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Abstract : This paper proposes to use the concept of time-varying copulas in
probability theory as an appropriate mathematical modeling tool for investigating
an important problem in economics, namely the co-movement of stock markets as
well as optimal portfolio constructions on them. In the sense of expected shortfall,
a coherent risk measure widely used in risk management of financial markets, we
show that our time-varying copula models for GARCH perform better than the
conventional DCC-GARCH model. We exhibit also various advantages of this
approach in investment decisions. An application to G7 stock markets is given.
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1 Introduction

Financial data often exhibit the possible skewness of their potential distri-
bution as well as variations in dependence structures during different economic
regimes such as downturns or upturns. The linear correlation is not a good ap-
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proach to handle non-normal and heavy-tailed data to measure risk in financial
markets. Fortunately, copula theory can overcome the above issues. The copula
models become attractive tools to completely capture the type of dependence and
can also be treated as time dynamic. There are many important applications in
econometrics using copula methodology that were published by Thai Journal of
Mathematics, such as Autchariyapanitkul et al. [1] and Nguyen et al. [2] etc.
This study is an application of time-varying copulas to co-movement and optimal
portfolios of G7 stock markets.

Economic downturn or crises in some of these G7 countries can be contagious
to other members of the group and the rest of the world. The recent 2008-2009 fi-
nancial crisis had severely affected the United States and other developed countries
proving the market linkage and contagion effects. Many studies define contagion
as the spread of market downside risk from one country to the others and the effect
of crises due to market linkages. The cross-market correlations are significantly
greater during crisis periods compared to normal periods. The larger contagion
reflects the stronger correlations (see Forbes and Rigobon[3], [4] and Hwang et al.
[5], Celik [6], Jayech and Zina [7]). In recent years, there have been abundant
studies that examine the volatility, long memory, and spillover effect in G7 stock
markets, such as Bilel and Nadhem [8], Liow [9], Bentes [10], Chiang and Wang [11]
etc. However, there are relatively few studies that have focused on the portfolio
and relationship among the G7’s major stock market indices. For example, Bhar
and Hamori [12] examined the issue of co-movement in G7 equity markets. They
found that the USA and Canada remain in phase with each other for most of the
time, and the three main European markets also usually move in phase. Lee et al.
[13] studied the relationship and portfolio construction between stock price of G7
and oil prices using DCC models. Chen et al. [14] used semiparametric T copula
models to estimate the VaR and ES risks of stock-bond portfolios of G7 stock
market indices. Most of the studies have resulted in diversification and hedging
benefits among G7 equity markets. As a result, modeling co-movement and fore-
casting optimal portfolio allocation of G7 stock markets are of considerable interest
to help investors, portfolio managers, or risk managers in their decision making
to diversify portfolios as well as avoid the loss and riskiness. Many studies found
that in many equity markets, the impacts of negative price movement volatility
are different from the positive one. Various works on multivariate financial returns
revealed significant increase and much stronger correlation between international
equity returns when market trend is downturn than in a time of normal situation
(Longin and Solnik [15], Ang and Bekaert [16], Ang and Chen [17]). Specifically,
we seek to explore and identify the models of high performance for studying the
dynamic correlation in bull and bear market environments for risk management
in international financial markets.

Many studies have been conducted to investigate volatility and co-movement
between and among different financial assets using various tools and methodolo-
gies. Earlier studies have focused on use of the univariate generalized autoregres-
sive conditional heteroscedasticity (GARCH) model proposed and developed by
Engle [18] and Bollerslev [19] to estimate and forecast changing volatility of each as-
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set in financial time series data. Recently, the class of multivariate GARCH model
has been developed and extended into Dynamic Conditional Correlation (DCC)
model introduced by Engle [20]. The DCC-GARCH model is capable of estimating
large time-varying covariance matrices and is widely used to study co-movement
and volatility between some assets or international stock markets. Multivariate
GARCH is more flexible than the univariate GARCH for fitting portfolio’s returns
that are given weight because whenever the weight vector of univariate GARCH
changes, the model has to be re-estimated. Some studies employed the DCC-
GARCH model to estimate international asset portfolios such as Lee and Chinn
[21] that used daily stock indexes of G7 to calculate the Value at Risk (VaR) with
DCC-GARCH, simple moving average (SMA), and the Exponentially Weighted
Moving Average (EWMA). The most effective model for measuring VaR was found
to be DCC-GARCH(1, 1)− t followed by DCC-GARCH(1, 1) while SMA was the
last adoptable model. Gupta and Donleavy [22] used DCC-GARCH model to esti-
mate time-varying correlations and estimate the portfolio optimization model for
emerging markets and Australia. They found that, in spite of increasing correla-
tions, the Australian investors still gain potential benefits from diversifying into
international emerging markets.

