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Abstract : Making use of the operator Hq,s(α1) for functions of the form f(z) =

1
z +

∞∑
k=1

akz
k−1, which are analytic in the punctured unit disc U∗ = {z : z ∈ C

and 0 < |z| < 1} = U\{0}, we introduce two subclasses of meromorphic functions
of complex order and investigate convolution properties, coefficient estimates and
containment properties for these subclasses.
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1 Introduction

Let Σ denote the class of meromorphic functions of the form:

f(z) =
1

z
+

∞∑
k=1

akz
k−1, (1.1)

1Corresponding author.

Copyright c© 2016 by the Mathematical Association of Thailand.
All rights reserved.



250 Thai J. Math. 14 (2016)/ M.K. Aouf et al.

which are analytic in the punctured unit disc U∗ = {z : z ∈ C and 0 < |z| < 1} =
U\{0}. Let g ∈ Σ, be given by

g(z) =
1

z
+

∞∑
k=1

bkz
k−1, (1.2)

then the Hadamard product (or convolution) of two power series f(z) and g(z) is
given by

(f ∗ g)(z) =
1

z
+

∞∑
k=1

akbkz
k−1 = (g ∗ f)(z). (1.3)

We recall some definitions which we will be used in our paper.

Definition 1.1 ([1]). For two functions f(z) and g(z), analytic in U, we say that
the function f(z) is subordinate to g(z) in U, and written f(z) ≺ g(z), if there
exists a Schwarz function w(z), analytic in U with w(0) = 0 and |w(z)| < 1 such
that f(z) = g(w(z))(z ∈ U). Futhermore, if the function g(z) is univalent in U,
then we have the following equivalence (see [1]):

f(z) ≺ g(z)⇔ f(0) = g(0) and f(U) ⊂ g(U).

For real numbers

α1, ..., αq and β1, ..., βs (βj /∈ Z−0 = {0,−1,−2, ...}; j = 1, 2, ..., s),

we consider the generalized hypergeometric function qFs(α1, ..., αq;β1, ..., βs; z) by
(see, for example, [2, p. 19])

qFs(α1, ..., αq;β1, ..., βs; z) =

∞∑
k=0

(α1)k...(αq)k
(β1)k...(βs)k(1)k

zk

(q ≤ s+ 1; q, s ∈ N0; N0 = N ∪ {0}; N = {1, 2, ...}; z ∈ U), (1.4)

where (λ)ν is the Pochhammer symbol defined by

(λ)υ =

{
1 if υ = 0,
λ(λ+ 1)(λ+ 2)...(λ+ υ − 1) if υ ∈ N.

Corresponding to the function φ(α1, ..., αq;β1, ..., βs; z) given by

φ(α1, ..., αq;β1, ..., βs; z) = z−1 qFs(α1, ..., αq;β1, ..., βs; z), (1.5)

Liu and Srivatava [3] considered a linear operator Hq,s(α1, ..., αq;β1, ..., βs) : Σ→
Σ by

Hq,s(α1, ..., αq;β1, ..., βs)f(z) = φ(α1, ..., αq;β1, ..., βs; z) ∗ f(z) (f ∈ Σ; z ∈ U∗) .
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(1.6)

For convenience, let

Hq,s(α1, ..., αq;β1, ..., βs) = Hq,s(α1).

If f(z) is given by (1.1), then from (1.6), we deduce that

Hq,s(α1)f(z) =
1

z
+

∞∑
k=1

(α1)k...(αq)k
(β1)k...(βs)k(1)k

akz
k−1 (z ∈ U∗). (1.7)

Special cases of the Liu-Srivastava linear operator include the meromorphic ana-
logue of the Carlson-Shaffer linear operator L(a, c) = H2,1(a, 1; c) (a, c > 0)
(studied among others by Liu and Srivastava [4, with p = 1]), the operator
Dn = H2,1(n + 1, 1; 1) which is analogous to the Ruscheweyh derivative opera-
tor (investigated by Ganigi and Uralegaddi [5] and generalized by Yang [6]) and
the operator

Jc =
1

zc+1

z∫
0

tcf(t)dt = H2,1(c, 1; c+ 1) (c > 0),

(studied by Uralegaddi and Somanatha [7, with p = 1]).

