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Abstract : Identities are used to classify algebras into collections called varieties,
hyperidentities are used to classify varieties into collections called hypervarieties.
Hyperidentities have an interpretation in the theory of switching circuits and are
also closely related to clone theory. The tool used to study hyperidentities is the
concept of a hypersubstitution, see [1]. The generalized concept of a hypersub-
stitution is a generalized hypersubstitution. Generalized hypersubstitutions are
mappings from the set of all fundamental operations into the set of all terms
of the same language, which need not necessarily preserve the arities. Identities
which are closed under generalized hypersubstitutions are called strong hyperiden-
tities. A variety in which each of its identity is a strong hyperidentity is called
strongly solid. In this paper we study a submonoid of the monoid of all gener-
alized hypersubstitutions which is called the monoid of all outermost generalized
hypersubstitutions and determine the greatest outermost-strongly solid variety of
commutative semigroups.
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1 Introduction

Let n ≥ 1 be a natural number and let Xn := {x1, x2, ..., xn} be an n-element
set which is called an n-element alphabet and its elements are called variables. Let
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X := {x1, x2, ...} be a countably infinite set of variables and let {fi | i ∈ I} be a
set of ni-ary operation symbols, which is disjoint from X , indexed by the set I.
To every ni-ary operation symbol fi we assign a natural number ni ≥ 1, called
the arity of fi. The sequence τ = (ni)i∈I is called the type.

For n ≥ 1, an n-ary term of type τ is defined in the following inductive way:

(i) Every variable xi ∈ Xn is an n-ary term of type τ .

(ii) If t1, ..., tni
are n-ary terms of type τ then fi(t1, ..., tni

) is an n-ary term of
type τ .

The smallest set which contains x1, ..., xn and is closed under any finite number
of applications of (ii) is denoted by Wτ (Xn). The set Wτ (X) := ∪∞

n=1Wτ (Xn) is
called the set of all terms of type τ . An equation of type τ is a pair (s, t) where
s, t ∈ Wτ (X). Such pairs are commonly written as s ≈ t. Let A := (A, (fA

i )i∈I)
be an algebra of type τ . An equation s ≈ t is an identity of an algebra A,
denoted by A |= s ≈ t if sA = tA where sA and tA are the corresponding induced
term functions on A. A generalized hypersubstitution of type τ is a mapping
σ : {fi | i ∈ I} −→ Wτ (X) which does not necessarily preserve arity. The
set of all generalized hypersubstitutions of type τ is denoted by HypG(τ). To
define a binary operation on HypG(τ), we define first the concept of a generalized
superposition of terms Sm : Wτ (X)m+1 −→ Wτ (X) by the following steps:

for any term t ∈ Wτ (X),

(i) if t = xj , 1 ≤ j ≤ m, then Sm(xj , t1, . . . , tm) := tj ,

(ii) if t = xj ,m < j ∈ N, then Sm(xj , t1, . . . , tm) := xj ,

(iii) if t = fi(s1, . . . , sni
), then

Sm(t, t1, . . . , tm) := fi(S
m(s1, t1, . . . , tm), . . . , Sm(sni

, t1, . . . , tm)).

Every generalized hypersubstitution σ can be extended to a mapping σ̂ :
Wτ (X) −→ Wτ (X) by the following steps:

(i) σ̂[x] := x ∈ X ,

(ii) σ̂[fi(t1, . . . , tni
)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni

]), for any ni-ary operation
symbol fi.

Then we can define a binary operation ◦G on HypG(τ) by σ1 ◦G σ2 := σ̂1 ◦ σ2

where ◦ denotes the usual composition of mappings and σ1, σ2 ∈ HypG(τ). Let
σid be the hypersubstitution which maps each ni-ary operation symbol fi to the
term fi(x1, . . . , xni

).
Then we have the following proposition.