Nevertheless, many previous works on multivariate models were with normal
distribution assumptions of data and thus are not efficient enough to estimate VaR
and construct a portfolio of financial assets. The limitation of the correlation anal-
ysis especially in financial data assuming linear correlation is not a good approach
to handle the case of non-normal and heavy-tailed [23]. Patton [24] verified and
extended the constant copula to time-varying copula to analyze the dependence
structure between financial and exchange rate markets. After that, the copula
began to be used in finance. For example, Hyde et al. [25] studied time-varying
conditional correlations among equity markets in the Asian-Pacific counties, Eu-
rope, and the US. Ane and Labidi [26] and Bartram et al. [27] applied the copula
model to measure dependences among some European stock indices. Wang et al.
[28] used time-varying copula model to study the dependence structure between
the Chinese market and other international stock markets.

This study has the first objective of analyzing the co-movement between pair
G7 stock markets thereby capturing the dynamic characteristics of nonlinear cor-
relation and tail dependences. Second, the optimal portfolios of G7 stock markets
are calculated by minimizing expected shortfall framework. The third objective is
to test whether the time-varying copula-GARCH model has a better performance
than DCC-GARCH model in risk management. The main contribution of this pa-
per is that the time-varying copula-GARCH is proposed to examine the optimal
portfolios for G7 stock markets. This study applied 17 static copulas and several
time-varying copulas to capture inter-dependences in G7 stock markets. We found
the time-varying copulas to have a better performance than the static copulas.
Therefore, the time-varying copula-GARCH model was used to measure optimal
portfolios thereby improving the accuracy of predicted extreme loss. In addition,
this study compared DCC-GARCH with the time-varying copula-GARCH mod-
els in terms of optimal portfolios. According to the empirical analysis, we have
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confidence in the time-varying copula-GARCH model, while the DCC-GARCH
model maybe shows that linear correlation has some drawbacks to measure risk
and optimal portfolio. Last, we proposed some suggestions to investors and insti-
tutions regarding portfolio diversification, risk hedging, dynamic asset allocation,
and portfolio rebalancing measures.

2 Preliminaries

In this section, we recall some basic definitions and theorems concerning cop-
ulas that we will use in subsequent subject analysis of our work.

For volatility analysis, we first used the ARMA-GARCH to extract the stan-
dardized residuals which are the inputs for the DCC-GARCH model.

Definition 2.1 ([29]). A stochastic process (Xt)t∈Z is a mixture autoregressive
moving average model of order p and q, ARMA(p, q), if it satisfies the following
equation:

Xt = µ+ φ1Xt−1 + ..+ φpXt−p + εt + θ1εt−1 + ...+ θqεt−q, for all t ∈ Z

Φ(L)Xt = µ+ Θ(L)εt,

where φp 6= 0, θq 6= 0, µ is constant term, (εt)t∈Z is a weak white noise process
with expectation zero and variance σ2

ε(εt ∼ WN(0, σ2
ε)) AR and MA polynomial

as follows

Φ(L) = 1− φ1L− ...φpLp and Θ(L) = 1 + θ1L+ ...θqL
q.

We require that there are no common factors between the AR and MA polynomials;
otherwise, the order (p, q) of the model can be reduced.

Definition 2.2 ([30, Definition 3.1.3]). Let m,n ≥ 0 be given. A real-valued
time series {Y }t∈Z defined by Yt = σtεt with εt ∼ WN(0, 1) iid and {σ2

t }t∈Z
a stochastic process with coefficients α0, α1, ..., αm, β1, ...βn ≥ 0, αm, βn 6= 0
satisfying the difference equation

σ2
t = α0 +

m∑
i=1

αiY
2
t−i +

n∑
k=1

βkσ
2
t−k, (2.1)

is called GARCH(m,n) process (stemming from Generalized Auto Regressive Con-
ditionally Heteroscedastic). σ2

t t∈Z is called volatility process. If n = 0, {Y }t∈Z is
called an ARCH(m) process.

Definition 2.3 ([30, Definition 3.2.2]). Let {Y }t∈Z be a vector-valued process
with Yt ∈ Rd, d > 2 such that with Ft − t = σ(Yt−1, Yt−2...) representing the
information set up to time t− 1, we set

Yt = Γ
1/2
t εt
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Γt = Cov(Yt | Ft−1),

where εt is an uncorrelated zero-mean, identity-covariance d-variate with white
noise process εt ∼WN(0, Id) and conditional covariance matrices Γt decomposed
into conditional standard deviations and correlations as∑

t

= DtPDt,

where Dt = diag(σ1t, ..., σdt) and P = (ρij)i,j=1,..,d a positive definite (d × d)-
matrix where ρij = 1 for all i = 1, ..., d. This representation allows to model
σ2
jt, j = 1, ..., d as volatility processes in univariate GARCH(m,n) according to

equation (2.1). The vector σ2
t = (σ2

1t, ..., σ
2
dt) as the following form

σ2
t = ω +

m∑
i=1

AiY
2
t−i +

n∑
k=1

Bkσ
2
t−k,

where ω ∈ Rd has positive components, Ai, Bk ∈ Rd×d are diagonal matrices
with positive entries and Y 2

t = Yt � Yt, � denotes the Hadamard matrix product.
Moreover, the conditional covariance matrices Γt is under the respective condition.

