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1 Introduction

Fixed point theory in metric spaces is one of the most important tools for prov-
ing the existence and uniqueness of the solutions to various mathematical models.
Later in 1993 Czerwik [1], generalized the notion of metric spaces by introducing
the notion of b-metric spaces. On the other hand, Samet et al. [2] proved the fixed
point theorems for α-admissible mappings which are α-ϕ-contractive mappings in
complete metric spaces. Salimi et al. [3] and Hussain et al. [4] modified these no-
tions and assured the fixed point theorems. Recently, Hussain et al. [5] established
fixed point theorems for modified α-ϕ-rational contractive mappings in α-complete
metric spaces and proved the existence of solutions of integral equations.

In this paper, we extend the fixed point results in α-complete metric spaces
proved by Hussian et al. [5] to α-complete b-metric spaces by introducing the
notion of modified (α-ψ-ϕ-θ)-rational contractive mappings where some conditions
of Bianchini-Grandolfi gauge function ϕ are omitted. We establish the existence of
the unique fixed point theorems for such mappings which are triangular α-orbital
admissible. Moreover, we also prove the unique common fixed point theorem for
mappings T and g where T is a modified (α-ψ-ϕ-θ)-rational contractive mapping
with respect to g and is triangular g-α-admissible in the setting of α-complete
b-metric spaces.

2 Preliminaries

We now recall some definitions and lemmas that will be used in the sequel.

In 2012, Samet et al. [2] introduced the notion of α-admissible mappings.

Definition 2.1 ([2]). Let T : X → X and α : X ×X → [0,∞). Then T is said to
be α-admissible if for all x, y ∈ X,

α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1.

Recently Hussain et al. [5] introduced the concept of modified α-ϕ-rational
contractive mappings and proved the fixed point theorems for such mappings in
α-complete metric spaces.

Definition 2.2. A function ϕ : [0,∞) → [0,∞) is called a Bianchini-Grandolfi
gauge function [6] if the following conditions hold:

(i) ϕ is nondecreasing;

(ii)
∑∞

k=1 ϕ
k(t) converges for all t > 0.

We denote by Φ the set of all Bianchini-Grandolfi gauge functions.

Lemma 2.3 ([7]). If ϕ ∈ Φ, then the following statements hold:

(i) ϕ(t) < t for all t > 0;
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(ii) ϕ is continuous at 0;

(iii) ϕ(0) = 0.

Definition 2.4 ([5]). Let (X, d) be a metric space and α : X × X → [0,∞).
A mapping T : X → X is a modified α-ψ-rational contractive mapping if for all
x, y ∈ X,

α(x, y) ≥ 1 implies d(Tx, Ty) ≤ ϕ(M(x, y)), (2.1)

where

M(x, y) = max{d(x, y),
d(x, Tx)

1 + d(x, Tx)
,

d(y, Ty)

1 + d(y, Ty)
,
d(x, Ty) + d(y, Tx)

2
},

and ϕ ∈ Φ.

Theorem 2.5 ([5]). Let (X, d) be a metric space, α : X × X → [0,∞) and
T : X → X. Assume that the following conditions are satisfied:

(i) X is an α-complete metric space;

(ii) T is a modified α-ϕ-rational contractive mapping;

(iii) T is an α-admissible mapping;

(iv) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(v) T is an α-continuous mapping.

Then T has a fixed point.

Recently, Popescu [8] studied the definitions of α-orbital admissible mappings
and triangular α-orbital admissible mappings.

Definition 2.6 ([8]). Let T : X → X and α : X ×X → [0,∞). Then T is said to
be α-orbital admissible if

α(x, Tx) ≥ 1 implies α(Tx, T 2x) ≥ 1.

Definition 2.7 ([8]). Let T : X → X and α : X ×X → [0,∞). Then T is said to
be triangular α-orbital admissible if

(a) T is α-orbital admissible;

(b) α(x, y) ≥ 1 and α(y, Ty) ≥ 1 imply α(x, Ty) ≥ 1.

Lemma 2.8 ([8]). Let T : X → X be a triangular α-orbital admissible mapping.
Assume that there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Define a sequence
{xn} by xn+1 = Txn for all n ∈ N. Then α(xm, xn) ≥ 1 for all m,n ∈ N with
m < n.

Definition 2.9 ([1]). Let X be a nonempty set and let s ≥ 1 a given real number.
A function d : X ×X → R+ is said to be a b-metric if for all x, y, z ∈ X,
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(i) d(x, y) = 0, if and only if x = y;

(ii) d(x, y) = d(y, x);

(iii) d(x, y) ≤ s[d(x, z) + d(z, y)].

Then the pair (X, d) is called a b-metric space.

Note that a metric space is evidently a b-metric space but the converse is not
generally true. For more details see [9].

In this paper, we use the following concepts in b-metric spaces.

Definition 2.10. Let (X, d) be a b-metric space and α : X×X → [0,+∞). Then
X is said to be an α-complete b-metric space if every Cauchy sequence {xn} in X
with α(xn, xn+1) ≥ 1 for all n ∈ N converges in X.

Definition 2.11. Let (X, d) be a b-metric space, α : X × X → [0,+∞) and
T : X → X. Then T is said to be an α-continuous mapping on (X, d) if for every
sequence {xn} with xn → x as n→∞ and α(xn, xn+1) ≥ 1 for all n ∈ N implies
Txn → Tx as n→∞.

In 2014, Rosa and Vetro [10] introduced the notion of triangular g-α-admissible
mappings.

