Thai Journal of Mathematics Volume 14 (2016) Number 2 : 259–264

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

A Simple Proof of Caristi's Fixed Point Theorem without Using Zorn's Lemma and Transfinite Induction

Wei-Shih Du

Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan e-mail : wsdu@nknucc.nknu.edu.tw; wsdu@mail.nknu.edu.tw

Abstract : In this paper, we give a new and simple proof of Caristi's fixed point theorem without using Zorn's lemma, transfinite induction and any well-known principle.

Keywords : Caristi's fixed point theorem; transfinite induction; Zorn's lemma; Brézis-Browder order principle.

2010 Mathematics Subject Classification : 37C25; 47H10; 54H25.

1 Introduction and Preliminaries

In 1976, Caristi proved the following famous fixed point theorem (so-called Caristi's fixed point theorem [1]) by using transfinite induction:

Theorem 1 (Caristi [1]). Let (X, d) be a complete metric space and $f : X \to \mathbb{R}$ be a lower semicontinuous and bounded below function. Suppose that T is a Caristi type mapping on X dominated by f, that is, T satisfies

$$d(x,Tx) \le f(x) - f(Tx) \quad \text{for each } x \in X. \tag{(*)}$$

Then T has a fixed point in X.

It is known that Caristi's fixed point theorem is equivalent to the Ekeland's variational principle, to the Takahashi's nonconvex minimization theorem, to the

Copyright \bigodot 2016 by the Mathematical Association of Thailand. All rights reserved.

Daneš' drop theorem, to the petal theorem, and to the Oettli-Théra's theorem, see [2–15] and references therein for more details. A large number of generalizations in various different directions of the Caristi's fixed point theorem have been investigated by several authors; see, for example, [2–19] and references therein. In fact, several elegant proofs of original Caristi's fixed point theorem (Theorem 1) were given. In [20], Wong gave a modification of Caristi's original transfinite induction argument. Kirk [21], Brøndsted [22] and Pasicki [23] proved Caristi's fixed point theorem by using Zorn's lemma. An interesting proof of Caristi's fixed point theorem was derived from a result of Brézis and Browder [24] (so-called Brézis-Browder order principle). Some other elegant proofs of the Caristi's fixed point theorem can be found in, for example, [4–18,25] and references therein.

In this paper, we give a new and simple proof of Caristi's fixed point theorem without using Zorn's lemma, transfinite induction and any well-known principle.

2 A New Proof of Caristi's Fixed Point Theorem

Now, we present our new proof of original Caristis fixed point theorem as follows.

Proof of Caristi's fixed point theorem. On the contrary, suppose that $Tx \neq x$ for all $x \in X$. Define a set-valued mapping $\Gamma : X \to 2^X$ (the power set of X) by

$$\Gamma(x) = \{ y \in X : y \neq x, d(x, y) \le f(x) - f(y) \} \text{ for } x \in X.$$

From (*), we know $Tx \in \Gamma(x)$ and hence $\Gamma(x) \neq \emptyset$ for all $x \in X$. We claim that for each $y \in \Gamma(x)$, we have $f(y) \leq f(x)$ and $\Gamma(y) \subseteq \Gamma(x)$. Let $y \in \Gamma(x)$ be given. Then $y \neq x$ and $d(x, y) \leq f(x) - f(y)$. So we get $f(y) \leq f(x)$. Since $\Gamma(y) \neq \emptyset$, let $z \in \Gamma(y)$. Then $z \neq y$ and $d(y, z) \leq f(y) - f(z)$. It follows that

$$f(z) \le f(y) \le f(x)$$

and

$$d(x,z) \le d(x,y) + d(y,z) \le f(x) - f(z).$$

Also we have $z \neq x$. Indeed, if z = x then f(z) = f(x). Since

$$d(x,y) \le f(x) - f(y) \le f(x) - f(z) = 0,$$

which implies d(x, y) = 0, that is x = y. This would imply y = z, a contradiction. Hence $z \in \Gamma(x)$. Therefore we prove $\Gamma(y) \subseteq \Gamma(x)$. We shall construct a sequence $\{x_n\}$ in X by induction, starting with any point $x_1 \in X$. Suppose that $x_n \in X$ is known. Then choose $x_{n+1} \in \Gamma(x_n)$ such that

$$f(x_{n+1}) \le \inf_{z \in \Gamma(x_n)} f(z) + \frac{1}{n}, \ n \in \mathbb{N}.$$
(2.1)