1. P ≡ P0 is constant and diagonal, Yt is called a constant conditional corre-
lation (CCC) GARCH(m,n) process if P is not diagonal,

2. or P = Pt for every t ∈ Z such that
Pt = (Id �Q)t

−1/2Qt(Id �Qt)−1/2
Qt = (1− a− b)S + aεt−1ε

T
t−1 + bQt−1

with a > 0, b ≥ 0, a + b < 1, S = Cov(ε1ε
T
1 ) and a positive definite Q0 ∈

Rd×d as starting value, then Yt is called a dynamic conditional correlation (DCC)
GARCH(m,n) process by Engle [20].

In the following, the copula approaches are reviewed so that we can use them
to examine the dependence structure between stock returns.

Theorem 2.4 ([24, Theorem I.2]). Let F be the distribution of X, G be the
distribution of Y , and H be the joint distribution of (X,Y ). Assume that F and
G are continuous. Then there exists a unique copula C such that

H(x, y) = C(F (x), G(y)), for all (x, y) ∈ R× R. (2.2)

Conversely, if we let F and G be a distribution function and C be a copula,
then the function H defined by equation (2.2) is a bivariate distribution function
with marginal distributions F and G.
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Definition 2.5 ([24, Proposition I.3]). Let the joint distribution of (X,Y,W ) be
Hxyw, the marginal distribution of W be Fw, and the support of W be W . The
conditional bivariate distribution of (X,Y )|W , denoted H, is defined as

H(x, y|w) ≡ fw(w)−1 · ∂Hxyw(x, y, w)

∂w

and satisfies the following properties:

1. H(x,−∞)|w = H(−∞, y|w) = 0, and H(∞,∞|w) = 1 for all (x, y) ∈ R×R
and each w ∈W ,

2. VH([x1, x2] × [y1, y2]|w) ≡ H(x2, y2|w) − H(x1, y2|w) − H(x2, y1|w) +
H(x1, y1|w) ≥ 0 for all x1, x2, y1, y2) ∈ R, such that x1 ≤ x2, y1 ≤ y2 and each
w ∈W
The first condition simply provides the upper and lower bounds on the distribution
function. The second condition ensures that the probability of observing a point
in the region [x1, x2]× [y1, y2] is non-negative. Then define the conditional copula.

Definition 2.6 ([24, Proposition I.4]). A-two dimensional conditional copula is a
function C : [0, 1]× [0, 1]×W −→ [0, 1] with the following properties:

1. C(u, 0|w) = C(0, v|w) = 0, and C(u, 1|w) = u and C(1, v|w) = v for every
u,v in [0, 1] and each w ∈W

2. Vc([u1, u2])× [v1, v2]|w) ≡ C(u2, v2|w)− C(u1, v2|w)− C(u2, v1|w)+
C(u1, v1|w) ≥ 0 for all u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 and v1 ≤ v2) and
each w ∈W .

Theorem 2.7 ([24, Theorem I.3]). Let F be the conditional distribution of X|W,G
be the conditional distribution of Y |W and H be the joint conditional distribution
of (X,Y |W ). Assume that F and G are continuous in x and y. Then there exists
a unique conditional copula C such that

H(x, y|w) = C(F (x|w), G(y|w)|w), for all (x, y) ∈ R× R and each w ∈W
(2.3)

Conversely, if let F be the conditional distribution of X|W,G be the condi-
tional distribution of Y |W , and C be a conditional copula, then function H defined
by equation (2.3) is a conditional bivariate distribution function with conditional
marginal distributions F and G.

The following is review of risk measures in finance econometrics (for more
details, see Sriboonchita et al. [31])

Definition 2.8. Let (Ω,F, P ) be a probability space and V be a non-empty set of
F-measurable real-value random variables. Then any mapping ρ : V −→ R ∪ {∞}
is called a risk measure.
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Definition 2.9. The risk measure ρ is said to be coherent if it satisfies the fol-
lowing conditions;
(1) Monotonicity: X,Y ∈ V,X ≤ Y ⇒ ρ(X) ≥ ρ(Y ).
(2) Positive homogeneity: X ∈ V, h > 0, hX ∈ V ⇒ ρ(hX) = hρ(X).
(3) Translation invariance: X ∈ V, a ∈ R, X + a ∈ V ⇒ ρ(X + a) = ρ(X)− a.
(4) Sub-additivity: X,Y ∈ V,X + Y ∈ V ⇒ ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

Definition 2.10. The value-at-Risk at level α ∈ (0, 1] of a the random variable
X is defined to be it α-quantile, i.e.,

V aRα(X) = qα(X) = inf{X ∈ R : P (X ≤ x) ≥ α}.

