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1 Introduction

Over recent years, financial markets have become much more volatile com-
pared to previous decades. The most difficult task in the analysis of financial
markets is to measure financial risks accurately. Financial risk measurement has
been addressed by an increasing number of researches (Szego, 2002[I]; Tsuka-
hara, 2014[2]). Financial risks have many sources and are typically mapped into
a stochastic framework with various kinds of risk measures such as value at risk
(VaR), Conditional Value at Risk (CVaR), and spectral risk measures. Among
them, VaR has become the most frequently used risk measure. In many practical
applications, VaR at 7 probability level is commonly defined as:

VaR,; = F ' (1) = ovqy, (1.1)

where F; ! is the inverse function of the conditional cumulative Gaussian distri-
bution function of the underlying at time ¢ (Franke et al., 2004[3]). ¢, denotes the
7 — th quantile of the distribution of innovation term ey, i.e., P(e; < ¢;) = 7, and
ot denotes the volatility. Since the VaR can be expressed as o X ¢, so it is crucial
for the calculation of VaR to model the distribution of the innovation term and
estimate the volatility accurately.

It is clear that the accuracy of VaR depends heavily on the assumption of the
underlying distribution, which often assumed that the involved risk factors are
normally distributed for reasons of stochastic and numerical simplicity. However,
many empirical studies have shown that the financial returns have leptokurtic
distribution with high peak and fat tails (Peiro, 1999[4]; Verhoeven, 2004[5]). The
distribution assumption of the innovative term influences the performance of the
VaR. The models based on the normality assumption achieve almost the same
values at the 5% quantile as those with a leptokurtic distribution. However, if
one considered lower quantiles such as 1% quantile, the normality assumption
becomes invalid, because the difference relative to the normal becomes larger for
lower quantiles. The NIG distribution is a heavy-tailed distribution that can well
replicate the empirical distribution of the financial risk factors (Y. Chen et al.,
2008[6]). In this paper, we discuss the application of this distribution in financial
risk measurement.

Accurate volatility modeling is in the focus of the financial econometrics and
quantitative finance research. The most commonly used volatility models is gen-
eralized autoregressive conditional heteroscedasticity (GARCH) models proposed
by Bollerslev (1992)[7], who extend the seminal ideas of Engle (1982)[8] about
ARCH models. Their prominent popularity stems from their ability to formulate
conditional variance of returns. To improve the limitation of the GARCH model,
leverage effects and long memory effects, many extended models were proposed
Babsiri and Zakoian, 2001[9]. Many empirical findings suggest that GARCH mod-
els are able to capture volatility persistence, clustering or asymmetry (Bentes,
2015[10]). However, it is well known that financial time series is inherently non-
stationary (Guhathakurta et al., 2008[11]). While the GARCH models and their
extensions were developed for stationary processes, which usually neglect the fact
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that the form of the volatility model is time-unstable. Therefore, one must employ
a new model designed genuinely for the non-stationary financial data to measure
the financial risk.

Financial data is usually not constant or absolute scale and usually with mul-
tiple time-scale characteristics ( Skjeltorp, 2000[12]). So it becomes important for
us to take a multi-scale analysis for financial data (Guhathakurta et al., 2008[11];
Huang et al, 2003[13]). Multi-scale analysis is a comprehensive analysis approach
and specially developed for non-stationary processes. It has been widely used in
the fields of industrial engineering and signal processing. In general, the multi-scale
analysis consists of two steps: (1) Decompose the original signal according to the
time scale and (2) integrate the analysis results of subsystems. In this paper, we
adopt empirical mode decomposition (EMD) method for decompose process, and
averaging method for integrate process. The EMD method proposed by Huang
(1998)[14] can adaptively decompose the original signal into a series of intrinsic
mode function components with different time-scale. The method is applicable
to nonlinear and non-stationary processes since it is based on the local charac-
teristic time scale of the data. Compared to wavelet decomposition and Fourier
decomposition, EMD decomposition has been reported to have worked better in
describing the local time scale. The EMD method has been applied to analyze
the non-stationary financial time series (Huang et al., 2003[13]; Premanode et al.,
2013[15]; Hong L, 2011[16]). For non-stationary financial time series, the multi-
scale method has been addressed by an increasing number of researches. Most of
the literature has concentrated on the prediction of crude oil price and stock index
(Yu et al., 2008[I7]). To the best of our knowledge, using the multi-scale method
to forecast VaR of financial market has not been studied so far.