Definition 1.2 ([8]). For b ∈ C∗ = C\{0}, let F∗(b,M) be the subclass of Σ
consisting of functions f(z) of the form (1.1) and satisfying the analytic criterion

− zf ′(z)

f(z)
≺ 1 + [b(1 +m)−m] z

1−mz

(
m = 1− 1

M
; M ≥ 1; z ∈ U∗

)
, (1.8)

or, equivalently,∣∣∣∣∣∣∣∣
b− 1− zf ′(z)

f(z)

b
−M

∣∣∣∣∣∣∣∣ < M

(
m = 1− 1

M
; M ≥ 1; z ∈ U∗

)
. (1.9)

Also, let G∗(b,M) be the subclass of Σ consisting of functions f(z) of the form
(1.1) and satisfying the analytic criterion:

− zf ′′(z)

f ′(z)
≺ 2 +

b(1 +m)z

1−mz

(
m = 1− 1

M
; M ≥ 1; z ∈ U∗

)
, (1.10)

or, equivalently,∣∣∣∣∣∣∣∣
b− 2− zf ′′(z)

f ′(z)

b
−M

∣∣∣∣∣∣∣∣ < M

(
m = 1− 1

M
; M ≥ 1; z ∈ U∗

)
. (1.11)

It is easy to verify from (1.8) and (1.10) that,

f(z) ∈ G∗(b,M)⇔ −zf ′(z) ∈ F∗(b,M). (1.12)
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The classes F∗(b,M) and G∗(b,M) were introduced and studied by Aouf [8].

We note that :

(i) F∗(b,∞) = F∗(b) and G∗(b,∞) = G∗(b) (b ∈ C∗) (see Aouf [8]), where
F∗(b) is the class of meromorphic starlike functions of complex order b and
G∗(b) is the class of meromorphic convex functions of complex order b.

(ii) F∗(1−a,M) = F∗M (a) (0 ≤ a < 1) (see Kaczmarski [9]) and G∗(1−a,M) =
G∗M (a) (0 ≤ a < 1) (see Aouf [8]), where F∗M (a) is the class of meromorphic
bounded starlike functions of order a and G∗M (a) is the class of meromorphic
bounded convex functions of order a.

(iii) F∗(1,∞) = F∗(1) (0 ≤ a < 1) (see Clunie [10]) and G∗(1,∞) = G∗(1) (0 ≤
a < 1) (see Aouf [8]), where F∗(1) is the class of meromorphic starlike
functions and G∗(1) is the class of meromorphic convex functions.

(iv) F∗(1−a,∞) = F∗(1−a) (0 ≤ a < 1) (see Kaczmarski [9] and Pommeremke
[11]) and G∗(1− a,∞) = G∗(1− a) (0 ≤ a < 1) (see Aouf [8]), where F∗(1−
a) is the class of meromorphic starlike function of order a and G∗(1− a) is
the class of meromorphic convex function of order a.

(v) F∗((1− a)e−iβ cosβ,M) = F∗M (a, β) (0 ≤ a < 1, |β| < π
2 ) (see Kaczmarski

[9]) and G∗((1 − a)e−iβ cosβ,M) = G∗M (a, β) (0 ≤ a < 1, |β| < π
2 ) (see

Aouf [8]), where F∗M (a, β) is the class of meromorphic bounded β−spirallike
function of order a and G∗M (a, β) is the class of meromorphic bounded β-
Robertson function of order a.

(vi) F∗((1 − a)e−iβ cosβ,∞) = F∗(a, β) (0 ≤ a < 1, |β| < π
2 ) (see Kaczmarski

[9]) and G∗((1 − a)e−iβ cosβ,∞) = G∗(a, β) (0 ≤ a < 1, |β| < π
2 ) (see

Aouf [8]), where F∗(a, β) is the class of meromorphic β−spirallike function
of order a and G∗(a, β) is the class of meromorphic β-Robertson function of
order a.