For any $n \in \mathbb{N}$, since $x_{n+1} \in \Gamma(x_n)$, we have

$$x_{n+1} \neq x_n \tag{2.2}$$

A Simple Proof of Caristi's Fixed Point Theorem ...

and

$$d(x_n, x_{n+1}) \le f(x_n) - f(x_{n+1}).$$
(2.3)

So $f(x_{n+1}) \leq f(x_n)$ for each $n \in \mathbb{N}$. Since f is bounded below,

$$\lambda := \lim_{n \to \infty} f(x_n) = \inf_{n \in \mathbb{N}} f(x_n) \quad \text{exists.}$$
(2.4)

For m > n with $m, n \in \mathbb{N}$, by (2.3) and (2.4), we obtain

$$d(x_n, x_m) \le \sum_{j=n}^{m-1} d(x_j, x_{j+1}) \le f(x_n) - \lambda.$$

Since $\lim_{n \to \infty} f(x_n) = \lambda$, we obtain

$$\lim_{n \to \infty} \sup\{d(x_n, x_m) : m > n\} = 0.$$

Hence $\{x_n\}$ is a Cauchy sequence in X. By the completeness of X, there exists $v \in X$ such that $x_n \to v$ as $n \to \infty$. Since f is lower semicontinuous, by (2.4), we get

$$f(v) \le \liminf_{n \to \infty} f(x_n) = \inf_{n \in \mathbb{N}} f(x_n) \le f(x_j) \text{ for all } j \in \mathbb{N}.$$
 (2.5)

We want to verify $v \neq x_n$ for all $n \in \mathbb{N}$. Arguing by contradiction, assume that there exists $k \in \mathbb{N}$ such that $v = x_k$. By (2.3) and (2.5), we have

$$d(x_k, x_{k+1}) \le f(x_k) - f(x_{k+1}) \le f(x_k) - f(v) = 0,$$

and hence deduces $x_{k+1} = x_k$ which contradicts (2.2). So it must be $v \neq x_n$ for all $n \in \mathbb{N}$.

Next, we prove that $\bigcap_{n=1}^{\infty} \Gamma(x_n) = \{v\}$. For m > n with $m, n \in \mathbb{N}$, by (2.3) and (2.5), we obtain

$$d(x_n, x_m) \le \sum_{j=n}^{m-1} d(x_j, x_{j+1}) \le f(x_n) - f(v).$$
(2.6)

Since $x_m \to v$ as $m \to \infty$, the inequality (2.6) implies

$$d(x_n, v) \le f(x_n) - f(v) \quad \text{for all } n \in \mathbb{N}.$$
(2.7)

Combining (2.7) with the fact that $v \neq x_n$ for all $n \in \mathbb{N}$, we have $v \in \bigcap_{n=1}^{\infty} \Gamma(x_n)$. Hence $\bigcap_{n=1}^{\infty} \Gamma(x_n) \neq \emptyset$, and moreover, we can see that

$$\Gamma(v) \subseteq \bigcap_{n=1}^{\infty} \Gamma(x_n).$$

For any $c \in \bigcap_{n=1}^{\infty} \Gamma(x_n)$, by (2.1), we have

$$d(x_n, c) \le f(x_n) - f(c)$$

$$\le f(x_n) - \inf_{z \in \Gamma(x_n)} f(z)$$

$$\le f(x_n) - f(x_{n+1}) + \frac{1}{n}$$

for all $n \in \mathbb{N}$. Hence $\lim_{n \to \infty} d(x_n, c) = 0$ or, equivalently, $x_n \to c$ as $n \to \infty$. By the uniqueness of the limit of a convergent sequence, we have c = v. So we show $\bigcap_{n=1}^{\infty} \Gamma(x_n) = \{v\}$. Since $\Gamma(v) \neq \emptyset$ and

$$\Gamma(v) \subseteq \bigcap_{n=1}^{\infty} \Gamma(x_n) = \{v\}$$

we get $\Gamma(v) = \{v\}$, which leads a contradiction. Therefore T must have a fixed point in X. The proof is completed. \Box

Remark 2.

- (a) Although the function f is lower semicontinuous, it do not deduce that $\Gamma(x)$ is a closed subset of X;
- (b) Classic proofs of Caristi's fixed point theorem involve assigning a partial order \preceq on X by setting

$$x \preceq y \quad \Longleftrightarrow \quad d(x,y) \le f(x) - f(y),$$

and then either using Zorn's lemma or the Brézis-Browder order principle with the set

$$S(x) = \{ y \in X : x \preceq y \} \quad for \ x \in X.$$

By the reflexivity, $x \in S(x)$ for all $x \in X$. It is worth mentioning that the set $\Gamma(x)$ defined in our proof by

$$\Gamma(x) = \{ y \in X : y \neq x, d(x, y) \le f(x) - f(y) \} \quad \text{for } x \in X,$$

have the property $x \notin \Gamma(x)$ for all $x \in X$, so the Brézis-Browder order principle is not applicable here. Also, we do not define any partial order on X and hence Zorn's lemma does not be used in our proof.