Definition 2.12. Let T, g : X → X and α : X ×X → [0,∞). Then T is said to
be triangular g-α-admissible if

1. α(gx, gy) ≥ 1 implies α(Tx, Ty) ≥ 1;

2. α(gx, gy) ≥ 1 and α(gy, gz) ≥ 1 imply α(gx, gz) ≥ 1.

Lemma 2.13 ([5]). Let T : X → X be a triangular g-α-admissible. Assume that
that there exists x0 ∈ X such that α(gx0, Tx0) ≥ 1. Define a sequence {gxn} by
gxn+1 = Txn for all n ∈ N. Then α(gxm, gxn) ≥ 1 for all m,n ∈ N with m < n.

Definition 2.14. Let T, g : X → X. If w = Tx = gx for some x ∈ X, then x is
called a coincidence point of T and g, and w is called a point of coincidence of T
and g.

Definition 2.15. Let T, g : X → X. The pair {T, g} is said to be weakly compat-
ible if Tgx = gTx, whenever Tx = gx for some x in X.

Abbas and Rhoades [11] proved the existence of the unique common fixed
points of a pair of weakly compatible mappings by using the following proposition
as a main tool.

Proposition 2.16 ([11]). Let T, g : X → X and {T, g} is weakly compatible. If
T and g have a unique point of coincidence w = Tx = gx, then w is the unique
common fixed point of T and g.
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3 Main results

In this section, unique fixed point theorems and unique common fixed point
theorems in α-complete b-metric spaces and applications to integral equations are
presented.

3.1 The unique fixed point theorems

We first introduce the concept of modified (α-ψ-ϕ-θ)-rational contractive map-
pings and prove the existence of fixed point theorems for such mappings.

Definition 3.1. Let (X, d) be a b-metric space and α : X × X → [0,∞). A
mapping T : X → X is a modified (α-ψ-ϕ-θ)-rational contractive mapping if there
exists L ≥ 0 such that for all x, y ∈ X,

α(x, y) ≥ 1 implies ψ(s3d(Tx, Ty)) ≤ ϕ(ψ(Mb(x, y))) + Lθ(Nb(x, y)), (3.1)

where

Mb(x, y) = max{d(x, y),
d(x, Tx)

1 + d(x, Tx)
,

d(y, Ty)

1 + d(y, Ty)
,
d(x, Ty) + d(y, Tx)

2s
},

Nb(x, y) = min{d(x, Tx), d(x, Ty), d(y, Tx)}

and ψ,ϕ, θ : [0,∞) → [0,∞) are continuous functions with ϕ(t) < t, θ(t) > 0 for
each t > 0, ϕ is nondecreasing, θ(0) = 0, ψ(t) = 0 if and only if t = 0 and ψ is
increasing.

Theorem 3.2. Let (X, d) be an α-complete b-metric space, α : X ×X → [0,∞)
and T : X → X is a modified (α-ψ-ϕ-θ)-rational contractive mapping. Assume
that the following conditions hold:

(i) T is triangular α-orbital admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) T is α-continuous.

Then T has a fixed point.

Proof. Let x0 ∈ X be such that α(x0, Tx0) ≥ 1. Define a sequence {xn} in X by

xn+1 = Txn for all n ∈ N.

By Lemma 2.8, we have

α(xn, xn+1) ≥ 1 for all n ∈ N. (3.2)
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If xN = xN+1 for some N ∈ N, then T has a fixed point. Suppose that xn 6= xn+1

for all n ∈ N. Since T is a modified (α-ψ-ϕ-θ)-rational contraction and by (3.2),
we obtain that

ψ(d(xn, xn+1)) ≤ ψ(s3d(xn, xn+1))

= ψ(s3d(Txn−1, Txn))

≤ ϕ(ψ(Mb(xn−1, xn))) + Lθ(Nb(xn−1, xn)) (3.3)

for all n ∈ N, where

Nb(xn−1, xn) = min{d(xn−1, Txn−1), d(xn−1, Txn), d(xn, Txn−1)}
= min{d(xn−1, xn), d(xn−1, xn+1), d(xn, xn)}
= 0

and

Mb(xn−1, xn) = max{d(xn−1, xn),
d(xn−1, Txn−1)

1 + d(xn−1, Txn−1)
,

d(xn, Txn)

1 + d(xn, Txn)
,

d(xn−1, Txn) + d(xn, Txn−1)

2s
}

= max{d(xn−1, xn),
d(xn−1, xn)

1 + d(xn−1, xn)
,

d(xn, xn+1)

1 + d(xn, xn+1)
,

d(xn−1, xn+1) + d(xn, xn)

2s
}

≤ max{d(xn−1, xn), d(xn, xn+1),
d(xn−1, xn+1)

2s
}.

Since

d(xn−1, xn+1)

2s
≤ s[d(xn−1, xn) + d(xn, xn+1)]

2s
,

it follows that

Mb(xn−1, xn) ≤ max{d(xn−1, xn), d(xn, xn+1)}. (3.4)

By (3.3) and (3.4), we obtain that

ψ(d(xn, xn+1)) ≤ ϕ(ψ(Mb(xn−1, xn))) + Lθ(Nb(xn−1, xn))

≤ ϕ(ψ(max{d(xn−1, xn), d(xn, xn+1)})).