Definition 1.3. For real numbers α1, ..., αq and β1, ..., βs, M ≥ 1 and b ∈ C∗, let

F∗([α1] ; b,M) = {f(z) ∈ Σ : Hq,s(α1)f(z) ∈ F∗(b,M)} , (1.13)

and
G∗([α1] ; b,M) = {f(z) ∈ Σ : Hq,s(α1)f(z) ∈ G∗(b,M)} . (1.14)

It is easy to show that

f(z) ∈ G∗([α1] ; b,M)⇔ −zf ′(z) ∈ F∗([α1] ; b,M). (1.15)
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We note that :

(i) F∗([a, 1; c] ; b,M) = F∗a,c(b,M) = {f(z) ∈ Σ : L(a, c)f(z) ∈ F∗(b,M)} and
G∗([a, 1; c] ; b,M) = G∗a,c(b,M) = {f(z) ∈ Σ : L(a, c)f(z) ∈ G∗(b,M)}.

(ii) F∗([n+ 1, 1; 1] ; b,M) = F∗n(b,M) = {f(z) ∈ Σ : Dnf(z) ∈ F∗(b,M)} and
G∗([a, 1; c] ; b,M) = G∗n(b,M) = {f(z) ∈ Σ : Dnf(z) ∈ G∗(b,M)}.

(iii) F∗([c, 1; c+ 1] ; b,M) = F∗c (b,M) = {f(z) ∈ Σ : Jcf(z) ∈ F∗(b,M)} and

G∗([a, 1; c] ; b,M) = Jcf(z) = {f(z) ∈ Σ : L(a, c)f(z) ∈ G∗(b,M)} .

The object of the present paper is to investigate some convolution properties,
coefficient estimates and containment properties for the subclasses F∗([α1] ; b,M)
and G∗([α1] ; b,M).

2 Main Results

Unless otherwise mentioned, we assume throughout this paper thatM ≥ 1, b ∈
C∗ and α1, ..., αq , β1, ..., βs are real numbers.

Theorem 2.1. If f(z) ∈ Σ, then f(z) ∈ F∗(b,M) if and only if

z

[
f(z) ∗ 1 + (C − 1)z

z(1− z)2

]
6= 0 for z ∈ U, (2.1)

where C = Cθ = e−iθ−m
b(1+m) , θ ∈ [0, 2π).

Proof. It is easy to verify that

f(z) ∗ 1

z(1− z)
= f(z) and f(z) ∗

[
1

z(1− z)2
− 2

(1− z)2

]
= −zf ′(z). (2.2)

(i) In view of (1.8), f(z) ∈ F∗(b,M) if and only if (1.8) holds. By using the
principle of subordination, we can write (1.8) as

− zf ′(z)

f(z)
=

1 + [b(1 +m)−m]w(z)

1−mw(z)
, (2.3)

where w(z) is Schwarz function, analytic in U with w(0) = 0 and |w(z)| < 1, z ∈
U, hence

− zf ′(z)

f(z)
6= 1 + [b(1 +m)−m] eiθ

1−meiθ
. (2.4)

Thus

−zf ′(z)(1−meiθ)−
{

1 + [b(1 +m)−m] eiθ
}
f(z) 6= 0 (z ∈ U∗),
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or, equivalently,

z

 −zf ′(z)(1−meiθ)− {1 + [b(1 +m)−m] eiθ
}
f(z)

 6= 0 for z ∈ U, θ ∈ [0, 2π).

(2.5)
Using (2.2), Eq. (2.5) may be written as

z

f(z) ∗
1 +

(
e−iθ−m
b(1+m) − 1

)
z

z(1− z)2

 6= 0 for z ∈ U. (2.6)

Thus the first part of Theorem 2.1 was proved.
(ii) Reversely, since, it was shown in the first part of the proof that the as-

sumption (2.5) is equivalent to (2.1), we obtain that

− zf ′(z)

f(z)
6= 1 + [b(1 +m)−m] eiθ

1−meiθ
for z ∈ U, θ ∈ [0, 2π). (2.7)

Assume that

ϕ(z) = −zf
′(z)

f(z)
, ψ(z) =

1 + [b(1 +m)−m] eiθ

1−meiθ
.