In this paper, we intend to improve the risk measurement model by following
the steps: Firstly, we decomposed the financial time series into several intrinsic
mode functions by the empirical mode decomposition. Secondly, the GARCH
model is used to forecast the volatility of the each intrinsic mode function com-
ponents respectively. Finally, the volatility that has been predicted before will
be integrated by the averaging method. The NIG-MSA model proposed in this
paper can be easily applied to the problem of VaR calculation. We believe that
the contributions of this paper are:

(1) The”divide-and-conquer”strategy is proposed to predict volatility of return
series, which consist of EMD decomposition and averaging integration.

(2) The NIG distribution is suggested to model the distribution of stochastic
term in GARCH model, which can perfectly fit the devolatilized returns.

(3) Introducing the concept of time-varying quantile, which can be used to
calculate the dynamic VaR of return process.

The remainder of the paper is structured as follows. Section 2 discusses the
properties of the NIG distribution and describes the NIG-MSA dynamic risk mea-
surement model. In section 3 the validity of the NIG-MSA technique is shown via
comparing with other volatility prediction models. Using S& P500 yield series, the
performance of the NIG-MSA risk measurement model is presented by means of
back-testing in section 4. Finally, Section 5 draws the conclusion and discussion.
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2 The Dynamic Risk Measurement Model

In this section, the overall process of formulating the dynamic risk measure-
ment model is presented. Here we name this new VaR method as Normal Inverse
Gaussian- Multi-Scale Analysis (NIG-MSA) method. The NIG-MSA model en-
semble paradigm can be formulated as illustrated in Figure 1.

h \ J h 4 A 4 h 4

IMF1 IMF2 || ......... IMFn Rest
@)
Volatility Volatilitys | | ......... Volatility, Volatility,—

Aggregated Volatility

Figure 1: The overall process of the NIG-MSA model

As can be seen from Figure 1, the NIG-MSA model generally consists of the
following four main steps:

(1) The returns series R(t), t = 1,2,...,T is adaptively decomposed into a
finite number of IMF (Intrinsic Mode Function) components employed the EMD
method.

(2) The GARCH (1, 1) model is used as a prediction tool to model the volatil-
ity process of each extracted IMF component and to predict the corresponding
volatility, in which we assume the innovation term is NIG distribution.

(3) The volatility forecasting results of all extracted IMF components in step
(2) are integrated to generate an aggregated volatility estimation using an aver-
aging method.

(4) Using the aggregated volatility to calculate the devolatilized return, then
the NIG distribution parameters can be estimated.
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2.1 The GARCH (1,1) Model with NIG Distribution

The GARCH (1,1) model is a parsimonious model in volatility forecasting
models (Eberlein, 2003[I8]). The model provides a simple representation of the
main statistical characteristics of a return process, such as autocorrelation and
volatility clustering. The GARCH (1,1) model is the most popular structure
for volatility forecasting and, consequently, it is extensively used to model real
financial time series.

Let Ry = logP; —logP;_1 denote the logarithm of return, where P; is the asset
price at time t. The return process is modeled in the GARCH (1, 1):

Rt = O¢&¢ (21)

of =w+ ORY_| + o7y, (2:2)

where the innovation term ¢; is assumed to be an independently and identically
distributed random variable. The volatility o7 is time varying and unobservable
in the market. To ensure that the conditional variance is positive, we assume that
the parameters w, ¢ and ¢ all satisfy w > 0, ¢, > 0.