Remark: V aRα is not sub-additive, and hence is not a coherent risk measure.

3 Time Varying Copula-Based ARMA-GARCH
Model

We adopted the step parametric estimation procedure (Joe and Xu [32]) to
estimate the copula and marginal distribution parameters separately. To do so, we
first used an ARMA-GARCH model with skewed student-t distribution to fit into
each individual index. The standardized residuals of each margin are assumed to be
i.i.d. We then transformed the standardized residuals into a uniform distribution
between 0 and 1.

3.1 ARMA-GARCH Model

Bollerslev [19] proposed GARCH model which was developed from ARCH
model by Engle [18] and which allows the conditional variance to be dependent
upon previous lags. Then, on the margin of return series, the GARCH(1,1) model
is sufficient to provide good estimates of the conditional volatility of financial
variable by Bollerslev et al. [33]. The ARMA(p, q)-GARCH(m,n) is expressed as

rt = µ+

p∑
i=1

airt−i +

q∑
j=1

bjεt−j + εt,

εt = σt · zt,

σ2
t = ω0 +

m∑
i=1

αiε
2
t−i +

n∑
i=1

βiσ
2
t−i,

The ARMA(p, q) process of autoregressive order p and moving average order
q for conditional mean equation where rt is the dependent variable at time t, µ
is a constant term of the conditional mean equation, autoregressive coefficients
ai, moving average coefficients bj , εt represents residuals, and zt is a sequence of
standardized residuals with zero mean and unit variance. In addition, σ2 is the
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conditional variance of return series at time t, α is ARCH parameter associated
with ε2t−i representing to the short-run shock , β is a GARCH parameter associated
with the volatility spillover effect from σ2

t−i to express the persistence of volatility,
and the parameter restrictions in the variance impose the conditions

∑p
i=1 ai < 1,

ω0 ≥ 0, αi ≥ 0, βi ≥ 0, and
∑m
i=1 αi +

∑n
i=1 βi < 1 to guarantee the conditional

variance process to be positive and stationary.

3.2 Copulas

The earlier applications used the copulas with unconditional distribution to
apply in various fields. Patton [24] employed the copulas for modeling the time-
varying dependence by extension of the Sklar’s theorem for conditional distribu-
tion.

Let r1,t and r2,t be the random variables that indicate a pair of G7 stock
returns at period t. The marginal conditional distribution cumulative distribution
functions are u1,t = G1(r1,t | Ωt−1) and u2,t = G2(r2,t | Ωt−1); the Ωt−1 is the
past information. Then, the conditional copula function C(u1,t, u2,t | Ωt−1) using
the bivariate time-varying cumulative distribution functions of random variables
r1,t and r2,t can be expressed as

F (r1,t, r2,t | Ωt−1) = C(u1,t, u2,t | Ωt−1).

Considering the assumption that the cumulative distribution function is dif-
ferentiable and the conditional joint density is given by:

f(r1,t, r2,t | Ωt−1) =
∂2F (r1,t, r2,t | Ωt−1)

∂r1,t∂r2,t

= c(u1,t, u2,t | Ωt−1)× g1(r1,t | Ωt−1)× g2(r2,t | Ωt−1),

where gi(·) is the density function corresponding to Gi(·).
An important characteristic of copulas is a capability to capture tail depen-

dences. In financial market, the dependence structure is used to examine both
upper and lower tails of the returns; that is very useful for measuring tail depen-
dence of the asset returns in financial market with a tendency to crash together.
For the joint distribution [34], the upper and lower tail dependence are defined as

λU = limP [r1 > G−11 (u) | r2 > G−12 (u)] = lim
u→1−

1− 2u+ C(u, u)

1− u

λL = limP [r1 ≤ G−11 (u) | r2 ≤ G−12 (u) = lim
u→0+

C(u, u)

u
,

where the λU and λL ∈ [0, 1] are the coefficients of upper and lower tail dependence,
respectively. There is a symmetric tail dependence between two variables when the
lower and upper tail dependence coefficient values are not equal. This approach
uses the tail dependence coefficient for ordering copula where the copula C1 is
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more concordant than copula C2 if λU of C1 is greater than λU of C2 (see Nelsen
[34]).