Proposition 1.1. ([2]) For arbitrary terms t, t1, . . . , tn ∈ Wτ (X) and for arbi-
trary generalized hypersubstitutions σ, σ1, σ2 we have

(i) Sn(σ̂[t], σ̂[t1], . . . , σ̂[tn]) = σ̂[Sn(t, t1, . . . , tn)],
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(ii) (σ̂1 ◦ σ2 )̂ = σ̂1 ◦ σ̂2.

It turns out that HypG(τ) := (HypG(τ), ◦G, σid) is a monoid and the monoid
Hyp(τ) := (Hyp(τ), ◦h, σid) of all arity preserving hypersubstitutions of type τ

forms a submonoid of HypG(τ).
Let M be a submonoid of HypG(τ) and V be a variety of algebras of type

τ . An identity s ≈ t of V is called an M-strong hyperidentity of V if for every
σ ∈ M, σ̂[s] ≈ σ̂[t] is an identity of V . A variety V is called M-strongly solid if every
identity of V is satisfied as an M -strong hyperidentity. In case of M = HypG(τ) we
will call strong hyperidentity and strongly solid instead of M -strong hyperidentity
and M -strongly solid, respectively.

Let V be a variety of algebras of type τ . To test whether an identity s ≈ t

of V is a strong hyperidentity of V , our definition requires to check, for each
generalized hypersubstitution σ ∈ HypG(τ) that σ̂[s] ≈ σ̂[t] is an identity of V .
We can restrict our testing to certain special generalized hypersubstitutions σ

those which correspond to V -normal form generalized hypersubstitutions.

2 V -Proper andV -Normal Form Generalized Hy-

persubstitutions

The concept of a V -proper hypersubstitution was introduced by J. P lonka in
[3] and the concept of a normal form hypersubstitution was introduced by Sr. Ar-
worn and K. Denecke in [4]. In [5], the author and S. Phatchat generalized these
concepts to V -proper generalized hypersubstitution and V -normal form general-
ized hypersubstitution.

Definition 2.1. Let V be a variety of algebras of type τ . A generalized hyper-
substitution σ of type τ is called a V -proper generalized hypersubstitution if for
every identity s ≈ t of V , the identity σ̂[s] ≈ σ̂[t] also holds in V .

The set of all V -proper generalized hypersubstitutions of type τ is denoted by
PG(V ). It turns out that PG(V ) forms a submonoid of HypG(τ), see [5].

Definition 2.2. Let V be a variety of algebras of type τ . Two generalized
hypersubstitutions σ1 and σ2 of type τ are called V-generalized equivalent if
σ1(fi) ≈ σ2(fi) is an identity of V for all i ∈ I. In this case we write σ1 ∼V G σ2.

Theorem 2.3. ([5]) Let V be a variety of algebras of type τ , and let σ1, σ2 ∈
HypG(τ). Then the following statements are equivalent:

(i) σ1 ∼V G σ2.

(ii) For all t ∈ Wτ (X), the equations σ̂1[t] ≈ σ̂2[t] are identities in V .

(iii) For all A ∈ V , σ1[A] = σ2[A] where σk[A] = (A, (σk(fi)
A)i∈I), for k = 1, 2.
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Proposition 2.4. ([5]) Let V be a variety of algebras of type τ . Then the following
statements hold:

(i) For all σ1, σ2 ∈ HypG(τ), if σ1 ∼V G σ2 then σ1 is a V-proper generalized
hypersubstitution iff σ2 is a V- proper generalized hypersubstitution.

(ii) For all s, t ∈ Wτ (X) and for all σ1, σ2 ∈ HypG(τ), if σ1 ∼V G σ2 then
σ̂1[s] ≈ σ̂1[t] is an identity in V iff σ̂2[s] ≈ σ̂2[t] is an identity in V .

The relation ∼V G is an equivalence relation on HypG(τ), but it is not nec-
cessarily a congruence relation. So the structure HypG(τ)|∼V G

is not necessarily

a monoid. (Recall that the quotient set gives a monoid if and only if the equiva-
lence relation used to factor it is a congruence.) We factorize HypG(τ) by ∼V G

and then consider the submonoid PG(V ) of HypG(τ) is the union of equivalence
classes generated by ∼V G. This can be done for a submonoid M of HypG(τ) and
the restricted relation ∼V G|M

.