If max{d(xn−1, xn), d(xn, xn+1)} = d(xn, xn+1), we have

ψ(d(xn, xn+1)) ≤ ϕ(ψ(d(xn, xn+1)))

< ψ(d(xn, xn+1)),
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which is a contradiction. This implies that

ψ(d(xn, xn+1)) ≤ ϕ(ψ(d(xn−1, xn)))

< ψ(d(xn−1, xn)), (3.5)

for each n ∈ N. Since ψ is increasing, we get d(xn, xn+1) ≤ d(xn−1, xn) for each
n ∈ N. Therefore {d(xn, xn+1)} is a nonincreasing sequence. Consequently, there
exists r ≥ 0 such that limn→∞ d(xn, xn+1) = r. We claim that r = 0. Assume
that r > 0. Since ψ and ϕ are continuous, from (3.5), we have

ψ(r) ≤ ϕ(ψ(r)) ≤ ψ(r).

This implies that ψ(r) = ϕ(ψ(r)). Since ϕ(t) < t, for each t > 0, we obtain that

ψ(r) = ϕ(ψ(r)) < ψ(r),

which is a contradiction and therefore r = 0. It follows that

lim
n→∞

d(xn, xn+1) = 0. (3.6)

Next we will prove that the sequence {xn} is a Cauchy sequence. Suppose on
the contrary, that there exists ε > 0 such that for all k ∈ N, there exist two
subsequences {xm(k)} and {xn(k)} of {xn} with n(k) > m(k) ≥ k such that

d(xm(k), xn(k)) ≥ ε. (3.7)

Let n(k) be the smallest number satisfying (3.7). Thus

d(xm(k), xn(k)−1) < ε. (3.8)

By triangle inequality, (3.7) and (3.8), we obtain that

ε ≤ d(xn(k), xm(k)) ≤ sd(xn(k), xn(k)−1) + sd(xn(k)−1, xm(k))

< sd(xn(k), xn(k)−1) + sε.

By taking the upper limit as k →∞ and (3.6), we have

ε ≤ lim sup
k→∞

d(xn(k), xm(k)) ≤ sε. (3.9)

Using triangle inequality again, we obtain that

ε ≤ d(xm(k), xn(k)) ≤ sd(xm(k), xn(k)+1) + sd(xn(k)+1, xn(k))

≤ s2d(xm(k), xn(k)) + s2d(xn(k), xn(k)+1) + sd(xn(k)+1, xn(k))

≤ s2d(xm(k), xn(k)) + (s2 + s)d(xn(k), xn(k)+1).

From above inequality, we obtain that

ε ≤ sd(xm(k), xn(k)+1)+sd(xn(k)+1, xn(k)) ≤ s2d(xm(k), xn(k))+(s2+s)d(xn(k), xn(k)+1).
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Taking the upper limit as k →∞, by (3.6) and (3.9), we have

ε

s
≤ lim sup

k→∞
d(xm(k), xn(k)+1) ≤ s2ε. (3.10)

Similarly, we obtain that

ε ≤ d(xn(k), xm(k)) ≤ sd(xn(k), xm(k)+1) + sd(xm(k)+1, xm(k))

≤ s2d(xn(k), xm(k)) + s2d(xm(k), xm(k)+1) + sd(xm(k)+1, xm(k))

≤ s2d(xn(k), xm(k)) + (s2 + s)d(xm(k), xm(k)+1).

So from (3.6) and (3.9), we have

ε

s
≤ lim sup

k→∞
d(xn(k), xm(k)+1) ≤ s2ε. (3.11)

Since
d(xm(k)+1, xn(k)) ≤ sd(xm(k)+1, xn(k)+1) + sd(xn(k)+1, xn(k)),

and by using (3.6) and (3.11), we get that

ε

s2
≤ lim sup

k→∞
d(xm(k)+1, xn(k)+1). (3.12)

Using (3.6), (3.9), (3.10) and (3.11), we have

lim sup
k→∞

Mb(xn(k), xm(k)) = max{lim sup
k→∞

d(xn(k), xm(k)), lim sup
k→∞

d(xn(k), Txn(k))

1 + d(xn(k), Txn(k))
,

lim sup
k→∞

d(xm(k), Txm(k))

1 + d(xm(k), Txm(k))
,

lim supk→∞ d(xn(k), Txm(k)) + lim supk→∞ d(xm(k), Txn(k))

2s
}

= max{lim sup
k→∞

d(xn(k), xm(k)), lim sup
k→∞

d(xn(k), xn(k)+1)

1 + d(xn(k), xn(k)+1)
,

lim sup
k→∞

d(xm(k), xm(k)+1)

1 + d(xm(k), xm(k)+1)
,

lim supk→∞ d(xn(k), xm(k)+1) + lim supk→∞ d(xm(k), xn(k)+1)

2s
}

≤ max{sε, 0, 0, s
2ε+ s2ε

2s
} = sε.

