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Abstract : A mapping σ which assigns to every ni-ary cooperation symbol fi an
ni-ary coterm of type τ = (ni)i∈I is said to be a cohypersubstitution of type τ . The
concepts of cohypersubstitutions were introduced in [1]. Every cohypersubstition
σ of type τ induces a mapping σ̂ on the set of all coterms of type τ . The set of
all cohypersubstitutions of type τ under the binary operation ◦̂ which is defined
by σ1◦̂σ2 := σ̂1 ◦ σ2 for all σ1, σ2 ∈ Cohyp(τ) forms a monoid which is called
the monoid of cohypersubstitution of type τ . In this research, we characterize
all idempotent and regular elements of Cohyp(n) and characterize some Green’s
relations L and R on Cohyp(n).
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1 Introduction

Let A be a non-empty set and n be a positive integer. The n-th copower
Atn of A is the union of n disjoint copies of A; formally, we define Atn as the
cartesian product Atn := n × A, where n := {1, . . . , n}. An element (i, a) in
this copower corresponds to the element a in the i-th copy of A, for 1 ≤ i ≤ n.
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A co-operation on A is a mapping fA : A → Atn for some n ≥ 1; the natural
number n is called the arity of the co-operation fA. We also need to recall that
any n-ary co-operation fA on set A can be uniquely expressed as a pair (fA1 , f

A
2 )

of mappings, fA1 : A → n and fA2 : A → A; the first mapping gives the labelling
used by fA in mapping elements to copies of A, and the second mapping tells us
what element of A any element is mapped to.

We shall denote by cO
(n)
A = {fA : A → Atn} the set of all n− ary co-operations

defined on A, and by cOA := ∪n≥1cO(n)
A the set of all finitary co-operations defined

on A. An indexed coalgebra is a pair (A; (fAi )i∈I), where fAi is an ni-ary cooper-
ation defined on A, and τ = (ni)i∈I for ni ≥ 1 is called the type of the coalgebra.
Coalgebras were studied by Drbohlav [2]. In [3], the following superposition of

cooperations was introduced. If fA ∈ cO(n)
A and gA0 , . . . , g

A
n−1 ∈ cO

(k)
A , then the

k-ary co-operation fA[gA0 , . . . , g
A
n−1] : A→ Atk is defined by

a 7→ ((gAfA
1 (a))1(fA2 (a)), (gAfA

1 (a))2(fA2 (a)))

for all a ∈ A. The co-operation fA[gA0 , . . . , g
A
n−1] is called the superposition of fA

and gA0 , . . . , g
A
n−1. It will also be denoted by compnk (fA, gA0 , . . . , g

A
n−1).

The injection co-operations ın,Ai : A → Atn are special cooperations which

are defined for each 0 ≤ i ≤ n− 1 by ın,Ai : A→ Atn with a 7→ (i, a) for all a ∈ A.
Then we get a multi-based algebra

((cO
(n)
A )n≥1, (comp

n
k )k,n≥1, (ı

n,A
i )0≤i≤n−1),

called the clone of co-operations on A. In [3] it is mentioned that this algebra is
a clone, i.e. it satisfies the three clone axioms (C1), (C2), (C3). In [4], K.Denecke
and K.Saengsura gave a full proof of this fact. In [4], the following coterms of type
τ = (ni)i∈I were introduced. Let (fi)i∈I be an indexed set of co-operation symbols
such that for each i ∈ I, fi has arity ni. Let

⋃
{enj | n ≥ 1, n ∈ N, 0 ≤ j ≤ n− 1}

be a set of symbols which is disjoint from the set {fi | i ∈ I} such that for each
0 ≤ j ≤ n− 1, enj has arity n. Then coterms of type τ are defined as follows:

(i) For every i ∈ I the co-operation symbol fi is an ni-ary coterm of type τ .

(ii) For every n ≥ 1 and 0 ≤ j ≤ n− 1 the symbol enj is an n-ary coterm of type
τ .