Lemma 2.5. ([5]) Let M be a submonoid of HypG(τ) and let V be a variety of
algebras of type τ . Then the monoid PG(V ) ∩ M is the union of all equivalence
classes of the restricted relation ∼V G|M

.

Definition 2.6. Let M be a monoid of generalized hypersubstitutions of type τ ,
and let V be a variety of algebras of type τ . Let φ be a choice function which
chooses from M one generalized hypersubstitution from each equivalence class
generated by ∼V G|M

, and let NM
φ (V ) be the set of generalized hypersubstitutions

which are chosen. Thus NM
φ (V ) is a set of distinguished generalized hypersubsti-

tutions from M , which we call V-normal form generalized hypersubstitutions. We
will say that the variety V is NM

φ (V )-strongly solid if for every identity s ≈ t of V

and for every generalized hypersubstitution σ ∈ NM
φ (V ), σ̂[s] ≈ σ̂[t] is an identity

in V .

Theorem 2.7. ([5]) Let M be a monoid of generalized hypersubstitutions of type
τ and let V be a variety of algebras of type τ . For any choice function φ, V is
M -strongly solid if and only if V is NM

φ (V )-strongly solid.

3 Outermost-Strongly Solid Varieties of Commu-

tative Semigroups

In this section we give some examples of outermost-strongly solid varieties of
commutative semigroups and then determine the greatest outermost-strongly solid
variety of commutative semigroups. We recall first the definition of an outermost
generalized hypersubstitution.

Definition 3.1. ([6]) A generalized hypersubstitution σ ∈ HypG(τ) is called an
outermost generalized hypersubstitution if for every i ∈ I, the first variable and
the last variable in σ̂[fi(x1, ..., xni

)] are x1 and xni
, respectively.



Outermost-Strongly Solid Variety of Commutative Semigroups 309

The set of all outermost generalized hypersubstitutions of type τ is denoted
by OutG(τ). OutG(τ) also forms a submonoid of HypG(τ), see [6].

Let Alg(τ) be the set of all algebras of type τ . For a class K ⊆ Alg(τ) and
for a set Σ of equations of this type, we use the following notations as usual.

IdK := {s ≈ t | ∀A ∈ K(A |= s ≈ t} - the set of all identities of K.
HIdK := {s ≈ t | ∀A ∈ K, ∀σ ∈ Hyp(τ)(A |= σ̂[s] ≈ σ̂[t]} - the set of all

hyperidentities of K.
ModΣ := {A ∈ Alg(τ) | ∀s ≈ t ∈ Σ(A |= s ≈ t)} - the variety defined by Σ.
HModΣ := {A ∈ Alg(τ) | ∀s ≈ t ∈ Σ(A |= σ̂[s] ≈ σ̂[t])} - the hyperequational

class defined by Σ.

Definition 3.2. Let V be a variety of algebras of type τ . s ≈ t ∈ IdV is called an
outermost-strong hyperidentity if σ̂[s] ≈ σ̂[t] ∈ IdV for all σ ∈ OutG(τ). In this

case we write V
OutG

|= s ≈ t.

We define:
HOutGIdK := {s ≈ t | ∀A ∈ K, ∀σ ∈ OutG(τ)(A |= σ̂[s] ≈ σ̂[t])} - the set of

all outermost-strong hyperidentities of K.
HOutGModΣ := {A ∈ Alg(τ) | ∀s ≈ t ∈ Σ, ∀σ ∈ OutG(τ)(A |= σ̂[s] ≈ σ̂[t])} -

the outermost-strong hyperequational class defined by Σ.
χE
OutG

[s ≈ t] := {σ̂[s] ≈ σ̂[t] | σ ∈ OutG(τ)} and

χE
OutG

[Σ] :=
⋃

s≈t∈Σ

χE
OutG

[s ≈ t], this property is called additive.