This implies that
lim sup
k→∞

Mb(xn(k), xm(k)) ≤ sε. (3.13)

By using the same argument as above, we have

lim sup
k→∞

Nb(xn(k), xm(k)) = 0. (3.14)
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Since T is a modified (α-ψ-ϕ-θ)-rational contraction, by using Lemma 2.8 and
(3.12), we have

ψ(sε) = ψ(s3 · ε
s2

) ≤ ψ(s3 lim sup
k→∞

d(xm(k)+1, xn(k)+1))

= lim sup
k→∞

ψ(s3d(xm(k)+1, xn(k)+1))

= lim sup
k→∞

ψ(s3d(Txm(k), Txn(k)))

≤ lim sup
k→∞

[ϕ(ψ(Mb(xm(k), xn(k)))) + Lθ(Nb(xm(k), xn(k)))]

= ϕ(ψ(lim sup
k→∞

Mb(xm(k), xn(k)))) + Lθ(lim sup
k→∞

Nb(xm(k), xn(k)))

≤ ϕ(ψ(sε))

< ψ(sε),

which is a contradiction. Then we can conclude that {xn} is a Cauchy sequence.
From (3.2) and since X is an α-complete b-metric space, we have limn→∞ xn = x
for some x ∈ X. Since T is α-continuous, we obtain that limn→∞ Txn = Tx. This
implies that limn→∞ d(xn+1, Tx) = limn→∞ d(Txn, Tx) = 0. Then T has a fixed
point.

Example 3.3. Let X = [0, 6) and d : X ×X → R defined by d(x, y) = |x − y|2.
Then d is a b-metric on X with s = 2. Define T : X → X by

T (x) =

{√
2
6 x, if x ∈ [0, 1] ;
1
2x, if x ∈ (1, 6),

and define α : X ×X → [0,∞) by

α(x, y) =

{
1, if x, y ∈ [0, 1] ;

0, if otherwise.

Define ψ,ϕ : [0,∞) → [0,∞) by ψ(t) = t
2 and ϕ(t) = 4

9 t. For all x, y ∈ X and
α(x, y) ≥ 1, we have x, y ∈ [0, 1] and then

ψ(s3d(Tx, Ty)) =
s3d(Tx, Ty)

2

=
23|
√
2
6 x−

√
2
6 y|

2

2

= 4
∣∣∣√2

6
x−
√

2

6
y
∣∣∣2

= 4 · 2

36
|x− y|2

=
4

9

|x− y|2

2
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=
4

9

d(x, y)

2
(3.15)

=
4

9
ψ(d(x, y))

= ϕ(ψ(d(x, y))) ≤ ϕ(ψ(Mb(x, y))).

Then T is a modified (α-ψ-ϕ-θ)-rational contractive mapping. We next show that
(X, d) is an α-complete b-metric. If {xn} is a Cauchy sequence in X such that
α(xn, xn+1) ≥ 1 for all n ∈ N, then {xn} ⊆ [0, 1]. Now, since ([0, 1], d) is a
complete b-metric space, then the sequence {xn} converges in [0, 1]. We will show
that T is α-continuous. If xn → x as n → ∞ and α(xn, xn+1) ≥ 1 for all n ∈ N,
then xn ∈ [0, 1] for all n ∈ N and so

d(Txn, Tx) = |
√

2

6
xn −

√
2

6
x|2 =

1

18
|xn − x|2 =

1

18
d(xn, x)→ 0 as n→∞.

Let α(x, Tx) ≥ 1. Thus x ∈ [0, 1] and Tx ∈ [0, 1] and so T 2x = T (Tx) ∈ [0, 1].
Then α(Tx, T 2x) ≥ 1. Thus T is α-orbital admissible. Let α(x, y) ≥ 1 and
α(y, Ty) ≥ 1. We have x, y, Ty ∈ [0, 1]. This implies that α(x, Ty) ≥ 1. Hence
T is triangular α-orbital admissible. It is clear that condition(ii) of Theorem 3.2
is satisfied with x0 = 0 since α(x0, Tx0) = α(0, T (0)) = α(0, 0) = 1. Thus all
assumptions of Theorem 3.2 are satisfied and so T has a fixed point which is
x = 0.

We next replace the α-continuity of the mapping T by some appropriate con-
ditions.

Theorem 3.4. Let (X, d) be an α-complete b-metric space and α : X × X →
[0,∞). Suppose that T : X → X is a modified (α-ψ-ϕ-θ)-rational contractive
mapping. Assume that the following conditions hold:

(i) T is triangular α-orbital admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N and
xn → x as n → ∞, then there exists a subsequence {xn(k)} of {xn} such
that α(xn(k), x) ≥ 1 for all k ∈ N.

Then T has a fixed point.

Proof. As in Theorem 3.2, we can construct the sequence {xn} such that xn+1 =
Txn for all n ∈ N, α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x as n → ∞. From
condition (iii), there exists a subsequence {xn(k)} of {xn} such that

α(xn(k), x) ≥ 1 for all k ∈ N. (3.16)
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We claim that x is a fixed point of T . Assume that d(x, Tx) > 0. By triangle
inequality, we obtain that

d(x, Tx) ≤ sd(x, xn(k)+1) + sd(xn(k)+1, Tx)

= sd(x, xn(k)+1) + sd(Txn(k), Tx).

Taking limit k →∞ in above inequality, we have

d(x, Tx) ≤ lim
k→∞

sd(Txn(k), Tx). (3.17)

Since T is a modified (α-ψ-ϕ-θ)-rational contractive mapping, using (3.16) and
(3.17), we have

ψ(s2d(x, Tx)) ≤ lim
k→∞

ψ(s3d(Txn(k), Tx))

≤ lim
k→∞

[ϕ(ψ(Mb(xn(k), x))) + Lθ(Nb(xn(k), x))]

≤ ϕ(ψ( lim
k→∞

Mb(xn(k), x))) + Lθ( lim
k→∞

Nb(xn(k), x)), (3.18)

where

Mb(xn(k), x) = max{d(xn(k), x),
d(xn(k), Txn(k))

1 + d(xn(k), Txn(k))
,

d(x, Tx)

1 + d(x, Tx)
,

d(xn(k), Tx) + d(x, Txn(k))

2s
}

= max{d(xn(k), x),
d(xn(k), xn(k)+1)

1 + d(xn(k), xn(k)+1)
,

d(x, Tx)

1 + d(x, Tx)
,

d(xn(k), Tx) + d(x, xn(k)+1)

2s
}

≤ max{d(xn(k), x), d(xn(k), xn(k)+1), d(x, Tx)

d(xn(k), Tx) + d(x, xn(k)+1)

2s
}

and

Nb(xn(k), x) = min{d(xn(k), Txn(k)), d(xn(k), Tx), d(x, Txn(k)}
= min d(xn(k), xn(k)+1), d(xn(k), Tx), d(x, xn(k)+1)}.