(iii) If t1, . . . , tni
are n-ary coterms of type τ , then fi[t1, . . . , tni

] is an n-ary
coterm of type τ for every i ∈ I , and if t0, . . . , tn−1 are m-ary coterms of
type τ , then enj [t0, . . . , tn−1] is an m-ary coterm of type τ for every n ≥ 1
and 0 ≤ j ≤ n− 1.

Let cT
(n)
τ be the set of all n-ary coterms of type τ and let cTτ :=

⋃
n≥1 cT

(n)
τ be

the set of all (finitary) coterms of type τ .
The superposition of coterms was introduced in [1] as follows: The operation

Snm : cT
(n)
τ ×(cT

(m)
τ )n → cT

(m)
τ is defined by induction on the complexity of coterm

definition, as follows:
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(i) Snm(eni , t0, . . . , tn−1) := ti for 0 ≤ i ≤ n− 1.

(ii) Sni
ni

(fi, e
ni
0 , . . . , e

ni
ni−1) := fi for an ni-ary co-operation symbol fi .

(iii) S
nj
m (gj , t1, . . . , tnj ) := gj [t1, . . . , tnj ] if gj is an nj-ary co-operation symbol.

(iv) Snm(fi[s1, . . . , sni
], t1, . . . , tn) := fi[S

n
m(s1, t1, . . . , tn), . . . , Snm(sni

, t1,
. . . , tn)] where fi is an ni-ary co-operation symbol, s1, . . . , sni

are n-ary
coterms of type τ and t1, . . . , tn are m-ary coterms of type τ .

These operations give us a heterogeneous algebra

cTτ := ((cT (n)
τ )n≥1, (S

n
m)m,n≥1, (e

n
j )1≤j≤n).

We shall show that it is a clone, i.e., that it satisfies the clone axioms (C1),(C2),(C3).

Theorem 1.1. (Denecke and Saengsura [1, Proposition 2.3]) The heterogeneous
algebra cTτ satisfies the following identities:

(C1) Ŝpm(z, Ŝnm(y1, x1, . . . , xn), . . . , Ŝnm(yp, x1, . . . , xn)) ≈
Ŝnm(Ŝpn(z, y1, . . . , yp), x1, . . . , xn), (m,n, p ∈ N+),

(C2) Ŝnm(eni , x1, . . . , xn) ≈ xi (m ∈ N+, 1 ≤ i ≤ n),

(C3) Ŝnn(y, en1 , . . . , e
n
n) ≈ y, (n ∈ N+).

(Here Ŝnm, e
n
i are operation symbols corresponding to the clone type.)

A cohypersubstitution of type τ was introduced in [1] as a mapping σ : {fi |
i ∈ I} → CTτ from the set of all cooperation symbols to the set of all coterms
which preserves the arities. The extension of σ is a mapping σ̂ : CTτ → CTτ
which is inductively defined by the following steps:

(i) σ̂[enj ] := enj for every n ≥ 1 and 0 ≤ j ≤ n− 1,

(ii) σ̂[fi] := σ(fi) for every i ∈ I,

(iii) σ̂[fi[t1, . . . , tni
]] := Sni

n (σ(fi), σ̂[t1], . . . , σ̂[tni
]) for t1, . . . , tni

∈ cT (n)
τ .

Let Cohyp(τ) be the set of all cohypersubstitutions of type τ . On the set Cohyp(τ)
of all cohypersubstitutions of type τ we may define a binary operation ◦̂ by
σ1◦̂σ2 := σ̂1 ◦ σ2 where ◦ is the usual composition of mappings. Let σid be
the cohypersubstitution defined by σid(fi) := fi for all i ∈ I. Then we have that
(Cohyp(τ); ◦̂, σid) forms a monoid which is called the monoid of cohypersubstitu-
tion of type τ where the cohypersubstitution σid satisfies the equation σ̂id[t] = t
for all t ∈ cTτ (see e.g. [1]).
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2 Main results