Then χE
OutG

: P(Wτ (X) × Wτ (X)) → P (Wτ (X) × Wτ (X)) is an operator
defined on the power set of Wτ (X) ×Wτ (X). Then we have the following propo-
sition.

Proposition 3.3. The operator χE
OutG

has the properties of an additive closure
operator.

Proof. Since the identity mapping belongs to OutG(τ), so Σ ⊆ χE
OutG

[Σ] for all
Σ ⊆ Wτ (X) × Wτ (X). Let Σ1 ⊆ Σ2 ⊆ Wτ (X) × Wτ (X). By a consequence
of additivity, χE

OutG
[Σ1] ⊆ χE

OutG
[Σ2]. Let Σ ⊆ Wτ (X) × Wτ (X). By a conse-

quence of monotonicity and the closedness of OutG(τ) with respect to the product
◦G, χ

E
OutG

[χE
OutG

[Σ]] = χE
OutG

[Σ].

Using the operator χE
OutG

we define:

Definition 3.4. A variety V of algebras of type τ is called outermost-strongly
solid if χE

OutG
[IdV ] = IdV , i.e., if every identity in V is an outermost-strong

hyperidentity.

Clearly, every trivial variety is outermost-strongly solid.

Theorem 3.5. Let V be a variety of algebras of type τ . Then the following
statements are equivalent.
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(i) V is outermost-strongly solid.

(ii) HOutGIdV = IdV .

(iii) V = HOutGModHOutGIdV .

Proof. (i)⇒(ii) Since V is outermost-strongly solid, χE
OutG

[IdV ] = IdV . By the
definition of HOutGIdV we have

HOutGIdV = {s ≈ t ∈ Wτ (X) ×Wτ (X) | ∀A ∈ V (A
OutG

|= s ≈ t)}

= {s ≈ t ∈ Wτ (X) ×Wτ (X) | ∀A ∈ V (A |= χE
OutG

[s ≈ t])}

= χE
OutG

[IdV ].

By a consequence of χE
OutG

[IdV ] = IdV we have HOutGIdV = IdV .
(ii)⇒(iii) Consider

HOutGModHOutGIdV = HOutGModIdV

= {A ∈ Alg(τ) | ∀s ≈ t ∈ IdV (A
OutG

|= s ≈ t)}

= {A ∈ Alg(τ) | ∀s ≈ t ∈ χE
OutG

[IdV ](A |= s ≈ t)}

= ModχE
OutG

[IdV ]

= ModHOutGIdV

= ModIdV

= V.

(iii)⇒(i) Since V = HOutGModHOutGIdV , we have

IdV = IdHOutGModHOutGIdV

= IdModχE
OutG

[HOutGIdV ]

= IdModχE
OutG

[χE
OutG

[IdV ]]

= IdModχE
OutG

[IdV ]

= χE
OutG

[IdV ].

This finishes the proof.

Proposition 3.6. Every strongly solid variety V of commutative semigroups is
an outermost-strongly solid variety.

Proposition 3.7. The variety of zero semigroups Z = Mod{xy ≈ uv} is the least
non-trivial outermost-strongly solid variety of commutative semigroups.

From now on, we fix our type to be τ = (2). So we have only one binary op-
eration symbol, and we shall denote the binary operation of our variety simply by
juxtaposition, and omit brackets where convenient due to associativity. Further-
more, the generalized hypersubstitution σ which maps f to the term t is denoted
by σt.
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Proposition 3.8. The variety V C
Rec := Mod{(x1x2)x3 ≈ x1(x2x3) ≈ x1x3, x1x2 ≈

x2x1} is an outermost-strongly solid variety of commutative semigroups.

Proof. To show that V C
Rec is an outermost-strongly solid variety of commutative

semigroups, we have to check that each of its identity is an outermost-strong hyper-
identity. By Theorem 2.7 with the identities of V C

Rec, we can restrict our checking
to a single outermost generalized hypersubstitution σx1x2

. It suffices to check this
generalized hypersubstitution only an equational basis for V C

Rec. Obviously, if we
apply σx1x2

on each side of (x1x2)x3 ≈ x1(x2x3) ≈ x1x3 and x1x2 ≈ x2x1 we get
the same identities because σx1x2

is the identity element of OutG(2).