Taking limit as k →∞, we obtain that

lim
k→∞

Mb(xn(k), x) ≤ max{d(x, Tx),
d(x, Tx

2
} = d(x, Tx)

and

lim
k→∞

Nb(xn(k), x) = 0.
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By (3.18), we have

ψ(s2d(x, Tx)) ≤ ϕ(ψ( lim
k→∞

Mb(xn(k), x))) + Lθ( lim
k→∞

Nb(xn(k), x))

≤ ϕ(ψ(d(x, Tx)))

< ψ(d(x, Tx)),

which is a contradiction because s ≥ 1. Then d(x, Tx) = 0 and hence x is a fixed
point of T .

For the uniqueness of a fixed point of a modified (α-ψ-ϕ-θ)-rational contractive
mapping, we investigate some conditions introduced in [5].

Theorem 3.5. Suppose that all hypotheses of Theorem 3.2 (respectively Theorem
3.4) hold. Assume that either α(u, v) ≥ 1 or α(v, u) ≥ 1 whenever Tu = u and
Tv = v. Then T has a unique fixed point.

Proof. Assume that w and z are fixed points of T with w 6= z. By assumption,
we have

α(w, z) ≥ 1 or α(z, w) ≥ 1.

Suppose that α(w, z) ≥ 1. Since T is a modified (α-ψ-ϕ-θ)-rational contractive
mapping, we have

ψ(s3(d(w, z))) = ψ(s3(d(Tw, Tz)))

≤ ϕ(ψ(Mb(w, z))) + Lθ(Nb(w, z))),

where

Mb(w, z) = max{d(w, z),
d(w, Tw)

1 + d(w, Tw)
,

d(z, Tz)

1 + d(z, Tz)
,
d(w, Tz) + d(z, Tw)

2s
}

= max{d(w, z),
d(w,w)

1 + d(w,w)
,

d(z, z)

1 + d(z, z)
,
d(w, z) + d(z, w)

2s
}

= d(w, z)

and
Nb(w, z) = min{d(w, Tw), d(w, Tz), d(z, Tw)} = 0.

Then

ψ(s3(d(w, z))) = ϕ(ψ(d(w, z)))

< ψ(d(w, z)

which is a contradiction because s ≥ 1. Thus w = z. Similarly, if α(z, w) ≥ 1,
then we can prove that w = z. Hence T has a unique fixed point.

In Theorem 3.5, if we take ψ(t) = t for all t ∈ [0,∞), then we immediately
obtain the following result.
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Corollary 3.6. Let (X, d) be an α-complete b-metric space where α : X ×X →
[0,∞) and T : X → X. Assume that there exists L ≥ 0 such that for all x, y ∈ X,

α(x, y) ≥ 1 implies s3d(Tx, Ty) ≤ ϕ(Mb(x, y)) + Lθ(Nb(x, y)), (3.19)

where

Mb(x, y) = max{d(x, y),
d(x, Tx)

1 + d(x, Tx)
,

d(y, Ty)

1 + d(y, Ty)
,
d(x, Ty) + d(y, Tx)

2s
},

Nb(x, y) = min{d(x, Tx), d(x, Ty), d(y, Tx)}
and ϕ, θ : [0,∞) → [0,∞) are continuous functions such that θ(0) = 0, ϕ(t) <
t, θ(t) > 0 for each t > 0 and ϕ is nondecreasing. Assume that the following
conditions hold:

(i) T is triangular α-orbital admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) T is α-continuous or if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1
for all n ∈ N and xn → x as n→∞, then there exists a subsequence {xn(k)}
of {xn} such that α(xn(k), x) ≥ 1 for all k ∈ N. .

Then T has a fixed point. Moreover, either α(u, v) ≥ 1 or α(v, u) ≥ 1 whenever
Tu = u and Tv = v. Then T has a unique fixed point.

In Corollary 3.6, if ϕ(t) = t−ϕ′(t) for all t ∈ [0,∞) where ϕ′ : [0,∞)→ [0,∞)
is continuous such tha ϕ′(t) < t for each t > 0 and ϕ′ is nonincreasing and L = 0,
then we obtain the following corollary.

Corollary 3.7. Let (X, d) be an α-complete b-metric space where α : X ×X →
[0,∞). Suppose that T : X → X is a mapping such that for all x, y ∈ X,

α(x, y) ≥ 1 implies s3d(Tx, Ty) ≤Mb(x, y)− ϕ′(Mb(x, y)), (3.20)

where

Mb(x, y) = max{d(x, y),
d(x, Tx)

1 + d(x, Tx)
,

d(y, Ty)

1 + d(y, Ty)
,
d(x, Ty) + d(y, Tx)

2s
},

and ϕ′ : [0,∞) → [0,∞) is continuous such that ϕ′(0) = 0, ϕ′(t) < t for each
t > 0 and ϕ′ is nonincreasing Assume that the following conditions hold:

(i) T is triangular α-orbital admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) T is α-continuous or if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1
for all n ∈ N and xn → x as n→∞, then there exists a subsequence {xn(k)}
of {xn} such that α(xn(k), x) ≥ 1 for all k ∈ N.