The NIG distribution is a heavy-tailed distribution which is rich enough to
model financial time series and has the benefit of numerical tractability (Eberlein
et al., 1995[19]). The density function of the NIG distribution for x is

\/27_2
fvic(aia, goop = 22 K2 il Gl {0va? = 32+ Bz — )}, (2.3)
w 0% + (z — p)?
where, § > 0 and |8 < o, K(z) = & [T exp{—£(y +y*)}dy.

The location and scale of the density are mainly controlled by parameters
1 and & respectively, whereas a and § play roles in the skewness and kurtosis
of the distribution. Thus all moments of NIG(a,f,d, ) have simple explicit
expressions, in particular, the mean and variance are E(x) = u + $6//a? — 52
and VaR(z) = o?§/\/(a? — B2)3. Furthermore, if u = 0, the NIG distribution
has the tail-behaviors

fyre(z, o, 8,0, u=0) ~ af%ef(o‘fﬁ)z, as T — 00, (2.4)

which shows that the NIG distribution has an exponential decaying speed. As
compared to the normal distribution, the NIG distribution decays more slowly
and the NIG distribution often appears in modeling the return process. In this
paper, we propose that the stochastic term &; is assumed to possess the NIG
distribution. The parameters in GARCH (1, 1) model are estimated using quasi-
maximum likelihood method.

2.2 Empirical Mode Decomposition (EMD)

The decomposition is based on the local characteristic time scale of the data.
So any non-stationary dataset can be adaptively decomposed into a finite and
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often small number of Intrinsic Mode Functions (IMF) with individual intrinsic
time scale properties. The IMF satisfies the following two prerequisites: (1) In the
whole data series, the number of extreme points and the number of zero crossings
must be equal or differ at most by one. (2) The mean value of the envelopes defined
by local maxima and minima must be zero at all points. Each IMF component has
a clear physical meaning and contains a certain characteristic range of time scale
(Huang et al., 1998[14]). As compared with the original data, the IMF components
are more stationary, which is advantageous to forecast volatility of return process.
The generic EMD algorithm is described by the following steps:

i) Identify all the maximum points and all the minimum points of original
signal z(t).

ii) Fit the maxima envelope z,(t) and minima envelope x;(t) with cubic spline
function.

iii) Calculate the mean value mq(t) = (x;(t) + 2, (t))/2.

iv) Calculate the quasi-IMF hq (t) = x(t) —m4 (¢) and test whether h; (t) satisfies
the two prerequisites of an IMF property. If they are satisfied, we obtain
the first IMF. If not, we regard hq(t) as z(t) and repeat steps (i)-(iii) until
hi(t) becomes an IMF.

v) Calculate the first residual term res(t) = x(t) — hy(t). The res(t) is treated
as new input z(¢) in the next loop to derive the next IMF. We stop the
decomposition procedure until the residual term res(t) becomes a monotonic
function from which no further IMF can be extracted.

From the above decomposition process, it is obvious that the original time
series z(t) can be reconstructed by summing up all the IMF components together
with the last residue component, that is z(¢t) = Y_ h;(t) + res(t). In this paper,
the residual term is seen as the last IMF.

EMD method adaptively obtains the local IMF components with the short-
est cycle by screening the local characteristics from the original signal and each
component also includes a corresponding section of different frequency component.

3 Simulation Experiment

The NIG-MSA technique consists of two main parts: predict the volatility
using the multi-scale methodology and dynamically estimate the quantile of inno-
vation. The calculation procedure can be described as:

i) Set up the data generating model.
ii) Estimate the aggregated volatility 6; using the multi-scale methodology.

iii) Calculate the innovation terms e, = R;/d; and fit the NIG distribution
parameters and estimate the quantile §.

iv) Calculate the VaR; = 6 - G-
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From the above calculation steps, we can see that the key pillar for the NIG-
MSA technique is the accurate estimation of the volatility. In the simulation, we
only focus on the volatility forecasting. The Monte Carlo simulation is applied
to evaluate the performance of the NIG-MSA method. The simulated data set is
generated by the following model

