THAI JOURNAL OF M ATHEMATICS @

VOLUME 14 (2016) NUMBER 1 : 249-258 ( e)

= 5
http://thaijmath.in.cmu.ac.th &ﬂ\y
ISSN 1686-0209

Convolution Conditions for Some Subclasses
of Meromorphic Bounded Functions

of Complex Order

M.K. Aouf, A.O. Mostafal and H.M. Zayed'{]

"Department of Mathematics, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
e-mail : mkaouf127@yahoo.com; adelaeg254@yahoo.com

'Department of Mathematics, Faculty of Science, Menofia
University, Shebin Elkom 32511, Egypt
e-mail : hanaa zayed42@yahoo.com

Abstract : Making use of the operator H, s(aq) for functions of the form f(z) =
(e}

% + kE apz"~1, which are analytic in the punctured unit disc U* = {z : z € C
1

and 0 < |z| < 1} = U\{0}, we introduce two subclasses of meromorphic functions
of complex order and investigate convolution properties, coefficient estimates and
containment properties for these subclasses.
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1 Introduction

Let X denote the class of meromorphic functions of the form:

fz) = % +) apt (1.1)
k=1
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which are analytic in the punctured unit disc U* ={z:z€Cand 0 < |z| < 1} =
U\{0}. Let g € 2, be given by

1 oo
9(2) =+ bz (1.2)
k=1

then the Hadamard product (or convolution) of two power series f(z) and g(z) is
given by
1« -
(F29)) =5+ > ahst ! = g+ ). (1.3
k=1

We recall some definitions which we will be used in our paper.

Definition 1.1 ([I]). For two functions f(z) and g(z), analytic in U, we say that
the function f(z) is subordinate to g(z) in U, and written f(z) < g(z), if there
exists a Schwarz function w(z), analytic in U with w(0) = 0 and |w(z)| < 1 such
that f(z) = g(w(2))(z € U). Futhermore, if the function g(z) is univalent in U,
then we have the following equivalence (see [1]):

f(2) < g(2) & f(0) = g(0) and f(U) C g(U).
For real numbers

a1, ..., oq and Br,....08s (B ¢ Zy ={0,-1,-2,..}; j=1,2,...,s),

we consider the generalized hypergeometric function o Fs (a1, ..., aq; f1, ..., Bs; 2) by
(see, for example, [2, p. 19])

qu(Oq,...7Olq7ﬁ1;...,ﬁsv ) - kZ:O (Bl)k(ﬁs)k(l)k

(g<s+1; q,s€eNy; Ng=NU{0}; N={1,2,...}; z € U), (1.4)

where (A), is the Pochhammer symbol defined by

(V) = 1 ifv=0,
ST A+ DA +2).. (A +v—1) if veN.
Corresponding to the function ¢(ay, ..., ag; B1, ..., Bs; 2) given by
¢(a17 ceey Qg 617 "'7ﬂs; Z) = Z_l qFS(a17 "'7aq;ﬁ17 "'768; Z)7 (15)

Liu and Srivatava [3] considered a linear operator Hq s(c, ..., ag; B1, ..., Bs) : & —
> by

Hq,s(alv "'7O‘q;ﬁ17 7/83)f<z) = ¢(a1a "'aaq;ﬂlv "'aﬁs; Z) * f(Z) (f € 27 KA U*) .
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(1.6)
For convenience, let
Hq,s(ala ceey Qg [317 ey ﬁs) = Hq,s(a1>-
If f(z) is given by (1.1)), then from (1.6)), we deduce that
Hys(a1)f(2) = E + i ool a2t (2 € UY). (1.7)
2z = Bk (B (D

Special cases of the Liu-Srivastava linear operator include the meromorphic ana-
logue of the Carlson-Shaffer linear operator L(a,c) = Ha1(a,1l;¢) (a, ¢ > 0)
(studied among others by Liu and Srivastava [4, with p = 1]), the operator
D™ = Ha1(n + 1,1;1) which is analogous to the Ruscheweyh derivative opera-
tor (investigated by Ganigi and Uralegaddi [5] and generalized by Yang [6]) and
the operator