Then T has a fixed point. Moreover, either α(u, v) ≥ 1 or α(v, u) ≥ 1 whenever
Tu = u and Tv = v. Then T has a unique fixed point.
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3.2 The unique of common fixed point theorems

In this section, we introduce the concept of modified (α-ψ-ϕ-θ)-rational con-
tractive mappings with respect to g and prove the the existence of unique common
fixed point theorems in α-complete b-metric spaces.

Definition 3.8. Let (X, d) be a b-metric space, α : X ×X → [0,∞), and T, g :
X → X. We say that T : X → X is a modified (α-ψ-ϕ-θ)-rational contractive
mapping with respect to g if there exists L ≥ 0 such that for all x, y ∈ X,

α(x, y) ≥ 1 implies ψ(s3d(Tx, Ty)) ≤ ϕ(ψ(Mb(x, y))) + Lθ(Nb(x, y)), (3.21)

where

Mb(x, y) = max{d(gx, gy),
d(gx, Tx)

1 + d(gx, Tx)
,

d(gy, Ty)

1 + d(gy, Ty)
,
d(gx, Ty) + d(gy, Tx)

2s
},

Nb(x, y) = min{d(gx, Tx), d(gx, Ty), d(gy, Tx)}
and ψ,ϕ, θ : [0,∞) → [0,∞) are continuous functions with ϕ(t) < t, θ(t) > 0 for
each t > 0, ϕ is nondecreasing, θ(0) = 0, ψ(t) = 0 if and only if t = 0 and ψ is
increasing.

Definition 3.9. Let (X, d) be a b-metric space and α : X × X → [0,+∞) and
T, g : X → X. Then T is said to be α-continuous with respect to g, if for each
sequence {gxn} with gxn → gx as n → ∞, α(gxn, gxn+1) ≥ 1, for all n ∈ N, we
have Txn → Tx as n→∞.

Theorem 3.10. Let (X, d) be an α-complete b-metric space and T, g : X → X be
such that TX ⊆ gX and suppose that gX is closed. Let α : X ×X → [0,∞) and
T is a modified (α-ψ-ϕ-θ)-rational contractive mapping with respect to g. Assume
that the following conditions hold:

(i) T is triangular g-α-admissible;

(ii) there exists x0 ∈ X such that α(gx0, Tx0) ≥ 1;

(iii) T is α-continuous with respect to g.

Then T and g have a coincidence point.

Proof. Let x0 ∈ X be such that α(gx0, Tx0) ≥ 1. Since TX ⊆ gX, we can
construct a sequence {gxn} such that

gxn+1 = Txn for all n ∈ N.

By using Lemma 2.13, we have

α(gxn, gxn+1) ≥ 1 for all n ∈ N. (3.22)

By the analogous proof as in Theorem 3.2, we can prove that {gxn} is a Cauchy
sequence. Since α(gxn, gxn+1) ≥ 1 for all n ∈ N and X is an α-complete b-
metric space, we have {gxn} converges to z ∈ gX. Thus there exists x ∈ X
such that limn→∞ gxn = gx. Since T is α-continuous with respect to g, so Tx =
limn→∞ Txn = limn→∞ gxn+1 = gx. Then x is a coincidence point of T and g.
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We replace the α-continuity of the mapping T with respect to g by some
appropriate conditions.

Theorem 3.11. Let (X, d) be an α-complete b-metric space and T, g : X → X be
such that TX ⊆ gX and suppose that gX is closed. Let α : X ×X → [0,∞) and
T is a modified (α-ψ-ϕ-θ)-rational contractive mapping with respect to g. Assume
that the following conditions hold:

(i) T is triangular g-α-admissible;

(ii) there exists x0 ∈ X such that α(gx0, Tx0) ≥ 1;

(iii) if {gxn} is a sequence in X such that α(gxn, gxn+1) ≥ 1 for all n ∈ N and
gxn → gx as n → ∞, then there exists a subsequence {gxn(k)} of {gxn}
such that α(gxn(k), gx) ≥ 1 for all k ∈ N.

Then T and g have a coincidence point.

Proof. As in the proof of Theorem 3.10, we can construct the sequence {gxn} with
Txn = gxn+1 for all n ∈ N, α(gxn, gxn+1) ≥ 1 for all n ∈ N and limn→∞ gxn = gx.
By (iii), there exists a subsequence {gxn(k)} of {gxn} such that α(gxn(k), gx) ≥ 1,
for all k ∈ N. By the analogous proof as in Theorem 3.4, we obtain that T and g
have a coincidence point.

For the uniqueness of a common fixed point, we add some appropriate condi-
tions to the hypotheses.

Theorem 3.12. Suppose that all hypotheses of Theorem 3.10 (respectively Theo-
rem 3.11) hold. Assume that the following conditions hold:

(i) the pair {T, g} is weakly compatible;

(ii) either α(u, v) ≥ 1 or α(v, u) ≥ 1 whenever Tu = gu and Tv = gv.

Then T and g have a unique common fixed point.