2.1 Idempotent and regular of monoid cohypersubstitutions
of type τ = (n)

In 2012, M. Kapeedaeng and K. Saengsura were studied the idempotent and
the regular of cohypersubstitutions of type τ = (2) and D. Boonchari and K.
Saengsura were studied the idempotent and regular of cohypersubstitutions of type
τ = (3) (see [5],[6]). In this Section, we characterize all idempotent and regular
cohypersubstitutions of type τ = (n), where n is the positive integer. Let S be a
semigroup, an element a of S is called idempotent if aa = a, and called regular if
there exists x ∈ S such that axa = a. We denote by E(S) and R(S) the set of
all idempotent elements and the set of all regular elements of S, respectively (see
[7]). For any σ ∈ Cohyp(τ) and τ = (n), if σ(f) = t, we denote σ by σt. For any
positive integer n we call the symbol enj the injection symbol, for all 0 ≤ j ≤ n− 1
and for each coterm t, let E(t) be the set of all injection symbols which occur in t.

Lemma 2.1. Let t, s1, s2, . . . , sn ∈ CTτ , where τ = (n). If E(t) = {enj−1 | ∀j ∈
J where J 6= ∅ and J ⊆ {1, 2, . . . , n}} and sj = enj−1 for all j ∈ J , then
t[s1, s2, . . . , sn] = t

Proof. We give a proof by induction on the complexity of the coterm t.
If t = enj−1, for some j ∈ J , then

enj−1[s1, s2, . . . , sn] = sj
= enj−1.

Assume that t = f [t1, t2, . . . , tn] and that ti[s1, s2, . . . , sn] = ti for all i =
1, 2, . . . , n. Then we get that
t[s1, s2, . . . , sn] = (f [t1, t2, . . . , tn])[s1, s2, . . . , sn]

= f [t1[s1, s2, . . . , sn], t2[s1, s2, . . . , sn], . . . , tn[s1, s2, . . . , sn]]
= f [t1, t2, . . . , tn]
= t.

The next result is a condition for an element of Cohyp(n) to be idempotent.

Theorem 2.2. If σt ∈ Cohyp(n), then σt is an idempotent if and only if σ̂t(t) = t.

Proof. Assume that σt is an idempotent.
Then σ̂t(t) = σ̂t(σt(f))

= σt◦̂σt(f)
= σt(f)
= t.

Conversely, assume that σ̂t(t) = t.
Then σt◦̂σt(f) = σ̂t(σt(f))

= σ̂t(t)
= t
= σt(f).

Therefore, σt is an idempotent.
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Corollary 2.3. For every i ∈ {0, 1, 2, . . . , n− 1}, σe3i is an idempotent and σid is
an idempotent.

Proof. Since σ̂t(e
n
i ) = eni for all i ∈ {0, 1, 2, . . . , n − 1} and t ∈ CT

(n)
τ , then

σeni (eni ) = eni for all i ∈ {0, 1, 2, . . . , n− 1}. By Theorem 2.1, σeni is an idempotent
for all i ∈ {0, 1, 2, . . . , n− 1}. Also σid is an idempotent because it is the identity
cohypersubstitution of type τ = (n).

Theorem 2.4. If t = f [t1, . . . , tn] and E(t) = {enj−1} for some j ∈ {1, . . . , n},
then σt is an idempotent if and only if tj = enj−1.

Proof. Assume that σt is an idempotent.
Then f [t1, . . . , tj , . . . , tn] = σt(f)

= σt◦̂σt(f)
= σ̂t(σt(f))
= σt(f)[σ̂t(t1), . . . , σ̂t(tj), . . . , σ̂t(tn)]
= f [t1, . . . , tj , . . . , tn][σ̂t(t1), . . . , σ̂t(tj), . . . , σ̂t(tn)]
= f [t1[σ̂t(t1), . . . , σ̂t(tj), . . . , σ̂t(tn)], . . . ,

tj [σ̂t(t1), . . . , σ̂t(tj), . . . , σ̂t(tn)], . . . ,
tn[σ̂t(t1), . . . , σ̂t(tj), . . . , σ̂t(tn)]].