The relation (2.7) means that ϕ(U) ∩ ψ(∂U) = ∅. Thus, the simply connected do-
main is included in a connected component of C\ψ(∂U). From this, using the
fact that ϕ(0) = ψ(0) and the univalence of the function ψ, it follows that
ϕ(z) ≺ ψ(z), this implies that f(z) ∈ F∗(b,M). Thus the proof of Theorem 2.1 is
completed.

Remark 2.2. (i) Putting m = 1 in Theorem 2.1, we obtain the result obtained
by Bulboacă et al. [12, Theorem 1, with A = 1 and B = −1] and Aouf et al.
[13, Theorem 4, with λ = 0, A = 1 and B = −1].

(ii) Putting b = m = 1 and eiθ = x in Theorem 2.1, we obtain the result obtained
by Ponnusamy [14, Theorem 4, with λ = 0, A = 1 and B = −1].

(iii) Putting m = 1, b = (1 − α)e−iµ cosµ (µ ∈ R, |µ| < π
2 , 0 ≤ α < 1) and

eiθ = x in Theorem 2.1, we obtain the result obtained by Ravichandran et al.
[15, Theorem 1.2 with p = 1].

Theorem 2.3. If f(z) ∈ Σ, then f(z) ∈ G∗(b,M) if and only if

z

[
f(z) ∗ 1− 3z − 2(C − 1)z2

z(1− z)3

]
6= 0 for z ∈ U, (2.8)

where C = Cθ = e−iθ−m
b(1+m) , θ ∈ [0, 2π).
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Proof. Putting

g(z) =
1 + (C − 1)z

z(1− z)2
.

Then

−zg′(z) =
1− 3z − 2(C − 1)z2

z(1− z)3
.

From (1.12) and using the identity

[−zf ′(z)] ∗ g(z) = f(z) ∗ [−zg′(z)] ,

we obtain the required result from Theorem 2.1.

Remark 2.4. (i) Putting m = 1 in Theorem 2.3, we obtain the result obtained
by Bulboacă et al. [12, Theorem 2, with A = 1 and B = −1] and Aouf et al.
[13, Theorem 6, with λ = 0, A = 1 and B = −1].

(ii) Putting b = m = 1 and eiθ = x in Theorem 2.3, we obtain the result obtained
by Ponnusamy [14, Theorem 2.2, with A = 1 and B = −1].

Theorem 2.5. If f(z) ∈ Σ, then f(z) ∈ F∗([α1] ; b,M) if and only if

1 +

∞∑
k=1

[
k(e−iθ −m) + b(1 +m)

]
b(1 +m)

(α1)k...(αq)k
(β1)k...(βs)k(1)k

akz
k 6= 0, (2.9)

for all θ ∈ [0, 2π).

Proof. If f(z) ∈ Σ, from Theorem 2.1, we have f(z) ∈ F∗([α1] ; b,M) if and only
if

z

[
Hq,s(α1)f(z) ∗ 1 + (C − 1)z

z(1− z)2

]
6= 0 for z ∈ U, (2.10)

where C = Cθ = e−iθ−m
b(1+m) , θ ∈ [0, 2π). Since

1 + (C − 1)z

z(1− z)2
=

1

z
+

∞∑
k=1

(kC + 1) zk−1 for z ∈ U∗.

It is easy to show that (2.10) holds if and only if (2.9) holds. This completes the
proof of Theorem 2.5.

Theorem 2.6. If f(z) ∈ Σ, then f(z) ∈ G∗([α1] ; b,M) if and only if

1−
∞∑
k=1

(k − 1)
[
k(e−iθ −m) + b(1 +m)

]
b(1 +m)

(α1)k...(αq)k
(β1)k...(βs)k(1)k

akz
k 6= 0, (2.11)

for all θ ∈ [0, 2π).
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Proof. If f(z) ∈ Σ, from Theorem 2.3, we have f(z) ∈ G∗([α1] ; b,M) if and only
if

z

[
Hq,s(α1)f(z) ∗ 1− 3z − 2(C − 1)z2

z(1− z)3

]
6= 0 for z ∈ U, (2.12)

where C = Cθ = e−iθ−m
b(1+m) , θ ∈ [0, 2π). Since

1− 3z − 2(C − 1)z2

z(1− z)3
=

1

z
−
∞∑
k=1

(k − 1) (kC + 1) zk−1 for z ∈ U∗.