Proof. Assume that Tu = gu and Tv = gv. We will show that gu = gv. Suppose
that gu 6= gv. Therefore α(u, v) ≥ 1 or α(v, u) ≥ 1. Suppose that α(u, v) ≥ 1. It
follows that

ψ(s3d(gu, gv)) = ψ(s3d(Tu, Tv)) ≤ ϕ(ψ(Mb(u, v))) + Lθ(Nb(u, v)),

where

Mb(u, v) = max{d(gu, gv),
d(gu, Tu)

1 + d(gu, Tu)
,

d(v, Tv)

1 + d(v, Tv)
,
d(gu, Tv) + d(gv, Tu)

2s
}

= max{d(gu, gv),
d(gu, gu)

1 + d(gu, gu)
,

d(gv, gv)

1 + d(gv, gv)
,
d(gu, gv) + d(gv, gu)

2s
}

= d(gu, gv)
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and

Nb(u, v) = min{d(gu, Tu), d(gu, Tv), d(gv, Tu)} = 0.

This implies that

ψ(s3(d(gu, gv))) ≤ ϕ(ψ(d(gu, gv)))

< ψ(d(gu, gv)

which is a contradiction because s ≥ 1. Thus gu = gv. Similarly, if α(v, u) ≥ 1,
we can prove that gu = gv. This implies that T and g have a unique point of
coincidence. Since the pair {T, g} is weakly compatible and by Theorem 2.16, we
can conclude that T and g have a unique common fixed point.

Corollary 3.13. Let (X, d) be an α-complete b-metric space with respect to g and
T, g : X → X be such that TX ⊆ gX. Assume that gX is closed and there exist
α : X ×X → R and L ≥ 0 such that for all x, y ∈ X,

α(x, y) ≥ 1 implies s3d(Tx, Ty) ≤ ϕ(Mb(x, y)) + Lθ(Nb(x, y)), (3.23)

where

Mb(x, y) = max{d(gx, gy),
d(gx, Tx)

1 + d(gx, Tx)
,

d(gy, Ty)

1 + d(gy, Ty)
,
d(gx, Ty) + d(gy, Tx)

2s
},

Nb(x, y) = min{ d(gx, Tx)

1 + d(g, Tx)
,

d(gx, Ty)

1 + d(gx, Ty)
,

d(gy, Tx)

1 + d(gy, Tx)
}

and ϕ, θ : [0,∞) → [0,∞) are continuous functions such that θ(0) = 0, ϕ(t) < t,
θ(t) > 0 for each t > 0. Assume that the following conditions hold:

(i) T is triangular g-α-admissible;

(ii) there exists x0 ∈ X such that α(gx0, Tx0) ≥ 1;

(iii) T is α-continuous with respect to g or if {gxn} is a sequence in X such that
α(gxn, gxn+1) ≥ 1 for all n ∈ N and gxn → gx as n→∞, then there exists
a subsequence {gxn(k)} of {gxn} such that α(gxn(k), gx) ≥ 1 for all k ∈ N.

Then T and g have a coincidence point. Moreover, assume that the following
conditions hold:

(iv) the pair {T, g} is weakly compatible;

(v) either α(u, v) ≥ 1 or α(v, u) ≥ 1 whenever Tu = gu and Tv = gv.

Then T and g have a unique common fixed point.
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3.3 Applications to integral equations

In this section, we prove the existence of a solution of a nonlinear quadratic
integral equation taken from Allahari et al. [12].

Let C(I) be the set of all continuous functions defined on I = [0, 1] and
ρ : C(I)× C(I)→ R defined by

ρ(x, y) = sup
t∈I
|x(t)− y(t)| for x, y ∈ C(I).

Let p ≥ 1. We define d : C(I)× C(I)→ R defined by

d(x, y) = (ρ(x, y))p = (sup
t∈I
|x(t)− y(t)|)p = sup

t∈I
|x(t)− y(t)|p for all x, y ∈ C(I).

It is well known that (X, d) is a complete b-metric space with s = 2p−1 (see [13]).
Let Γ be the set of functions γ : [0,+∞) → [0,+∞) which satisfy the following

conditions:

(i) γ is nondecreasing and (γ(t))p ≤ γ(tp) for all p ≥ 1;

(ii) There exists ϕ : [0,+∞)→ [0,+∞) which is nonincreasing and continuous,
ϕ(t) < t for all t > 0 such that γ(t) = t− ϕ(t) for all t ∈ [0,+∞).

Consider the nonlinear quadratic equation as follows:

x(t) = h(t) + λ

∫ 1

0

k(t, s)f(s, x(s))ds, t ∈ I, λ ≥ 0. (3.24)

Suppose that the following conditions hold:

(A1) h : I → R is continuous;

(A2) f : I ×R→ R is continuous, f(t, x) ≥ 0 and there exist L ≥ 0, γ ∈ Γ and a
function ξ : R2 → R such that for all t ∈ I, for all a, b ∈ R with ξ(a, b) ≥ 0,

|f(t, a)− f(t, b)| ≤ Lγ(|a− b|);

(A3) k : I × I → R is continuous at t ∈ I for every s ∈ I and measurable at s ∈ I
for all t ∈ I such that k(t, s) ≥ 0 and

∫ 1

0
k(t, s)ds ≤ K;

(A4) λpKpLp ≤ 1
23p−3 ;

(A5) there exists x0 ∈ C(I) such that for all t ∈ I,

ξ(x0(t), h(t) + λ

∫ 1

0

k(t, s)f(s, x0(s))ds) ≥ 0;