Therefore, tj = tj [σ̂t(t1), . . . , σ̂t(tj), . . . , σ̂t(tn)].
Suppose that tj 6= enj−1. This implies that the number of cooperation symbols f
which occur in coterm tj is greater than or equal to 1 and hence σ̂t(tj) 6= enj−1. It
follows that tj 6= tj [σ̂t(t1), . . . , σ̂t(tj), . . . , σ̂t(tn)]. Then
f [t1, . . . , tj , . . . , tn] 6= f [t1[σ̂t(t1), . . . , σ̂t(tn), . . . , σ̂t(tn)], . . . ,

tj [σ̂t(t1), . . . , σ̂t(tj), . . . , σ̂t(tn)], . . . ,
tn[σ̂t(t1), . . . , σ̂t(tj), . . . , σ̂t(tn)]],

which is a contradiction.
Conversely, let tj = enj−1.

Then σ̂t(t) = σ̂t(f [t1, . . . , tj−1, tj , tj+1, . . . , tn])
= σ̂t(f [t1, . . . , tj−1, e

n
j−1, tj+1, . . . , tn])

= σt(f)[σ̂t(t1), . . . , σ̂t(tj−1), σ̂t(e
n
j−1), σ̂t(tj+1), . . . , σ̂t(tn)]

= (f [t1, . . . , tj−1, e
n
j−1, tj+1, . . . , tn])

[σ̂t(t1), . . . , σ̂t(tj−1), enj−1, σ̂t(tj+1), . . . , σ̂t(tn)]
= f [t1, . . . , tj−1, e

n
j−1, tj+1, . . . , tn] (by Lemma 2.1)

= t.

Now we give a characterization of a cohypersubstitution σt such that E(t) > 1,
first of all we need the following lemma:

Lemma 2.5. Let t ∈ cT (n). If E(t) = {enj−1 | ∀j ∈ J where J ⊆ {1, . . . , n}
and |J | > 1} and s1, . . . , sn ∈ cT (n) such that sj 6= enj−1 for some j ∈ J , then
t[s1, . . . , sn] 6= t.

Proof. We give a proof by induction on the complexity of the coterm t. If t = enj−1,
then enj−1[s1, . . . , sn] = sj 6= enj−1.
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Assume that t = f [t1, . . . , tn] and ti[s1, . . . , sn] 6= ti for all ti where enj−1 ∈ E(ti).
Then
t[s1, . . . , sn] = (f [t1, . . . , tn])[s1, . . . , sn]

= f [t1[s1, . . . , sn], . . . , tn[s1, . . . , sn]]
6= f [t1, . . . , tn].

We obtain the following result:

Theorem 2.6. Let σt ∈ Cohyp(n) such that E(t) = {enj−1 | ∀j ∈ J where J ⊆
{1, . . . , n} and |J | > 1}. Then σt is an idempotent if and only if tj = enj−1 for all
j ∈ J .

Proof. Assume that σt is an idempotent. Similar to the proof of Theorem 2.2, we
have that

f [t1, . . . , tn] = f [t1[σ̂t(t1), . . . , σ̂t(tn)], . . . , tn[σ̂t(t1), . . . , σ̂t(tn)]].

Suppose that tj 6= enj−1 for some j ∈ J . Then σ̂t(tj) 6= enj−1. Since enj−1 ∈ E(t),
then by Lemma 2.2 there is k ∈ {1, . . . , n} such that
tk[σ̂t(t1), . . . , σ̂t(tj), . . . , σ̂t(tn)] 6= tk and enj−1 ∈ E(tk). Therefore,

f [t1, . . . , tn] 6= f [t1[σ̂t(t1), . . . , σ̂t(tn)], . . . , tn[σ̂t(t1), . . . , σ̂t(tn)]].