Rt = O¢&¢ (31)
0.1+ 0.4R% | +0.507 1,1 <t < 400;
o2 =< 0.5+0.1R? ; +0.802 ,,400 < t < 750; (3.2)

0.1+ 0.7R2_, +0.202 ,,750 < t < 1000,

where R; is return and &; is innovation distributed as normal inverse Gaussian
with zero mean and unit variance. Notice that if the data generating process is
R; = ove¢ then VaR; = 0¢q, (Franke et al., 2004[3]).

The purpose of this experiment is to evaluate the four volatility forecast meth-
ods: (i) GARCH (1,1) with normal distribution (Nor-GAR), (i7) GARCH (1,1)
with normal inverse Gaussian distribution (NIG-GAR), (i4i) Multi-scale analysis
with normal distribution (Nor-MSA) and (iv) Multi-scale analysis with normal
inverse Gaussian distribution (NIG-MSA). We use the four models to respectively
forecast the real volatility generated in (3) and the simulation results are shown
in Figure 2.

Real Volatili

] )LUMM‘&MWMMJWM-“ﬁ

0 200 400 GO &00 1000

" Nor.GAR
e }'\J\NWM
= T T T T T T

0 200 200 €00 200 1000
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4
1

- NIG-GAR
s NWM

0 200 400 GO0 &00 1000
. NIG 11SA

Figure 2: The comparison of volatility forecasting
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The volatility forecasting performance is evaluated using the following statis-
tical metrics.
Normalized mean squared error (NMSE):

N N
NMSE = ,|> (67 = R})?/ Y (R} — R})* (3.3)

t=1 t=1

Normalized mean absolute error (NMAE):

N
NMAE = |67 — Rj|/ ) |R}, — RY| (3.4)
t

Hit rate (HR)

The three statistical metrics relate the predicted volatility 62 to the proxy
volatility estimation R? ;. The NMSE and NMAE are the measures of the devia-
tion between the proxy and predicted values. The smaller their values, the closer
the predicted volatility is to the actual values. The HR is a measure of how often
the model gives the correct direction of change of volatility. The larger the value
of HR, the better is the performance of prediction.

Additionally, the volatility of the return process can not be observed, so we
evaluate the performance of the volatility prediction in the model following the
criterion: the better the forecasting performance of volatility model, the better
the standardized observation (e; :Rt /6¢) is fitting the normal inverse Gaussian
distribution. The Kolmogorov- Smirnov distance (KS) is usually used to test
whether a given F'(x) is the underlying probability distribution of F),(x), so we use
the Kolmogorov-Smirnov distance as the criterion for the goodness of fit testing.
It is defined as

KS = supyer|F(z) — Fn(x)], (3.5)

where F(z) is the empirical sample distribution and F,(z) is the cumulative dis-
tribution function. The smaller the values of KS distances, the closer are the
predicted volatility to the actual values.

Table 1 gives the descriptive statistics of the simulation results and shows
that superiority of the NIG-MSA model over the other models. The table reports
the computed KS distance, NMSE, NASE and HR statistics metrics for the four
models: Nor-GAR, Nor-MSA, NIG-GARCH, NIG-MSA. It shows that the value
of KS distance, NMSE, NMAE for the NIG-MSA model are below the others, and
that the value of HR for NIG-MSA model is the highest. Further, it indicates that
multi-scale analysis has more influence on the volatility forecasting performance
compared with the NIG distribution assumption. For an example of KS distance,
the value of Nor-MSA reduced to 0.0174 and NIG-GAR only down to 0.0402
relative to the value of Nor-GAR 0.0581. As for the other three statistical metrics,
we can draw the same conclusion. The NIG-MSA model can give better predictions
because of its good time-frequency property which can describe non-stationary
financial time series.
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4 Empirical Analysis

The data set S&P 500 index was used in our empirical analysis. The index is
daily registered from 2000/01/03 to 2014/10/28. There are 3729 observations. The
first 2768 observations (from 2000/01/03 to 2010/12/31) are used as a basis to train
the multi-scale analysis system and estimate the NIG distribution parameters. The
residual 961 observations are used as a test set to evaluate the prediction of the
dynamic VaR calculated by the NIG-MSA dynamic risk measurement model. The
graphics of the return processes of train set are displayed in Figure 3.