(A6) for all t ∈ I and for all x, y, z ∈ C(I),

ξ(x(t), y(t)) ≥ 0 and ξ(y(t), z(t)) ≥ 0 imply ξ(x(t), z(t)) ≥ 0;
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(A7) for all t ∈ I and for all x, y ∈ C(I),

ξ(x(t), y(t)) ≥ 0 implies ξ(h(t)+λ

∫ 1

0

k(t, s)f(s, x(s))ds, h(t)+λ

∫ 1

0

k(t, s)f(s, y(s))ds) ≥ 0;

(A8) if {xn} is a sequence in C(I) such that xn → x ∈ C(I) and ξ(xn(t), xn+1(t)) ≥ 0
for all n ∈ N and for all t ∈ I, then there exists a subsequence {xn(k)} of {xn}
such that ξ(xn(k)(t), x(t)) ≥ 0 for all k ∈ N and for all t ∈ I.

Theorem 3.14. Under assumptions (A1)-(A8), the integral equation (3.24) has
a solution in C(I).

Proof. Let T : C(I)→ C(I) be defined by

T (x)(t) = h(t) + λ

∫ 1

0

k(t, s)f(s, x(s))ds for t ∈ I.

Let x, y ∈ C(I) such that ξ(x(t), y(t)) ≥ 0 for all t ∈ I. Therefore

|T (x)(t)− T (y)(t)| = |h(t) + λ

∫ 1

0

k(t, s)f(s, x(s))ds− h(t)− λ
∫ 1

0

k(t, s)f(s, y(s))ds|

≤ λ

∫ 1

0

k(t, s)|f(s, x(s))− f(s, y(s))|ds

≤ λ

∫ 1

0

k(t, s)Lγ(|x(s)− y(s)|)ds.

Since γ is nondecreasing, we obtain that

γ(|x(s)− y(s)|) ≤ γ(sup
s∈I
|x(s)− y(s)|) = γ(ρ(x, y)).

This implies that
|T (x)(t)− T (y)(t)| ≤ λKLγ(ρ(x, y)).

Therefore

d(Tx, Ty) = sup
t∈I
|T (x)(t)− T (y)(t)|p

≤ [λKLγ(ρ(x, y))]p

≤ λpKpLpγ(d(x, y))

≤ λpKpLpγ(M(x, y))

≤ λpKpLp[M(x, y)− ϕ(M(x, y))]

≤ 1

23p−3
[M(x, y)− ϕ(M(x, y))],

for all x, y ∈ C(I) such that ξ(x(t), y(t)) ≥ 0 for all t ∈ I. We next define
α : C(I)× C(I)→ [0,∞) by

α(x, y) =

{
1, if ξ(x(t), y(t)) ≥ 0, t ∈ I
0, otherwise.
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Let x, y ∈ C(I) be such that α(x, y) ≥ 1. It follows that ξ(x(t), y(t)) ≥ 0 for all
t ∈ I. This yields

s3d(Tx, Ty) ≤M(x, y)− ϕ(M(x, y).

This implies that T satisfies the contractive condition in Corollary 3.7. Using (A7),
for each x ∈ C(I) such that α(x, Tx) ≥ 1 we obtain that ξ(Tx(t), T 2x(t)) ≥ 0.
This implies that α(Tx, T 2x) ≥ 1. Let x, y ∈ C(I) be such that α(x, y) ≥ 1 and
α(y, Ty) ≥ 1. Thus

ξ(x(t), y(t)) ≥ 0 and ξ(y(t), T y(t)) ≥ 0 for all t ∈ I.

By applying (A6), we obtain that ξ(x(t), T y(t)) ≥ 0 and so α(x, Ty) ≥ 1. It follows
that T is triangular α-orbital admissible. Using (A5), there exists x0 ∈ C(I) such
that α(x0, Tx0) ≥ 1. Let {xn} be a sequence in C(I) such that xn → x ∈ C(I)
and α(xn, xn+1) ≥ 1 for all n ∈ N. By (A8), there exists a subsequence {xn(k)} of
{xn} such that ξ(xn(k)(t), x(t)) ≥ 0. This implies that α(xn(k), x) ≥ 1. Therefore
all assumptions in Corollary 3.7 are satisfied. Hence T has a fixed point in C(I)
that is a solution of the integral equation (3.24).

Corollary 3.15. Assume that the following conditions hold:

(i) h : I → R is a continuous;

(ii) f : I × R→ [0,∞) is continuous and nondecreasing and f(t, s) ≥ 0.

(iii) there exist L ≥ 0 and γ ∈ Γ such that for all t ∈ I, for all a, b ∈ R with
a ≤ b, we have

|f(t, a)− f(t, b)| ≤ Lγ(|a− b|);

(iv) k : I× I → R is continuous at t ∈ I for every s ∈ I and measurable at s ∈ I
for all t ∈ I such that k(t, s) ≥ 0 and

∫ 1

0
k(t, s)ds ≤ K;

(v) γpKpLp ≤ 1
23p−3 ;

(vi) there exists x0 ∈ C([0, 1]) such that for all t ∈ I, we have

x0(t) ≤ h(t) + λ

∫ 1

0

k(t, s)f(s, x1(s))ds.

Then (3.24) has a solution in C(I).

Proof. Define a mapping ξ : R2 → R by

ξ(a, b) = b− a for all a, b ∈ R.

By the analogous proof as in Theorem 3.14, we obtain that (3.24) has a solution
in C(I).
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