This yields a contradiction. Hence, tj = enj−1 for all j ∈ J .
Conversely, Assume that t = f [t1, . . . , tn] and tj = enj−1 for all j ∈ J . Then
σ̂t(tj) = enj−1 for all j ∈ J . Since E(t) = {enj−1 | ∀j ∈ J where J ⊆ {1, . . . , n} and
|J | > 1}, then by Lemma 2.1 we get that

σ̂t(t) = σ̂t(f [t1, . . . , tn])
= σt(f)[σ̂t(t1), . . . , σ̂t(tn)]
= (f [t1, . . . , tn])[σ̂t(t1), . . . , σ̂t(tn)]
= f [t1, . . . , tn].

Now, we characterize all regular elements of Cohyp(n). By using the injection
symbols which occur in the coterm t, we obtain the following result:

Theorem 2.7. Let t ∈ CT(n) and E(t) = {enj−1 | ∀j ∈ J where J ⊆ {1, . . . , n}}.
Then σt is a regular if and only if for each j ∈ J , enj−1 = ti for some i ∈ {1, . . . , n}.

Proof. Assume that σt is regular. Let s = f [s1, . . . , sn] ∈ cT(n) and
σt◦̂σs◦̂σt = σt.
Suppose that ti 6= enj−1 for all i = 1, . . . , n. Then σ̂s(ti) 6= enj−1 for all i = 1, . . . , n.
Therefore,
σ̂s(t) = σ̂s(f [t1, . . . , tn])

= σs(f)[σ̂s(t1), . . . , σ̂s(tn)]
= (f [s1, . . . , sn])[σ̂s(t1), . . . , σ̂s(tn)]
= f [s1[σ̂s(t1), . . . , σ̂s(tn)], . . . , sn[σ̂s(t1), . . . , σ̂s(tn)]].
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Since σ̂s(ti) 6= enj−1 for all i ∈ {1, . . . , n}, then si[σ̂s(t1), . . . , σ̂s(tn)] 6= enj−1
for all i ∈ {1, . . . , n}, so σ̂t(si[σ̂s(t1), . . . , σ̂s(tn)]) 6= enj−1 for all i ∈ {1, . . . , n}.
Therefore,
σ̂t(σ̂s(t)) = σ̂t(f [s1[σ̂s(t1), . . . , σ̂s(tn)], . . . , sn[σ̂s(t1), . . . , σ̂s(tn)]])

= σt(f)[σ̂t(s1[σ̂s(t1), . . . , σ̂s(tn)]), . . . , σ̂t(sn[σ̂s(t1), . . . , σ̂s(tn)])]
= (f [t1, . . . , tn])[σ̂t(s1[σ̂s(t1), . . . , σ̂s(tn)]), . . . , σ̂t(sn[σ̂s(t1), . . . , σ̂s(tn)])]
6= f [t1, . . . , tn] (by Lemma 2.2).

This gives a contradiction. Hence ti = enj−1 for some i ∈ {1, . . . , n}. Con-
versely, let t = f [t1, . . . , tn] and assume that for each j ∈ J , enj−1 = ti for some
i ∈ {1, . . . , n}. Let s = f [s1, . . . , sn] and for each j ∈ J , sj = eni−1 for some
i ∈ {1, . . . , n}.
Then
σ̂s(f [t1, . . . , tn]) = σs(f)[σ̂s(t1), . . . , σ̂s(tn)]

= (f [s1, . . . , sn])[σ̂s(t1), . . . , σ̂s(tn)]
= f [s1[σ̂s(t1), . . . , σ̂s(tn)], . . . , sn[σ̂s(t1), . . . , σ̂s(tn)].

Since ti = enj−1 and sj = eni−1, then σ̂s(ti) = enj−1 and sj [σ̂s(t1), . . . , σ̂s(tn)] =
enj−1 for all j ∈ J .
Then σ̂t(sj [σ̂s(t1), . . . , σ̂s(tn)]) = enj−1 for all j ∈ J . Therefore,

σ̂t(σ̂s(t)) = σ̂t(f [s1[σ̂s(t1), . . . , σ̂s(tn)], . . . , sn[σ̂s(t1), . . . , σ̂s(tn)]])
= (f [t1, . . . , tn])[s1[σ̂s(t1), . . . , σ̂s(tn)], . . . , sn[σ̂s(t1), . . . , σ̂s(tn)]]
= f [t1, . . . , tn].