In our analysis, we employed several candidates of the time-varying copulas.
For description of dependence, the time-varying copulas are considered as the
dynamic generalizations of a Pearson correlation (ρ) or Kendall’s tau (τ). Patton
[24] and Wu et al. [35] proposed the evolution equations for some time-varying
copulas, respectively. However, it is difficult to specify how the parameters evolve
over time lies in defining covariates for the evolution equation. Therefore, we
applied the two evolution equations to capture time-varying dependences in this
study, and selected the better one in terms of Akaike information criterion (AIC).
The evolution equation of Patton [24] for Gaussian and T copulas is expressed as

ρt = Λ(α+ βρt−1 + γ | u1,t−1 − u2,t−1 |),

and Wu et al. [35] defined the time-varying Gaussian and T copulas as

ρ∗t = α+ βρ∗t−1 + γ(u1,t−1 − 0.5)(u2,t−1 − 0.5),

where Λ(x) = (1 + e−x)−1 and ρ∗t = −ln[(1 − ρt)/(ρt + 1)] are to guarantee the
dependence parameter with the interval (-1, 1), and ρt is the Pearson’s correlation.
In addition, we proposed an evolution equation for rotated BB1 copula which might
help us capture the time-varying dependences of G7 stock markets. The evolution
equation for rotated BB1 copula is written as:

θt = Λ̂(α+ β · θt−1 + γ | u1,t−1 − u2,t−1 |),

where we define Λ̂(x) = exp(x), which can guarantee the parameter θ is in the
range. There are two parameters θ, and δ, in rotated BB1 copula. Actually,
both of parameters can be considered time-varying characteristics. According to
the performance of empirical results of this study, we just proposed the evolution
equation for θ in rotated BB1 copula. Among all the time-varying copulas, the
preferable time-varying copula is selected in terms of AIC.

In this study, we applied various 17 families both static and time-varying cop-
ulas for comparison and selected the best one. For example, Gaussian copula is
symmetric and does not have tail dependence. Student-t copula reflects symmet-
ric tail dependence; Gumbel and Clayton copulas can measure right and left tail
dependence, respectively. Moreover, we included rotate Clayton and Gumbel cop-
ulas as a mirror image of the density Clayton and Gumbel copulas and BB1, BB6,
BB7, BB8, etc. Additional for confirmation of the goodness-of-fit, we compared
and chose the most appropriate static with time-varying copula models by using
the criteria of AIC. Moreover, Kendall’s tau is a concept of concordance which
provides nonparametric measurement of dependence between variables.

4 Inference for Margins

The estimation of the parameters of copula-based GARCH model used the
alternative computation to the two-stage estimation method. This technique is
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called inference for margins (IFM) by Joe and Xu [32]. The advantage of IFM
is the reduction of numerical complexity that this estimator efficiency is close
to consistency and asymptotic normality to the maximum likelihood under the
regularity conditions (see proof in Theorem of Lehmann and Casella [36]). The
multivariate model proceeds as follows:
(1) The first stage, every margin log-likelihood is maximized with respect to the
marginal parameter to obtain

Θ̂i = argmax

T∑
t=1

loggi(rit; Θi),

where i = 1, 2..., 7 and Θ is a parameter vector that represents from (µ, a, b, ω0, α,
β, γ, v) ARMA-GARCH models.
(2) The second stage, given the marginal estimators, we performed maximizing
over the copula parameter leading to

θ̂ = argmax

T∑
t=1

logc(G1(rit; Θ̂i), G2(rjt; Θ̂j); θ),

where θ represents copula parameters, i 6= j = 1,2,...,7.

5 Portfolio Optimization Model

For measuring financial risk, the VaR is widely mentioned and has become
the standard benchmark. The risk measurement techniques have been developed
and used to manage the portfolios that help the investors and portfolio managers
to decide on the best trade-off between risk and return. However, VaR does not
satisfy the subadditivity condition. Thus, Expected Shortfall (ES) is an alter-
native method which satisfies the property of subadditivity and provides a more
conservative measure of losses relative to VaR. We followed the method proposed
by Rockafellar and Uryasea [37], the optimization approach-based on minimum
ES with simulation can be expressed as

minESβ(W ) = min{V aRβ(W ) +
1

q(1− β)

q∑
k=1

[
−WT rk − V aRβ(W )

]∗}, (5.1)

where [t]∗ = max(t, 0),
∑n
i=1 wi = 1,

∑n
i=1 wiE(ri) ≥

1

n

∑n
i=1E(ri), q denotes the

number of samples generated by Monte Carlo simulation. Following [37] showed
that the equation (5.1) is a suitable approximation to the minimum ES of integral
form. V aRβ(W ) is the VaR under the β confidence level and the W portfolio
allocations, and rk is the Kth vector of simulated returns.