1 [ c
— /t FO)dt = Has (e, 150 41) (> 0),

0
(studied by Uralegaddi and Somanatha [T, with p = 1]).
Definition 1.2 ([§]). For b € C* = C\{0}, let F*(b,M) be the subclass of ¥
consisting of functions f(z) of the form (l.1)) and satisfying the analytic criterion
~z2f'(2) B 1+ [b(1+m)—m|z
f(z) 1—mz

jc:

1
m:l—M;MZLzEU*), (1.8)

or, equivalently,
!
b2

+@_M <M<m:1—]\l4;M>1;Z€U*>. (1.9)

Also, let G*(b, M) be the subclass of ¥ consisting of functions f(z) of the form
(1.1) and satisfying the analytic criterion:

z2f"(z) b(l+m)z 1
— 24 ——— =1-— M2>1; U~ 1.10
f'(2) et ™ MRS ’ (1.10)
or, equivalently,
1/
-2- 5] !
%—M <M<m:1—M;M21;z€U*>. (1.11)

It is easy to verify from (1.8]) and (1.10) that,
f(z2) € G*(b,M) & —zf'(z) € F*(b, M). (1.12)
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The classes F*(b, M) and G*(b, M) were introduced and studied by Aouf [g].

‘We note that :

(i) F*(b,o0) = F*(b) and G*(b,00) = G*(b) (b € C*) (see Aouf [§]), where
F*(b) is the class of meromorphic starlike functions of complex order b and
G*(b) is the class of meromorphic convex functions of complex order b.
F*(

1—a,M)=Fy;(a) (0<a<1) (see Kaczmarski [9]) and G*(1 —a, M) =
Gr(a) (0 <a < 1) (see Aouf [§]), where F;,(a) is the class of meromorphic
bounded starlike functions of order a and Gj,(a) is the class of meromorphic
bounded convex functions of order a.

(191) F*(1,00) = F*(1) (0 < a < 1) (see Clunie [10]) and G*(1,00) = G*(1) (0 <
a < 1) (see Aouf [§]), where F*(1) is the class of meromorphic starlike
functions and G*(1) is the class of meromorphic convex functions.

(iv) F*(1—a,00) =F*(1—a) (0 <a < 1) (see Kaczmarski [9] and Pommeremke
[11]) and G*(1 —a,00) = G*(1—a) (0 < a < 1) (see Aouf []]), where F*(1 —
a) is the class of meromorphic starlike function of order a and G*(1 — a) is
the class of meromorphic convex function of order a.

(v) F*((1 —a)e P cosB, M) = Fi;(a,8) (0<a<1, |B] <Z) (see Kaczmarski
[9]) and G*((1 — a)e P cos B, M) = G3;(a,B) (0 < a <1, |B] < 5) (see
Aouf [§]), where Fj;(a, 3) is the class of meromorphic bounded 5—spirallike

function of order a and Gj,(a, 8) is the class of meromorphic bounded S-
Robertson function of order a.

(vi) F*((1 —a)e™® cos B,00) = F*(a,B) (0 <a <1, |B| < F) (see Kaczmarski
[9]) and G*((1 — a)e ¥ cosB,00) = G*(a,B) (0 < a < 1, |B] < F) (see
Aouf [§]), where F*(a, ) is the class of meromorphic S—spirallike function
of order a and G*(a, 8) is the class of meromorphic S-Robertson function of
order a.

Definition 1.3. For real numbers oy, ...,a4 and 31,...,8s, M > 1 and b € C*, let
F*([aa] ;0, M) = {f(z) e L : Hy (o) f(2) € F*(b,M)}, (1.13)

and

G ([aa] 36, M) = {f(2) € X: Hg s(an) f(2) € G (b, M)} (1.14)

It is easy to show that

f(2) € G (1] ;0, M) & —zf'(2) € F*([ou] ; b, M). (1.15)
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We note that :

(i) F*(la,1;¢]50, M) = Fg (b, M) = {f(2) € ¥: L(a,c) f(z) € F*(b, M)} and
G*([a, 1,50, M) = G (b, M) = {f(2) € X: L(a,c)f(z) € G~ (b, M)}.
(15) F*(In+1,1;1];0,M) = Fr(b,M) = {f(2) € X:D"f(2) € F*(b, M)} and
G*(la,1;¢]50, M) = G (b, M) = {f(z) € £ :D"f(2) € G*(b, M)}
(#it) F*([c,l;e+ 130, M) = Fr(b,M) ={f(z) € L : T.f(2) € F*(b,M)} and
G*([a, 1355, M) = T.f() = { /() € 5 L(a, ) f(2) € G*(b, M)}

The object of the present paper is to investigate some convolution properties,
coefficient estimates and containment properties for the subclasses F*([a1]; b, M)
and G*([aq] 50, M).