Hence, σt is regular.

2.2 Green’s relations of cohypersubstitutions of type τ = (n)

In this section, we characterize Green’s relations L and R on Cohyp(n). First
of all we define the equivalence coterms as follows: the coterms s, t ∈ CT(n) are said
to be equivalence denoted by s ≡ t if and only if s = t or s and t are difference
only the injection symbols which occurred in the coterms s and t, for instance
t = f [e20, f [e21, e

2
0]] ≡ s = f [e21, f [e20, e

2
1]], but t = f [e20, f [e21, e

2
0]] is not equivalence

to r = f [e20, e
2
1]. Then we obtain the cohypersubstitutions σt and σs which are

R-related as the following theorem:

Theorem 2.8. If t, s ∈ CT(n), then σtRσs if and only if the following are satisfied:

(i) t ≡ s,
(ii) there is a uniquely bijection ϕ : E(t)→ E(s) and

if enj ∈ E(t), then enj and ϕ(enj ) are in the same position of the coterms
t and s, respectively.

Proof. Assume that σtRσs. Then there are σr, σw ∈ Cohyp(n) such that σt =
σs◦̂σr and σs = σt◦̂σw. Let t = f [t1, . . . , tn] and s = f [s1, . . . , sn]. Suppose that t
is not equivalence to s. Then there is i ∈ {1, . . . , n} such that ti is not equivalence
to si.
Case 1. If opt(ti) > opt(si), then opt(si) < opt(ti[l1, . . . , ln]) for all l1, . . . , ln ∈
CT(n), so si 6= ti[l1, . . . , ln] for all l1, . . . , ln ∈ CT(n). Therefore, f [s1, . . . , sn] 6=
(f [t1, . . . , tn])[l1, . . . , ln] for all l1, . . . , ln ∈ CT(n). This means that there is no
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σw ∈ Cohyp(n) such that σs = σt◦̂σw. This gives a contradiction.
Case 2. If opt(ti) = opt(si) and the position of co-operation symbol f are dif-
ferent, then opt(ti) can be equal to opt(si[l1, . . . , ln]) if opt(lj) = 0 for all j ∈ Ji
such that E(si) = {enj−1 | j ∈ Ji and Ji ⊆ {1, . . . , n}, so lj are injections symbols
for all j ∈ Ji. Therefore, the coterm si[l1, . . . , ln] have to change only injection
symbols, but the positions of the co-operation symbols f have no changed. This
shows that ti 6= si[l1, . . . , ln] for all l1, . . . , ln ∈ CT(n). There follows we get that
f [t1, . . . , tn] 6= (f [s1, . . . , sn])[l1, . . . , ln] for all l1, . . . , ln ∈ CT(n). This gives a con-
tradiction. Hence t ≡ s.
To prove (ii), suppose that |E(t)| > |E(s)|. Since t ≡ s, then t ≡ s[l1, . . . , ln] if
opt(lj) = 0 for all j ∈ J such that E(s) = {enj−1 | j ∈ J and J ⊆ {1, . . . , n}},
so the injection symbols of the coterm s = f [s1, . . . , sn] have to change at most
|E(s)|. There follows |E(t)| 6= |E(s[l1, . . . , ln])| where opt(lj) = 0 for all j ∈ J
such that E(s) = {enj−1 | j ∈ J and J ⊆ {1, . . . , n}}. This gives a contradiction.
Then |E(t)| ≤ |E(s)|. Similarly, one can shows that |E(t)| ≥ |E(s)|. Therefore,
|E(t)| = |E(s)|.
Hence there is a bijection between E(t) and E(s).
Suppose that there are enj , e