It is easy to show that (2.12) holds if and only if (2.11) holds. This completes the
proof of Theorem 2.6.

Unless otherwise mentioned, we assume throughout the reminder of this section
that α1, ..., αq and β1, ..., βs are positive real parameters.

Theorem 2.7. If f(z) ∈ Σ satisfies the inequality

∞∑
k=1

(k + |b|) (α1)k...(αq)k
(β1)k...(βs)k(1)k

|ak| ≤ |b| , (2.13)

then f(z) ∈ F∗([α1] ; b,M).

Proof. Since∣∣∣∣∣1 +

∞∑
k=1

[
k(e−iθ −m) + b(1 +m)

]
b(1 +m)

(α1)k...(αq)k
(β1)k...(βs)k(1)k

akz
k

∣∣∣∣∣
≥ 1−

∞∑
k=1

∣∣∣∣∣
[
k(e−iθ −m) + b(1 +m)

]
b(1 +m)

∣∣∣∣∣ (α1)k...(αq)k
(β1)k...(βs)k(1)k

|ak| |z|k

≥ 1−
∞∑
k=1

(k + |b|)
|b|

(α1)k...(αq)k
(β1)k...(βs)k(1)k

|ak| > 0, z ∈ U,

which implies that inequality (2.13). Thus the proof of Theorem 2.7 is completed.

Using similar arguments to those in the proof of Theorem 2.7, we obtain the
following theorem.

Theorem 2.8. If f(z) ∈ Σ satisfies the inequality

∞∑
k=1

(k − 1)(k + |b|) (α1)k...(αq)k
(β1)k...(βs)k(1)k

|ak| ≤ |b| , (2.14)

then f(z) ∈ G∗([α1] ; b,M).
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Now, Using the method due to Ahuja [16], we will prove the following theorem.

Theorem 2.9. For α1 > 0, we have F∗([α1 + 1] ; b,M) ⊂ F∗([α1] ; b,M).

Proof. Since f(z) ∈ F∗([α1 + 1] ; b,M), we see from Theorem 2.5 that

1 +

∞∑
k=1

[
k(e−iθ −m) + b(1 +m)

]
b(1 +m)

(α1 + 1)k...(αq)k
(β1)k...(βs)k(1)k

akz
k 6= 0, (2.15)

We can write (2.15) as[
1 +

∞∑
k=1

α1+k
α1

zk

]
∗

[
1 +

∞∑
k=1

[
k(e−iθ −m) + b(1 +m)

]
b(1 +m)

(α1)k...(αq)k
(β1)k...(βs)k(1)k

akz
k

]
6= 0,

(2.16)
Since [

1 +

∞∑
k=1

α1 + k

α1
zk

]
∗

[
1 +

∞∑
k=1

α1

α1 + k
zk

]
= 1 +

∞∑
k=1

zk. (2.17)

By using the property, if f 6= 0 and g ∗ h 6= 0, then f ∗ (g ∗ h) 6= 0, (2.16) can be
written as

1 +

∞∑
k=1

[
k(e−iθ −m) + b(1 +m)

]
b(1 +m)

(α1)k...(αq)k
(β1)k...(βs)k(1)k

akz
k 6= 0, (2.18)

which means that f(z) ∈ F∗([α1] ; b,M). This completes the proof of Theorem
2.9.

Using the same arguments as in the proof of Theorem 2.9, we obtain the
following theorem.

Theorem 2.10. For α1 > 0, we have G∗([α1 + 1] ; b,M) ⊂ G∗([α1] ; b,M).

Remark 2.11. For different choices of (αi, βj ; i = 1, ..., q, j = 1, ..., s ), we
obtain new results for different classes mentioned in the introduction.
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