M).

Proof. (a) Let

τ :=
⋂

x∈M

σM\f(x)σ
.

Let x, y ∈ M be such that (x, y) ∈ σ. Then f(x)σ = f(y)σ by Lemma 2.6 (d).
Suppose that (x, y) 6∈ σM\f(a)σ

for some a ∈ M . Without loss of generality,
we may assume that x ∈ M \ f(a)σ and y 6∈ M \ f(a)σ. Then y ∈ f(a)σ, it
follows from Lemma 2.6 (c) that x ∈ f(x)σ = f(y)σ ⊆ f(a)σ. It is impossible, so
(x, y) ∈ σM\f(a)σ

for all a ∈ M . Conversely, let x, y ∈ M be such that (x, y) ∈ τ .
Then (x, y) ∈ σM\f(a)σ

for all a ∈ M . Suppose that (x, y) 6∈ σ. By Lemma 2.6 (d),
f(x)σ 6= f(y)σ. Without loss of generality, we may assume that f(x)σ 6⊆ f(y)σ.
By Lemma 2.6 (c), x 6∈ f(y)σ. Then (x, y) 6∈ σM\f(y)σ

, which is impossible. Hence
(x, y) ∈ σ, this proves that

σ =
⋂

x∈M

σM\f(x)σ
.

(b) By Corollary 1.2, M \ f(x)σ = ∅ or M \ f(x)σ ∈ SP (M) for all x ∈ M .
Thus

{σM\f(x)σ
: x ∈ M} ⊆ {σI : I ∈ SP (M)}.
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By (a) and Theorem 3.1 (a), n ⊆ σ. Therefore n is the least semilattice congruence
on M . ¤

By the similarity of the proof of Theorem 3.2, we obtain

Theorem 3.3. If σ ∈ OSC(M), then the following statements hold.

(a) σ =
⋂

x∈M

σM\F (x)σ
.

(b) N ⊆ σ, i.e.,N is the least element of OSC(M).

Immediately from Theorem 3.2 and Theorem 3.3, we have

Corollary 3.4.

(a) n =
⋂

x∈M

σM\n(x).

(b) N =
⋂

x∈M

σM\N(x).

We shall give an example of an ordered Γ-semigroup M with N is not the least
semilattice congruence on M .

Example 3.5. Let M = {a, b, c, d} and Γ = {γ} with the multiplication defined
by

xγy =
{

b if x, y ∈ {a, b},
c otherwise.

First to show that M is a Γ-semigroup, suppose not. Then there exist x, y, z ∈
M such that (xγy)γz 6= xγ(yγz). If (xγy)γz = b, then x, y, z ∈ {a, b}. Thus
xγ(yγz) = b, which is impossible. If xγ(yγz) = b, then x, y, z ∈ {a, b}. Thus
(xγy)γz = b, which is impossible. Hence (xγy)γz = xγ(yγz) for all x, y, z ∈
M . Obviously, xγy = yγx for all x, y ∈ M . Therefore M is a commutative
Γ-semigroup.

Define a relation ≤ on M as follows:

≤:= {(a, a), (b, b), (c, c), (d, d), (b, c), (b, d), (c, d)}.

Then (M,≤) is a partially ordered set. Let x, y ∈ M be such that x ≤ y. Since
xγc = c = cγx and xγd = c = dγx for all x, y ∈ M and b ≤ c, xγz ≤ yγz and
zγx ≤ zγy for all z ∈ M . Hence M is an ordered Γ-semigroup. We shall show
that SC(M) = {n,N} and n ⊂ N . Let

σ1 = M ×M,

σ2 = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (c, d), (d, c)}.
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It is easy to see that σ1, σ2 ∈ SC(M). Since (aγa, a) = (b, a) and (dγd, d) =
(c, d), σ2 ⊆ σ for all σ ∈ SC(M). Let σ ∈ SC(M). Then we have the following
two cases:
Case 1: (b, c) ∈ σ. Since (a, b) ∈ σ, (a, c) ∈ σ. Thus (a, d), (b, d) ∈ σ because
(c, d) ∈ σ. Hence σ = σ1.
Case 2: (b, c) 6∈ σ. If (a, c) ∈ σ, then (b, c) ∈ σ because (b, a) ∈ σ, which is
impossible. If (a, d) ∈ σ, then (a, c) ∈ σ because (d, c) ∈ σ, which is impossible. If
(b, d) ∈ σ, then (b, c) ∈ σ because (d, c) ∈ σ, which is impossible. Hence σ = σ2.

This proves that SC(M) = {σ1, σ2}. We shall show that σ1 = N and σ2 = n.
We can easily get all ideals of M as follows:

P1 = M,P2 = {c, d}, P3 = {b, c}, P4 = {c}, P5 = {a, b, c}, P6 = {b, c, d}.

It is easy to see that SP (M) = {P1, P2} and OSP (M) = {P1}. By Theorem 3.1,
we obtain that

N =
⋂

I∈OSP (M)

σI = σP1 = M ×M = σ1

and

n =
⋂

I∈SP (M)

σI = σP1 ∩ σP2 = σP2 .

We note here that

σP2 = {(x, y) ∈ M ×M : x, y ∈ P2 or x, y 6∈ P2}
= {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (c, d), (d, c)}
= σ2.

Hence n = σ2, so n ⊂ N .
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