n
k ∈ E(t) such that the position of enj and enk in the

coterm t have the same position with enl in the coterm s in somewhere. Since t ≡ s,
then enl [l1, . . . , ln] = enj and enl [l1, . . . , ln] = enk if and only if enj = enk . Therefore,
for any enl ∈ E(s) there exists a uniquely enj ∈ E(t) such that the position of enj
and enl in the coterm t and s are the same, respectively. Similarly, one can shows
that for any enj ∈ E(t) there exists a uniquely enl ∈ E(s) such that the position of
enj and enl in the coterm t and s are the same, respectively.
We define a bijection mapping ϕ : E(t) → E(s) by ϕ(x) = y for all x ∈ E(t) and
y ∈ E(s) such that x and y have the same position in t and s, respectively. Then
we finishes the prove of (ii).
Conversely, Assume that σt and σs satisfy the conditions (i) and (ii). Let r =
f [r1, . . . , rn] ∈ CT(n) such that rj = ϕ−1(enj ) for all j ∈ J and E(s) = {enj−1 | j ∈ J
for some J ⊆ {1, . . . , n}}.
Then
σ̂t(σr(f)) = σ̂s(f [r1, . . . , rn])

= σs(f)[σ̂s(r1), . . . , σ̂s(rn)]
= (f [s1, . . . , sn])[σ̂s(r1), . . . , σ̂s(rn)]
= f [s1[σ̂s(r1), . . . , σ̂s(rn)], . . . , sn[σ̂s(r1), . . . , σ̂s(rn)].

Since rj = ϕ−1(enj ), then σ̂s(rj) = ϕ−1(enj ), so enj [σ̂s(r1), . . . , σ̂s(rn)] = ϕ−1(enj )
for all j ∈ J .
Therefore, si[σ̂s(r1), . . . , σ̂s(rn)] = ti for all i ∈ {1, . . . , n}. There follows f [t1, . . . , tn]
= f [s1[σ̂s(r1), . . . , σ̂s(rn)], . . . , sn[σ̂s(r1), . . . , σ̂s(rn)].
Hence, σt(f) = σs◦̂σr. Similarly, one can shows that σs = σt◦̂σw for some
σw ∈ Cohyp(n). This implies that σtRσs.

Next, we have to characterize some Green’s relation L on Cohyp(n).

Theorem 2.9. If t = f [t1, . . . , tn] such that t1, . . . , tn ∈ {enj−1 | j ∈ {1, . . . , n}},
then σtLσs if and only if
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(i) E(t) = E(s) and
(ii) if s = f [s1, . . . , sn], then there exist K ⊆ {1, . . . , n} such that

{sk | k ∈ K} = E(t).

Proof. Let t = f [t1, . . . , tn] and t1, . . . , tn ∈ {enj−1 | j ∈ {1, . . . , n}}. Assume
that σtLσs. Then there are σu, σv ∈ Cohyp(n) such that u = f [u1, . . . , un], v =
f [v1, . . . , vn] ∈ CT(n) and σt = σu◦̂σs and σs = σv ◦̂σt.
Therefore,
f [t1, . . . , tn] = σ̂u(σs(f))

= σ̂u(f [s1, . . . , sn])
= σu(f)[σ̂u(s1), . . . , σ̂u(sn)]
= (f [u1, . . . , un])[σ̂u(s1), . . . , σ̂u(sn)]
= f [u1[σ̂u(s1), . . . , σ̂u(sn)], . . . , un[σ̂u(s1), . . . , σ̂u(sn)]].