Acknowledgements : This research was supported by grant no. MOST 105-2115-M-017-002 of the Ministry of Science and Technology of the Republic of China.

A Simple Proof of Caristi's Fixed Point Theorem ...

References

- J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976) 241-251.
- [2] W.-S. Du, On some nonlinear problems induced by an abstract maximal element principle, J. Math. Anal. Appl. 347 (2008) 391-399.
- [3] W.-S. Du, Critical point theorems for nonlinear dynamical systems and their applications, Fixed Point Theory and Appl. 2010, Article ID 246382, 16 pages, doi:10.1155/2010/246382.
- [4] K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.
- [5] D.H. Hyers, G. Isac, T.M. Rassias, Topics in nonlinear analysis and applications, World Scientific, Singapore, 1997.
- [6] J.R. Jachymski, Caristi's fixed point theorem and selections of set-valued contractions, J. Math. Anal. Appl. 227 (1998) 55-67.
- [7] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon. 44 (1996) 381-391.
- [8] M.A. Khamsi, W.A. Kirk, An introduction to metric spaces and fixed point theory, Pure and Applied Mathematics, Wiley-Interscience, New York, 2001.
- [9] W.A. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer, Cham, 2014.
- [10] L.-J. Lin, W.-S. Du, Ekeland's variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces, J. Math. Anal. Appl. 323 (2006) 360-370.
- [11] L.-J. Lin, W.-S. Du, Some equivalent formulations of generalized Ekeland's variational principle and their applications, Nonlinear Anal. 67 (2007) 187-199.
- [12] L.-J. Lin, W.-S. Du, On maximal element theorems, variants of Ekeland's variational principle and their applications, Nonlinear Anal. 68 (2008) 1246-1262.
- [13] T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl. 253 (2001) 440-458.
- [14] T. Suzuki, Generalized Caristi's fixed point theorems by Bae and others, J. Math. Anal. Appl. 302 (2005) 502-508.
- [15] W. Takahashi, Nonlinear functional analysis, Yokohama Publishers, Yokohama, Japan, 2000.

- [16] W.-S. Du, On Caristi type maps and generalized distances with applications, Abstr. Appl. Anal. 2013, Article ID 407219, 8 pages, http://dx.doi.org/10.1155/2013/407219.
- [17] W.-S. Du, On Caristi-type mappings without lower semicontinuity assumptions, Journal of Fixed Point Theory and Appl. 17 (4) (2015) 733-752.
- [18] W. A. Kirk, L. M. Saliga, The Brézis-Browder order principle and extensions of Caristi's theorem, Nonlinear Anal. 47 (2001) 2765-2778.
- [19] W.-S. Du, E. Karapinar, A note on Caristi-type cyclic maps: related results and applications, Fixed Point Theory and Appl. 2013, DOI: 10.1186/1687-1812-2013-344.
- [20] C.S. Wong, On a fixed point theorem of contractive type, Proc. Amer. Math. Soc. 57 (2) (1976) 283-284.
- [21] W.A. Kirk, Caristi's fixed point theorem and metric convexity, Colloq. Math., 36 (1) (1976) 81-86.
- [22] A. Brøndsted, Fixed points and partial orders, Proc. Am. Math. Soc. 60 (1976) 365-366.
- [23] L. Pasicki, A short proof of the Caristi theorem, Ann. Soc. Math. Polon. Series I: Comm. Math. 22 (1978) 427-428.
- [24] H. Brézis, F.E. Browder, A general principle on ordered sets in nonlinear functional analysis, Adv. Math. 21 (3) (1976) 355-364.
- [25] F.E. Browder, On a theorem of Caristi and Kirk, in Proceedings of the Seminar on Fixed Point Theory and Its Applications, June 1975, 23-27, Academic Press, New York, 1976.

(Received 28 May 2016) (Accepted 28 June 2016)

 $\mathbf{T}\mathrm{HAI}\ \mathbf{J.}\ \mathbf{M}\mathrm{ATH}.$ Online @ http://thaijmath.in.cmu.ac.th