Daily S&P 500 returns from 1/4/00 to 12/31/10

o
<

T T I I T T T T T T T I
1/4/00  1/2/01  1/2/02 1203 1/2/04 /305  1/3/06 1/3/07  1/2/08 1/2/09 1410 12/3110

Figure 3: The logarithmic return process of S&P 500 index

4.1 NIG-MSA Model Training and Volatility Prediction

The NIG-MSA model can be trained according to the multi-scale methodology
shown in section 2. Firstly, the training set (2768 observations) is decomposed into
ten IMF components (the last IMF is residual term) using the EMD technique, as
illustrated in Figure 4. Then, the GARCH (1, 1) model was used to model the every
IMF component and to estimate corresponding volatility. The estimation results
of the parameters as shown in Table 2. Finally, we use the averaging method to
integrate the volatilities of IMF components and the aggregated volatility is given
in Figure 5.
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Empirical Mode Decomposition
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Figure 4: The decomposition of the training set

NIG-MSA volatility estimators
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Figure 5: The volatility estimation of the training set
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The NIG-MSA model that has been trained can be used to predict the volatility
of the test set series. The basic idea of the volatility estimation comes from
the assumption that although the returns series is non-stationary in a long time
period, its volatility structure is relatively stationary. So, we suppose that the
test set consists of 10 IMF components, and use the GARCH (1, 1) model which
has been modeled to forecast the volatility of the each component. Then the 10
volatility prediction series are integrated to generate the final volatility prediction.
In order to evaluate the performance of the NIG-MSA model, the Nor-GAR model
is selected as the reference method, their prediction results of volatility as shown
in Figure 6.

NIG-MSA volatility estimators
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1 1
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Nor-GAR volatility estimators
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|

AP\ utied
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|

Figure 6: The volatility estimation of the test set

4.2 Time-Varying Quantile Estimation

In the NIG-MSA model, the distribution parameters could be time-variant
as well. Figure 7 shows the quantile varies as time passes, which means that we
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could not keep the how assumption that the devolatilized returns are identically
distributed. Instead, we estimated the dynamic quantiles based on the test set
data. In Figure 7, we show the dynamic quantile estimations of the three prob-
ability levels, from the top the evolving NIG quantiles for 7 = 0.5,7 = 0.05 and
7 = 0.005. A more detailed description is shown in Table 3 which contains four
statistical metrics: Minimum, Maximum, Mean and Standard deviation. It gives
the descriptive statistics of dynamic quantiles estimated by NIG-MSA technique.
This provides evidence that the more extreme the probability levels, the greater
the quantile varies as time passes. For the extreme probability 7 = 0.005, the va-
riety range value is 0.5244 and the standard deviation is 0.1156. However, for the
probability 7 = 0.5, the variety range value is 0.1064 and the standard deviation
is 0.0236. This inspires us to consider that we should use dynamic quantiles to
calculate the VaR, especially for the extreme events.
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002 000
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T T T T T
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Figure 7: Dynamic quantiles estimation of test set

4.3 Value at Risk and Backtesting

Value at risk (VaR) can answers the question: How much can one lose with
T probability over the pre-set horizon. The volatility estimation as well as the
distribution assumption of the devolatilized returns is essential to the VaR based
risk management. We can calculate VaR using the formula VaR.; = o:q.. But
in practice, one is interested in the prediction of VaR. In the NIG-MSA approach,
we robustly estimated the volatility &;. Because the volatility process is a su-
permartingale, so we use the estimate today as the volatility forecast o¢4; for
tomorrow, i.e. g¢+1 = ;. Further, we calculate the NIG distribution parameters
of the devolatilized returns and estimated the dynamic quantile ¢,. Then, the VaR
at the probability level 7 was predicted as