In this study, the multi-period ahead forecasts of portfolio strategies were
performed by using the principle of the daily rolling window forecasting of returns.
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The summarized process can be shown in four steps. First, use the estimation
results of the preferred time-varying copula to generate the random number 10,000.
Second, use the inverse function of the corresponding marginal distribution of each
variable to get the standardized residuals. Third, forecast the value of each variable
at the t + 1 period by using the GARCH model; thus, 10,000 possible values are
generated at the t+ 1 period for each variable, which can be expressed as

rnm,t+1 = ĉ+

p∑
i=1

φ̂m,irm,t−i+1 +

q∑
j=1

ψ̂m,iεm,t−i+1 + σ̂m,t+1η
n
m,t+1,

where n = 1, 2, ..., 10, 000,m equals the number of variables, ηnm,t+1 = G−1m (unm,t+1),
and um is from the simulation of the preferred time-varying copula. Last, by giving
an unknown weight to each variable, the optimal portfolio weights of the selected
assets are estimated under the minimum ES framework (equation (5.1)). We used
these weights to compute the returns at the t+ 1 period. Rate of portfolio returns
is given as

PR = ŵ1[exp(r1,t+1)− 1] + ŵ2[exp(r2,t+1)− 1], ..., ŵm[exp(rm,t+1)− 1]

= ŵT [exp(R− 1)],

where Ŵ is the vector of wi and R is the vector of rm,t+1.

6 Empirical Results

In this paper, the data set consists of G7 countries stock markets during the
period from 1 January 2008 to 31 December 2014. The G7 indices including:(1)
S&P/TSX Composite index of Canada; (2) CAC 40 index of France; (3) DAX
index of Germany; (4) FTSE MIB index of Italy; (5) NIKKEI 225 index of Japan;
(6) FTSE 100 index of the United Kingdom; and (7) S&P500 index of the United
States [US]. We computed for all the daily returns on G7 indices by rt = lnPt −
lnPt−1, where Pt is the closing price of G7 stock indexes at time t. The data set
was divided into two parts that are in sample and out-of-sample. The in-sample
data are from 1 January 2008 to 31 December 2012, with 1,282 observations to
be used for estimating the parameters of the marginal models. Subsequently,
the 460 observations in the out-of-sample were used to estimate the VaR and ES
by using the principle of the daily rolling window forecasting of returns. The
constant correlation estimates in Table 1 show that the returns of each pair of
indices are closely related to each other. France and Germany stock market indices
exhibit the highest correlation, and the smallest correlation is between France and
Japan. These results also observed that geographical and cultural are important
determinants of the correlation in the international stock market. In addition, we
found that France has close relationships with most of the counties except Canada
and USA, while the correlation between Canada and USA is the biggest for each
other. Therefore, we selected the pairs of Canada and USA, France and UK,
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France and Japan, France and Italy, and Germany and France, as the research
objects among 21 pairs of G7.

Table 1: Constant correlation estimates of G7 stock returns
Canada France Germany Italy Japan UK USA

Canada 1 0.588 0.583 0.542 0.307 0.602 0.762
France 0.588 1 0.928 0.919 0.419 0.922 0.639
Germany 0.583 0.928 1 0.860 0.402 0.878 0.672
Itary 0.542 0.919 0.860 1 0.383 0.834 0.588
Japan 0.307 0.419 0.402 0.383 1 0.422 0.208
UK 0.602 0.922 0.878 0.834 0.422 1 0.616
USA 0.762 0.639 0.672 0.588 0.209 0.616 1

Table 2: KS and LM test for normal , student-t and skewed student-t
distribution

Pair1 Pair2 Pair3 Pair4 Pair5
Germany France France Italy France UK France Japan Canada USA

Normal
KS test

statistics
0.972 0.962 0.963 0.949 0.962 0.965 0.964 0.960 0.970 0.969

P value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
P value of
LM test

0.134 0.636 0.424 0.276 0.540 0.895 0.537 0.870 0.064 0.554

Student-t
KS test

statistics
0.033 0.024 0.023 0.025 0.023 0.037 0.025 0.024 0.052 0.052

P value 0.131 0.445 0.488 0.415 0.497 0.058 0.443 0.487 0.002 0.002
P value of
LM test

0.134 0.422 0.264 0.178 0.335 0.783 0.423 0.896 0.064 0.487

skewed
student-t

KS test
statistics

0.024 0.022 0.023 0.031 0.024 0.024 0.024 0.028 0.028 0.033

P value 0.476 0.593 0.522 0.179 0.438 0.452 0.492 0.316 0.263 0.140
P value of
LM test