Lemma 3.9. Let V ⊆ Mod{(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x2x1, x
2
1x2 ≈ x1x

2
2}.

Then

(i) xn
1x2 ≈ x1x

n
2 ∈ IdV , for n ≥ 3.

(ii) xn
1x2 ≈ xn+1

1 x2 ∈ IdV , for n ≥ 3.

Proof. We give the proofs by mathematical induction on n and using (x1x2)x3 ≈
x1(x2x3), x1x2 ≈ x2x1, x

2
1x2 ≈ x1x

2
2 ∈ IdV .

(i) First, if n = 3, then our assertion is that x3
1x2 ≈ x1x

2
1x2 ≈ x1x1x

2
2 ≈ x2

1x2x2 ≈
x1x

2
2x2 ≈ x1x

3
2. So x3

1x2 ≈ x1x
3
2 ∈ IdV . Suppose that for k ≥ 3, xk

1x2 ≈ x1x
k
2 ∈

IdV . Consider xk+1
1 x2 ≈ xk−1

1 x2
1x2 ≈ xk−1

1 x1x
2
2 ≈ xk

1x2x2 ≈ x1x
k
2x2 ≈ x1x

k+1
2 .

So xk+1
1 x2 ≈ x1x

k+1
2 ∈ IdV . By mathematical induction, we get xn

1x2 ≈ x1x
n
2 ∈

IdV for n ≥ 3.
(ii) First, if n = 3, then our assertion is that x3

1x2 ≈ x1x
2
1x2 ≈ x1x1x

2
2 ≈ x2

1x
2
2 ≈

(x2
1)2x2 ≈ x4

1x2. So x3
1x2 ≈ x4

1x2 ∈ IdV . Suppose that for k ≥ 3, xk
1x2 ≈ xk+1

1 x2 ∈
IdV . Consider xk+1

1 x2 ≈ x1x
k
1x2 ≈ x1x

k+1
1 x2 ≈ xk+2

1 x2. So xk+1
1 x2 ≈ xk+2

1 x2 ∈
IdV . By mathematical induction, we get xn

1x2 ≈ xn+1
1 x2 ∈ IdV for n ≥ 3.

Let V C
OutG

be the variety of commutative semigroups defined by the identity

x2
1x2 ≈ x1x

2
2, i.e. V C

OutG
= Mod{(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x2x1, x

2
1x2 ≈

x1x
2
2}.

Theorem 3.10. V C
OutG

is the greatest outermost-strongly solid variety of commu-
tative semigroups.

Proof. The greatest outermost-strongly solid variety of commutative semigroups is
the model class of all semigroups for which the associative law and the commutative
law are satisfied as outermost-strong hyperidentities, i.e. the class
HOutGMod{(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x2x1}. We will show that V C

OutG
=

HOutGMod{(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x2x1}. Under the application of σx1x2
∈

OutG(2) to the associative law and the commutative law, we obtain (x1x2)x3 ≈
x1(x2x3) and x1x2 ≈ x2x1. Applying σx2

1
x2

∈ OutG(2) to the commutative law

provides x2
1x2 ≈ x1x

2
2. That means (x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x2x1, x

2
1x2 ≈

x1x
2
2 ∈ Id(HOutGMod{(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x2x1}). Hence

HOutGMod{(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x2x1} satisfies all identities of V C
OutG

,
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i.e., HOutGMod{(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x2x1} ⊆ V C
OutG

. To prove the
converse inclusion we have to check the associative law and the commutative law
using all outermost generalized hypersubstitutions. By using Theorem 2.7 together
with the identities of V C