2 Main Results

Unless otherwise mentioned, we assume throughout this paper that M > 1, b €
C* and a1, ...,aq, Pi,..., Bs are real numbers.

Theorem 2.1. If f(z) € X, then f(z) € F*(b, M) if and only if

2 {f(z)*lj(ic_z)?z] £0 forz €T, 2.1)
where C' = Cy = S, 0 € [0,2m),
Proof. Tt is easy to verify that
FO)* ey = 16 and ) | (s — | =) 22)
S(1—2) SA—22  (d=2p

(i) In view of (L.8), f(z) € F*(b, M) 1f and only if (L.8) holds. By using the
principle of subordination, we can write as
2f'(z) _ 14 b1+ m)—mjw(z)

- f(2) - 1—mw(z) ’ (2.3)

where w(z) is Schwarz function, analytic in U with w(0) = 0 and |w(2)| < 1, z €
U, hence

()

1+ [b(1+m) —m]e®
f(2) '

- 2.4
1 — me® (2:4)

#
Thus

—z2f'(2)(1 —me™?) — {1+ [b(L +m) —m] e} f(z) # 0 (z € UY),
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or, equivalently,

z | —z2f'(2)(1 —me"?) — {1+ [b(1+m)—m]e?} f(z) | #0for z €U, 6 € [0,2r).

(2.5)
Using (2.2)), Eq. (2.5) may be written as
1+ (s —1) 2
z | f(2) = # 0 for z € U. (2.6)

z2(1—2)2

Thus the first part of Theorem [2.1] was proved.
(ii) Reversely, since, it was shown in the first part of the proof that the as-

sumption ([2.5) is equivalent to (2.1)), we obtain that

O LMy pcany
Assume that
2f(z) L[+ m) —m]e”
o(z) = — f2) () = 1 —me .

The relation means that ¢(U) N (0U) = (. Thus, the simply connected do-
main is included in a connected component of C\#(0U). From this, using the
fact that ¢(0) = v(0) and the univalence of the function ¢, it follows that
©(z) < 1(z), this implies that f(z) € F*(b, M). Thus the proof of Theorem 2.1 is
completed. O

Remark 2.2. (i) Puttingm =1 in Theorem 2.1, we obtain the result obtained
by Bulboaca et al. [12, Theorem 1, with A =1 and B = —1] and Aouf et al.
[13, Theorem 4, with A=0,A=1 and B = —1].

(i4) Puttingb=m =1 and e’ = x in Theorem 2.1, we obtain the result obtained
by Ponnusamy [14, Theorem 4, with A\=0,A =1 and B = —1].

(i11) Puttingm =1, b= (1 —a)e " cosp (n € R, |p[ < 5, 0 < a < 1) and
e’ =z in Theorem 2.1, we obtain the result obtained by Ravichandran et al.

[15, Theorem 1.2 with p=1].

Theorem 2.3. If f(z) € X, then f(z) € G*(b, M) if and only if

L 1-32-2(C 1)

z | f(2) =2 : #0 forzeU, (2.8)

where C = Cy = 2,0 € [0,27).
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Proof. Putting
1+ (C=1)z
g(Z) - Z(l o 2)2 :
Then
1-32-2(C—1)22
—2g'(2) = z(1 _(2)3 :

From (|1.12) and using the identity
[—2f'(2)] % 9(2) = f(2) * [-24'(2)],
we obtain the required result from Theorem 2.1. O]

Remark 2.4. (i) Putting m =1 in Theorem 2.3, we obtain the result obtained
by Bulboaca et al. [12, Theorem 2, with A =1 and B = —1] and Aouf et al.
[I3, Theorem 6, with A=0,A =1 and B = —1].

(43) Puttingb=m =1 and e = x in Theorem 2.3, we obtain the result obtained
by Ponnusamy [14, Theorem 2.2, with A =1 and B = —1].