This implies that ti = ui[σ̂u(s1), . . . , σ̂u(sn)] for all i ∈ {1, . . . , n}.
Since t1, . . . , tn ∈ {enj−1 | j ∈ {1, . . . , n}}, then u1[σ̂u(s1), . . . , σ̂u(sn)], . . . ,

un[σ̂u(s1), . . . , σ̂u(sn)] ∈ {enj−1 | j ∈ {1, . . . , n}}. There follows from the extension
of σu, there exist K ⊆ {1, . . . , n} such that ti = sk for some k ∈ K, so E(t) ⊆ E(s).
Since σs = σv ◦̂σt, then
f [s1, . . . , sn] = σ̂v(σt(f))

= σ̂v(f [t1, . . . , tn])
= σv(f)[σ̂v(t1), . . . , σ̂v(tn)]
= (f [v1, . . . , vn])[σ̂v(t1), . . . , σ̂v(tn)]
= f [v1[σ̂v(t1), . . . , σ̂v(tn)], . . . , vn[σ̂v(t1), . . . , σ̂v(tn)]].

Since t1, . . . , tn ∈ {enj−1 | j ∈ {1, . . . , n}}, then σ̂v(ti) = ti for all i ∈
{1, . . . , n}. This implies that the injection symbols which occurring in the coterms
vi[σ̂v(t1), . . . , σ̂v(tn)] are the subset of {ti | i ∈ {1, . . . , n}} for all i ∈ {1, . . . , n}.
Therefore, E(s) ⊆ E(t).
To prove (ii), we consider the followin equation

f [t1, . . . , tn] = f [u1[σ̂u(s1), . . . , σ̂u(sn)], . . . , un[σ̂u(s1), . . . , σ̂u(sn)]].

If ti = enj−1 for some j ∈ {1, . . . , n}, then ui[σ̂u(s1), . . . , σ̂u(sn)] = enj−1, so ui
are injection symbols for all i ∈ {1, . . . , n}. The extension of σu, implies that
sk = enj−1 for some k ∈ {1, . . . , n}. Let K = {k | sk = ti for some i ∈ {1, . . . , n}}.
Then we finishes the prove of (ii).

Conversely, assume that (i) and (ii) are true. For each i ∈ {1, . . . , n}, we have
that ti = sk for some k ∈ K. Then we define σu(f) = f [u1, . . . , un] such that
ui = enk−1 for all i ∈ {1, . . . , n}. Therefore,

σ̂u(σs(f)) = σ̂u(f [s1, . . . , sn])
= σu(f)[σ̂u(s1), . . . , σ̂u(sn)]
= (f [u1, . . . , un])[σ̂u(s1), . . . , σ̂u(sn)]
= f [u1[σ̂u(s1), . . . , σ̂u(sn)], . . . , un[σ̂u(s1), . . . , σ̂u(sn)]]
= f [t1, . . . , tn]
= σt(f).
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And we define σv(f) = f [v1, . . . , vn] as follow:
If k ∈ K, we let vk = eni−1 and if r ∈ {1, . . . , n} \K, we let vr ≡ sr such that there
is a uniquely bijection ϕ : E(sr) → E(vr) and satisfy that if enj−1 ∈ E(sr), then
enj−1 and ϕ(enj−1) are in the same position of the coterms sr and vr, respectively.
Since E(t) = E(s), then for any enj−1 ∈ E(sr) such that enj−1 = ti for some
i ∈ {1, . . . , n}, we let ϕ(enj−1) = eni−1. Then,
vk[t1, . . . , tn] = eni−1[t1, . . . , tn] = ti = sk for all k ∈ K, and
vr[t1, . . . , tn] = sr for all r ∈ {1, . . . , n} \K.
Therefore,
σ̂v(σt(f)) = σ̂v(f [t1, . . . , tn])

= σv(f)[σ̂v(t1), . . . , σ̂v(tn)]
= (f [v1, . . . , vn])[t1, . . . , tn]
= f [v1[t1, . . . , tn], . . . , vn[t1, . . . , tn]]
= f [s1, . . . , sn]
= σs(f).

Hence, σtLσs.

Corollary 2.10. Let σs, σt ∈ Cohyp(n). If E(s) = E(t) and ∃K,J ⊆ {1, . . . , n}
such that E(s) = {sk | k ∈ K} and E(t) = {tj | j ∈ J}, then σtLσs.
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