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1 Introduction and Preliminaries

In 1976, Caristi proved the following famous fixed point theorem (so-called
Caristi’s fixed point theorem [1]) by using transfinite induction:

Theorem 1 (Caristi [1]). Let (X, d) be a complete metric space and f : X → R be

a lower semicontinuous and bounded below function. Suppose that T is a Caristi

type mapping on X dominated by f , that is, T satisfies

d(x, Tx) ≤ f(x)− f(Tx) for each x ∈ X. (∗)

Then T has a fixed point in X.

It is known that Caristi’s fixed point theorem is equivalent to the Ekeland’s
variational principle, to the Takahashi’s nonconvex minimization theorem, to the
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Daneš’ drop theorem, to the petal theorem, and to the Oettli-Théra’s theorem,
see [2–15] and references therein for more details. A large number of generaliza-
tions in various different directions of the Caristi’s fixed point theorem have been
investigated by several authors; see, for example, [2–19] and references therein.
In fact, several elegant proofs of original Caristi’s fixed point theorem (Theorem
1) were given. In [20], Wong gave a modification of Caristi’s original transfinite
induction argument. Kirk [21], Brøndsted [22] and Pasicki [23] proved Caristi’s
fixed point theorem by using Zorn’s lemma. An interesting proof of Caristi’s fixed
point theorem was derived from a result of Brézis and Browder [24] (so-called
Brézis-Browder order principle). Some other elegant proofs of the Caristi’s fixed
point theorem can be found in, for example, [4–18, 25] and references therein.

In this paper, we give a new and simple proof of Caristi’s fixed point theorem
without using Zorn’s lemma, transfinite induction and any well-known principle.

2 A New Proof of Caristi’s Fixed Point Theorem

Now, we present our new proof of original Caristis fixed point theorem as
follows.
Proof of Caristi’s fixed point theorem. On the contrary, suppose that Tx 6= x
for all x ∈ X . Define a set-valued mapping Γ : X → 2X (the power set of X) by

Γ(x) = {y ∈ X : y 6= x, d(x, y) ≤ f(x)− f(y)} for x ∈ X.

From (∗), we know Tx ∈ Γ(x) and hence Γ(x) 6= ∅ for all x ∈ X . We claim that
for each y ∈ Γ(x), we have f(y) ≤ f(x) and Γ(y) ⊆ Γ(x). Let y ∈ Γ(x) be given.
Then y 6= x and d(x, y) ≤ f(x)− f(y). So we get f(y) ≤ f(x). Since Γ(y) 6= ∅, let
z ∈ Γ(y). Then z 6= y and d(y, z) ≤ f(y)− f(z). It follows that

f(z) ≤ f(y) ≤ f(x)

and
d(x, z) ≤ d(x, y) + d(y, z) ≤ f(x)− f(z).

Also we have z 6= x. Indeed, if z = x then f(z) = f(x). Since

d(x, y) ≤ f(x)− f(y) ≤ f(x)− f(z) = 0,

which implies d(x, y) = 0, that is x = y. This would imply y = z, a contradiction.
Hence z ∈ Γ(x). Therefore we prove Γ(y) ⊆ Γ(x). We shall construct a sequence
{xn} in X by induction, starting with any point x1 ∈ X . Suppose that xn ∈ X is
known. Then choose xn+1 ∈ Γ(xn) such that

f(xn+1) ≤ inf
z∈Γ(xn)

f(z) +
1

n
, n ∈ N. (2.1)

For any n ∈ N, since xn+1 ∈ Γ(xn), we have

xn+1 6= xn (2.2)



A Simple Proof of Caristi’s Fixed Point Theorem ... 261

and

d(xn, xn+1) ≤ f(xn)− f(xn+1). (2.3)

So f(xn+1) ≤ f(xn) for each n ∈ N. Since f is bounded below,

λ := lim
n→∞

f(xn) = inf
n∈N

f(xn) exists. (2.4)

For m > n with m,n ∈ N, by (2.3) and (2.4), we obtain

d(xn, xm) ≤
m−1∑

j=n

d(xj , xj+1) ≤ f(xn)− λ.

Since lim
n→∞

f(xn) = λ, we obtain

lim
n→∞

sup{d(xn, xm) : m > n} = 0.

Hence {xn} is a Cauchy sequence in X . By the completeness of X , there exists
v ∈ X such that xn → v as n → ∞. Since f is lower semicontinuous, by (2.4), we
get

f(v) ≤ lim inf
n→∞

f(xn) = inf
n∈N

f(xn) ≤ f(xj) for all j ∈ N. (2.5)

We want to verify v 6= xn for all n ∈ N. Arguing by contradiction, assume that
there exists k ∈ N such that v = xk. By (2.3) and (2.5), we have

d(xk, xk+1) ≤ f(xk)− f(xk+1) ≤ f(xk)− f(v) = 0,

and hence deduces xk+1 = xk which contradicts (2.2). So it must be v 6= xn for
all n ∈ N.

Next, we prove that
⋂

∞

n=1 Γ(xn) = {v}. For m > n with m,n ∈ N, by (2.3)
and (2.5), we obtain

d(xn, xm) ≤
m−1∑

j=n

d(xj , xj+1) ≤ f(xn)− f(v). (2.6)

Since xm → v as m → ∞, the inequality (2.6) implies

d(xn, v) ≤ f(xn)− f(v) for all n ∈ N. (2.7)

Combining (2.7) with the fact that v 6= xn for all n ∈ N, we have v ∈
⋂

∞

n=1 Γ(xn).
Hence

⋂
∞

n=1 Γ(xn) 6= ∅, and moreover, we can see that

Γ(v) ⊆
∞⋂

n=1

Γ(xn).
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For any c ∈
⋂

∞

n=1 Γ(xn), by (2.1), we have

d(xn, c) ≤ f(xn)− f(c)

≤ f(xn)− inf
z∈Γ(xn)

f(z)

≤ f(xn)− f(xn+1) +
1

n

for all n ∈ N. Hence lim
n→∞

d(xn, c) = 0 or, equivalently, xn → c as n → ∞. By

the uniqueness of the limit of a convergent sequence, we have c = v. So we show⋂
∞

n=1 Γ(xn) = {v}. Since Γ(v) 6= ∅ and

Γ(v) ⊆
∞⋂

n=1

Γ(xn) = {v}

we get Γ(v) = {v}, which leads a contradiction. Therefore T must have a fixed
point in X . The proof is completed. ✷

Remark 2.

(a) Although the function f is lower semicontinuous, it do not deduce that Γ(x)
is a closed subset of X;

(b) Classic proofs of Caristi’s fixed point theorem involve assigning a partial

order - on X by setting

x - y ⇐⇒ d(x, y) ≤ f(x)− f(y),

and then either using Zorn’s lemma or the Brézis-Browder order principle

with the set

S(x) = {y ∈ X : x - y} for x ∈ X.

By the reflexivity, x ∈ S(x) for all x ∈ X. It is worth mentioning that the

set Γ(x) defined in our proof by

Γ(x) = {y ∈ X : y 6= x, d(x, y) ≤ f(x)− f(y)} for x ∈ X,

have the property x /∈ Γ(x) for all x ∈ X, so the Brézis-Browder order

principle is not applicable here. Also, we do not define any partial order on

X and hence Zorn’s lemma does not be used in our proof.
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