0.365 0.824 0.468 0.229 0.572 0.975 0.727 0.896 0.253 0.840

We first selected the suitable ARMA(1,1)-GARCH(1,1) distribution to
model the margin return series of each pair country of G7. This paper
mainly focused on the three types of distribution: normal distribution,
student-t distribution, and skewed student-t distribution, and compared to
determine which one has the best performance due to the stylized fact of
financial series having fat tails. Then, we conducted the copula analysis
with the specification of the marginal distribution model. Thus, we had
to test the marginal distribution for each pair of the return series to sat-
isfy the serial independence assumption and distribution as uniform (0,1).
The misspecification of the marginal distribution can cause incorrect fit
to the copula if any of these assumptions is rejected. Therefore, the test-
ing of these two assumptions to choose the most appropriate specification
for the marginal distribution model is the important step in constructing
multivariate distribution models using copula [24]. Table 2 summarizes the
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probability values for both KS (Kolmogorov-Smirnov) and Lagrange Multi-
plier (LM) tests for uniform (0,1) distribution; that is to test the marginal
distribution and the margin satisfies the i.i.d (independently and identi-
cally distributed) assumptions, respectively. For each pair of stocks with
the three distributions, such as normal, student-t and skewed student-t dis-
tributions the model with normal distribution of errors is rejected, and none
for student-t and skewed student-t distribution at 5% significance level. It
implies that student-t and skewed student-t distribution fit the data better
than the normal distribution. However, the ARMA(1,1)-GARCH(1,1) with
skewed student-t distribution has the p-values of LM test greater than the
case of student-t distribution. From these results, the models with skewed
student-t distribution seem to outperform others which indicates that the
margins satisfy both uniformly distribution and the i.i.d assumptions.

Table 3: Estimates of the dependence parameters of copula model for G7
countries

Country Copula Parameters Values Standard error Kendall tau AIC

Germany Student-t ρ 0.943*** 0.003 0.784 -2828
and France d 6.514*** 1.266

France Student-t ρ 0.912*** 0.004 0.731 -2282
and Italy d 7.496*** 1.629
France Student-t ρ 0.908*** 0.005 0.724 -2251
and UK d 6.056*** 1.144
France Gaussian ρ 0.352*** 0.024 0.229 -158

and Japan
Canada rotated q 0.221*** 0.057 0.536 -1060

and USA BB1 d 1.941*** 0.064

Note : *, **, *** indicates statistical significance at the 5%, 1%, 0.1% level, respestively.

Table 4: the estimation of time-varying Copula pattern of G7 markets

Country Copula ω β γ v LL AIC

Germany Student-t 0.499 0.911*** -1.843 8.861*** 1432.941 -2858
and

France
(0.337) (0.064) (1.086) (0.957)

France Student-t 0.343*** 0.929**** -1.141*** 7.975*** 1160.729 -2313
and Italy (0.111) (0.025) (0.316) (0.527)
France Student-t 0.428*** 0.914*** -1.472*** 8.962*** 1159.072 -2310
and UK (0.124) (0.026) (0.403) (0.862)
France Gaussian 0.349 0.703*** -0.459** 83.362 -161

and Japan (0.200) (0.206) (0.225)
Canada rotated 0.075* 0.945*** -1.051 541.551 -1077

and USA BB1 (0.044) (0.031) (0.559)

Note : *, **, *** indicates statistical significance at the 5%, 1%, 0.1% level,respestively

After we chose the most appropriate form of marginal density of multi-
variate ARMA-GARCH(1,1) with skewed student-t distribution to capture
the time-varying volatility structures of each pair of G7 indices returns, we
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employed the many families of both static and time-varying copula func-
tions to describe the dependence structures between each pair of G7 returns.
Table 3 presents the dependence parameter estimates of static copula. We
can observe all the best copula families among the candidates of each pair
of G7 stock in terms of the smallest AIC value. For each pair of stock re-
turns of Germany and France, France and Italy, as well as France and UK,
Student-t copula is suitable for to capturing the extreme dependence be-
tween variables. The dependence between France and Japan stock returns
is the best candidate for fitting with Gaussian copula. And the pair of
Canada and USA stock returns can be described as the best by the rotated
BB1 copula. The Kendall’s tau values show the rank dependence of copula
model; we may notice that the Kendall’s tau has the same sign and is con-
sistent with the Pearson (linear) correlation in Table 1. Table 4 presents
the parameter estimates for different time-varying copula models of G7
markets. The autocorrelation parameter β of the pairs between Germany
and France, France and Italy, France and UK with student-t time-varying
copula as well as France and Japan with Gaussian time-varying copula
are 0.911, 0.929, 0.914 and 0.703, respectively. Moreover, the β value of
Canada and USA with rotated BB1 time-varying is 0.945. This implies
a high degree of persistence concerning the dependence structure between
each pair of stock returns. The latent parameter γ exhibits that the latest
return information is an important measure. We can observe that γ in
France and Japan paired with Gaussian time-varying copula has a larger
difference than others, implying that it has a greater short-run response
than other copula functions. For each pair of G7 stocks, the best candidate
time-varying copula is likely the constant copula, according to the max-
imized log-likelihood values and AIC. To compare Table 3 with Table 4,
the time-varying copula models outperform the constant copula models in
terms of AIC for constructing the optimum portfolios.
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Figure 1: Histograms of G7 weights and the returns of Italy and Canada
in 2013-2014
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Table 5: Number of violations of the VaR estimation and backtesting