OutG
, we can restrict our checking to the following outermost

generalized hypersubstitutions σt where t ∈ {xm
1 xn

2 | m,n ∈ N}∪{xm
1 x

j1
i1
. . . x

jk
ik
xn
2 |

m,n, k, ik, jk ∈ N and ik > 2}.
If we apply σxm

1
xn
2
, for m,n ∈ N on both sides of the associative law and the

commutative law, we have

σ̂xm
1
xn
2
[(x1x2)x3] = S2(xm

1 xn
2 , S

2(xm
1 xn

2 , x1, x2), x3)

= (xm
1 xn

2 )mxn
3

= (xm
1 )m(xn

2 )mxn
3 ,

and σ̂xm
1
xn
2
[x1(x2x3)] = S2(xm

1 xn
2 , x1, S

2(xm
1 xn

2 , x1, x2), x2, x3) = xm
1 (xm

2 xn
3 )n =

xm
1 (xm

2 )n(xn
3 )n. Also, σ̂xm

1
xn
2
[x1x2] = S2(xm

1 xn
2 , x1, x2) = xm

1 xn
2 and σ̂xm

1
xn
2
[x2x1] =

S2(xm
1 xn

2 , x2, x1) = xm
2 xn

1 .
Using the associative law, the commutative law and identity x2

1x2 ≈ x1x
2
2

together with Lemma 3.9, we have σ̂xm
1
xn
2
[(x1x2)x3] = σ̂xm

1
xn
2
[x1(x2x3)] and

σ̂xm
1
xn
2
[x1x2] = σ̂xm

1
xn
2
[x2x1].

If we apply σ
xm
1
x
j1
i1

...x
jk
ik

xn
2

, where m,n, k, ik, jk ∈ N and ik > 2, on both sides

of the associative law and the commutative law, we have

σ̂
xm
1
x
j1
i1

...x
jk
ik

xn
2

[(x1x2)x3] = S2(xm
1 x

j1
i1
. . . x

jk
ik
xn
2 , S

2(xm
1 x

j1
i1
. . . x

jk
ik
xn
2 , x1, x2), x3)

= (xm
1 x

j1
i1
. . . x

jk
ik
xn
2 )mx

j1
i1
. . . x

jk
ik
xn
3

= (xm
1 )m(xj1

i1
)m . . . (xjk

ik
)m(xn

2 )mx
j1
i1
. . . x

jk
ik
xn
3

and

σ̂
xm
1
x
j1
i1

...x
jk
ik

xn
2

[x1(x2x3)] = S2(xm
1 x

j1
i1
. . . x

jk
ik
xn
2 , x1, S

2(xm
1 x

j1
i1
. . . x

jk
ik
xn
2 , x2, x3))

= xm
1 x

j1
i1
. . . x

jk
ik

(xm
2 x

j1
i1
. . . x

jk
ik
xn
3 )n

= xm
1 x

j1
i1
. . . x

jk
ik

(xm
2 )n(xj1

i1
)n . . . (xjk

ik
)n(xn

3 )n.

Also, σ̂
xm
1
x
j1
i1

...x
jk
ik

xn
2

[x1x2] = S2(xm
1 x

j1
i1
. . . x

jk
ik
xn
2 , x1, x2) = xm

1 x
j1
i1
. . . x

jk
ik
xn
2 and

σ̂
xm
1
x
j1
i1

...x
jk
ik

xn
2

[x2x1] = S2(xm
1 x

j1
i1
. . . x

jk
ik
xn
2 , x2, x1) = xm

2 x
j1
i1
. . . x

jk
ik
xn
1 .

Using the associative law, the commutative law and identity x2
1x2 ≈ x1x

2
2 to-

gether with Lemma 3.9, we have σ̂
xm
1
x
j1
i1

...x
jk
ik

xn
2

[(x1x2)x3] = σ̂
xm
1
x
j1
i1

...x
jk
ik

xn
2

[x1(x2x3)]

and σ̂
xm
1
x
j1
i1

...x
jk
ik

xn
2

[x1x2] = σ̂
xm
1
x
j1
i1

...x
jk
ik

xn
2

[x2x1]. This finishes the proof.
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