VaRT,t+1 = (}t—&-leT- (41)

The daily VaR predictions of S&P500 returns test set are displayed in Figure
8. The VaR forecasts are different between the NIG-MSA model and the Nor-
GAR model. At the 5% probability level, there are more than 45 exceptions
observed in Nor-GAR model and more than 48 exceptions observed in NIG-MSA
model. Their exception rate respectively is 4.47% and 4.99%, both are very close
to the probability level 5%. However, at the 0.5% probability level, the exceptions
rate of the two models is 0.68% and 0.44% respectively. This means that as the
probability level decreases to some extreme level, the gaps of these two models get
larger. Figure 8 gives the quantitative statistics of the testing set.

We employ the back testing procedures to evaluate the validation of the VaR
calculation. The standard is that a VaR calculation should not underestimate the
market risk. Let N denote the number of exceptions at time ¢, ¢t =1,2,...,T. We
hope that the proportion of exceptions N/T equal with the fixed probability level
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7. The hypothesis test is given as:
Hy: E[N] =TT, H,:E[N]#Tr.
Jorion (2001) proposed using the likelihood ratio statistic
LR = —2log[(1 — 7)T=N+N] 4 2log[(1 — N/T)T=N(N/T)N], (4.2)

to test this hypothesis. Under Hy, the statistic LR is asymptotically x?(1) dis-
tributed.

Dynamic VaR Forecasting ( tau = 0.05)
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Figure 8: Dynamic Value at Risk forecasting of test set

Table 4 summarizes the results of the backtesting for the test data. We com-
pare the NIG-MSA model with the Nor-GAR model under four probability levels:
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0.5%, 1%, 2.5% and 5%. It shows that the NIG-MSA model gives more accurate
predictions at each probability level than the Nor-GAR model. Especially un-
der extreme probability level 1% and 0.5%, the Nor-GAR model fails to provide
acceptable results under 95% confidence level.

5 Conclusion and Discussion

This study proposes the NIG-MSA risk measurement model based on the
multi-scale volatility estimation and the normal inverse Gaussian distribution.
Since most of the financial data are inherently non-stationary and the distribution
of the devolatilized returns is leptokurtic and asymmetric, it is important that
we adopt an approach designed for such characteristics. The multiple time-scale
analysis method is specially developed for analyzing non-stationary financial time
series. The volatility estimation based on decomposition and integration will be
more accurate and robust. The distribution of the innovations can be perfectly
modeled by the NIG distribution. So we propose the NIG-MSA model to measure
the financial risk metrics.

The NIG-MSA model is proposed firstly, which mainly includes three key
techniques: EMD decomposition, GARCH model and averaging integration. Then
we compared the volatility forecasting performance of the NIG-MSA model with
the other three models (Nor-GAR, NIG-GAR and Nor-MSA) using a simulated
data sets. As demonstrated in the experiment, the VaR forecasts calculated by
NIG-MSA technique significantly better than Nor-GAR model in all aspects. The
superior performance of NIG-MSA model to the Nor-GAR model mostly lie in
that the NIG-MSA fully considering the non-stationary feature of financial time
series and the non-normal distribution of the devolatilized returns. The proposed
method can be applied to predict dynamic risk measurement.

For the future research, we will extend the technique of multi-scale to analysis
the non-stationary financial time series. On the one hand, we expect to improve
the performance of multi-scale analysis system, such as the approach selection
of decomposition and integration. On the other hand, it is more interesting and
challenging to measure the risk metrics of portfolio in financial markets. We expect
to apply the idea of multiple time-scale analysis to forecast volatility with the
multivariate NIG distribution.
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