Theorem 2.5. If f(z) € &, then f(z) € F*([a1];b, M) if and only if

. i k(e —m) +b(1+m)]  (a1)g...(aq)k axz® #0, (2.9)
k=1

b(1+m) Bk (Bs)k(1)k

for all 6 € [0,27).

Proof. 1f f(z) € %, from Theorem 2.1, we have f(z) € F*([a1];b, M) if and only

if

1+(C—-1)z
z(1—2)2

2 {’Hq,s(al)f(z) « ] £0for z €U, (2.10)

where C' = Cy = izli_ngb, 0 € [0,2m). Since

1+(C—-1)z

71 S k—1 *
0 _Z+Z(k0+1)z for z € U*.

k=1

It is easy to show that (2.10)) holds if and only if (2.9) holds. This completes the
proof of Theorem 2.5. [

Theorem 2.6. If f(z) € X, then f(z) € G*([an] ;b, M) if and only if

- i (k—1) [k(e™® —m) +b(1+m)] (a1)p---(g)s

b1+ m) BB 70 1

k=1

for all 6 € [0,2m).
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Proof. If f(z) € X, from Theorem 2.3, we have f(z) € G*([a1];b, M) if and only
if

1—-3z—2(C—1)z2
z |:Hq,s(a1)f(2) L L1o82 =g (2)3 )2 ] #0for z € U, (2.12)
where C'= Cy = 57 J;,:’)L, 0 € [0,2m). Since

1-32-2(C-1)22 1 & b1
== -1 1 f ..
S0 =) . ;(k Y(kC+1) 2 orzeU

It is easy to show that (2.12)) holds if and only if (2.11)) holds. This completes the
proof of Theorem 2.6. U

Unless otherwise mentioned, we assume throughout the reminder of this section
that oy, ...,aq and By, ..., Bs are positive real parameters.

Theorem 2.7. If f(z) € ¥ salisfies the inequality

then f(z) € F*([aa];b, M).

Proof. Since

L k(e —m) +b(1+m)] (o). (g -
k=1 b(1+m) (ﬁl)k(ﬁs)k(l)k
) [k —=m) +b(1+m)] | (a1)p-(g)k .
S b1+ m) ‘(m Bowy,

lax| >0, z € U,

. — (k+[b])  (0n)k...(rg)k
! kz ol (B1)k--(Bs)k(1)k

which implies that inequality (2.13)). Thus the proof of Theorem 2.7 is completed.
O

=1

Using similar arguments to those in the proof of Theorem 2.7, we obtain the
following theorem.

Theorem 2.8. If f(z) € X satisfies the inequality

S (k- 1)k + b|>(())k(6(‘)“q(>) lax] < Jo], (2.14)
k=1 s

then f(z) € G*([o1] ; 0, M).
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Now, Using the method due to Ahuja [16], we will prove the following theorem.
Theorem 2.9. For aq > 0, we have F*([ay +1];b, M) C F*([an]; b, M).
Proof. Since f(z) € F*([a1 + 1];b, M), we see from Theorem 2.5 that

20 k(e —m) +b(1+m)] (a1 + Dge(ag)
S (e A AN
We can write as
0 vtk k|, 2 k(e —m) +b(1+m)]  (a1)k-(g)k -
1+; a 1+; b(1 +m) (BB (D " 70,
(2.16)

Since

*

1+Zle 1+Za1+kz =1+> 2~ (2.17)
k=1 k=1 k=1

By using the property, if f # 0 and g« h # 0, then f x (g * h) # 0, (2.16) can be

written as

L [k(e™® —m) +b(1+m)]  (ar)p...(og)k
1+ L2 2% £ 0, 2.18
2 b1+ m) A EARG .
which means that f(z) € F*([o1];b, M). This completes the proof of Theorem
2.9. O

Using the same arguments as in the proof of Theorem 2.9, we obtain the
following theorem.

Theorem 2.10. For a; > 0, we have G*([a1 + 1];b, M) C G*([aa]; b, M).

Remark 2.11. For different choices of (o, Bj; i = 1,...,q, j = 1,...,s ), we
obtain new results for different classes mentioned in the introduction.
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