Panel A: Violations
α 1% 5% 10%
expected no. 5 23 46
DCC-N 0 0 5
DCC-T 0 2 11
copula-GARCH 4 21 46
Panel B: Backtesting
DCC-T model
POF 9.25 33.22 41.4
CCLR 9.79 33.76 41.92
DCC-N model
POF 9.25 47.19 63.73
CCLR 9.25 47.19 63.85
copula-GARCH model
POF 0.08 0.19 0
CCLR 0.15 2.2 0.48

We now turn to evaluate the performance of the estimates in the copula-
GARCH model. The Percentage of Failure Likelihood Ratio (PoFLR) and
Conditional Coverage Likelihood Ratio (CCLR) tests are performed to
judge whether the model is correct and accurate. Table 5 shows the number
of violations of the VaR estimation and VaR backtests. The DCC-GARCH
with normal marginal distribution and DCC-GARCH with student-t margi-
nal distribution are selected as the benchmark. Comparing them with
the copula-GARCH with skewed student-t distribution model, the copula-
GARCH model takes into full account asymmetric tail dependence and high
kurtosis. If the number of violations are closer to the expected numbers,
then this model should be more appropriate. As it can be seen in Table 5,
the numbers of violations in the copula-GARCH model equals to 4, 21 and
46 at confidence levels 99%, 95%, and 90%, respectively. They are very
close to the expected numbers while the number of violations in DCC-N
and DCC-T models are so much smaller than the expected numbers that
they underestimate VaR. The backtesting statistics of PoFLR and CCLR
for DCC-N and DCC-T models reject the null hypotheses while they do
not reject the null hypotheses for the copula-GARCH model. Therefore,
we conclude that the copula-GARCH method of estimating VaR is accurate
and correct for G7 returns. This may be because the copula-GARCH with
skewed student-t distribution model successfully captures asymmetric tail
dependences and extreme losses for G7 returns.

Figure 1 shows the optimal weighted histograms of G7 indexes by min-
imum ES at 95% confidence level and the returns of Italy and Canada
from 2013 to 2014. The weight distributions of Italy index share rarely,
while Canada shares a great many. The returns of Italy and Canada from
2013 to 2014 have a large difference. Italy stock market showed a stronger
volatility than Canada stock market. In other words, Italy stock market is
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more risky than Canada. To avoid risk, the time-varying copula-GARCH
model suggests that we distribute a tiny amount to Italy, and invest a lot in
Canada stock market. France, Germany, and UK have similarly distributed
weights. This may be because they all belong to Europe Union, and there
exists strong correlation between them. Figure 2 shows the forecasted ex-
pected shortfall of G7 stock markets during 2013-14. There are two periods,
June-July 2013 and October-December 2014, with a high risk performance.
In the last quarter 2014, the G7 feared that Europe’s economy was slip-
ping back into a recession, and also worried about plunging oil prices and
concerns of possible weakness in the U.S. economy. The Europe markets in
June and July, 2013 hung in balance. For example, Europe shares closed
at the lowest since January on 21 June. The Dow bounced above the psy-
chologically important 15,000 level, and European shares closed higher on
1 July 2013.
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Figure 2: The estimated ES at level 90%, 95% and 99% by copula-GARCH
model
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7 Conclusions

In this study, we analyzed the co-movement and the optimum portfo-
lio for investors and risk managers in financial markets of the G7 group.
From the recent 2008-2009 crisis, the G7 countries have been impacted from
the global financial system and the catastrophic event could easily trigger
and spread to the global financial market. We examined the dependence
structure of each pair of G7 stock markets, and the results indicated that
the time-varying copula GARCH model has performance superior to the
constant copula model in terms of AIC. In addition, the out-of-sample ob-
servations were used to estimate the VaR and ES by using the principle
of the daily rolling window forecasting of returns. For the evaluation of
the performance of the estimates in the copula-GARCH model, the results
reported that the number of violations in the copula-GARCH model are
equal to 4, 21, and 46 at confidence levels 99%, 95%, and 90%, respectively,
and are very close to the expected numbers. In terms of the out of sample
forecasting, Italy stock market showed a stronger volatility than Canada
stock market. To avoid risk, the time-varying copula-GARCH model sug-
gested that we should distribute a tiny amount to Italy, and invest a lot
in Canada stock market. Finally, the time-varying copula GARCH model
was supported by backtesting.
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