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Edge-Chromatic Numbers of Glued Graphs

C. Promsakon and C. Uiyyasathian

Abstract : Let G; and G2 be any two graphs. Assume that H; C G; and

H; C G2 are connected, not a single vertex and such that H; = H, with an

isomorphism f. The glued graph of G1 and G2 at Hy and Hy with respect to f,

denoted by G " §>H Go, is the graph that results from combining G; with Gq
1= Ho

by identifying H; and Hs with respect to the isomorphism f between H; and
H,. We give upper bounds of the edge-chromatic numbers of glued graphs; one is
in terms of the edge-chromatic numbers of their original graphs where we give a
characterization of graphs satisfying its equality. We further obtain a better upper
bound of the chromatic numbers of glued graphs when the original graphs are line
graphs.

Keywords : Graph coloring; Glued graph.
2000 Mathematics Subject Classification : 05C15, 05C99.

1 Introduction

Let G1 and G2 be any graphs, H; C G; and Hy C G5 be connected, not a

~

single vertex and such that Hy; = Hy with an isomorphism f. The glued graph of

G1 and Gy at Hy and Hy with respect to f, denoted by Gy " §>H G, is the graph
15 Ho

that results from combining G; with G2 by identifying H; and Hs with respect

to the isomorphism f. If H is the copy of H; and Hs in the glued graph, H is

referred as its clone, and GG; and G, are referred as its original graphs. The glued

graph G1 <> G2 at the clone H means that there exist a subgraph H; of G, a
subgraph H, of G5, and an isomorphism f such that G, " §>H G- and H is the
125 Ho

copy of H; and Hs in the resulting graph. Unless we define specifically, we denote
(G1 <> G5 as an arbitrary graph resulting from gluing G; and Gs.

A k-edge-coloring of a graph G is a labelling f : E(G) — S, where |S| = k.
The labels are colors; the edges of one color form a color class. A k-edge-coloring
is proper if incident edges have different labels. A graph is k-edge-colorable if it
has a proper k-edge-coloring. The edge-chromatic number of a loopless graph G,
X' (G), is the least k such that G is k-edge-colorable.

Let A(G) be the maximum degree of a graph G. Since all edges incident to a
vertex with maximum degree cannot be labelled by the same color, X' (G) < A(G).
For simple graph G, a well-known result was independently proved by Vizing [5]



396 Thai J. Math. 4(2006)/ C. Promsakon and C. Ulyyasathian

and Gupta [1] that
X' (G) < A(G) + 1.

We referred to it as Vizing and Gupta’s upper bound. Then we denote that G is
Class 1 if X'(G) = A(G) and G is Class 2 if X'(G) = A(G) + 1. Nevertheless,
Vizing and Gupta’s upper bound is not satisfied by loopless non-simple graphs,
Shannon [4] proved that

X(G) < SA(©)

which we refer to as Shannon’s upper bound. The sharpness of this bound is
provided by the fat triangles; the loopless triangles with multiple edges similar to
the graph in Figure 1.

Figure 1: A fat triangle

We note few facts that the copy of both original graphs are subgraphs of their
glued graphs. The graph gluing does not create an edge. Also, a glued graph
of simple graphs may not be simple. Some interesting properties of glued graphs
and the chromatic numbers of glued graphs are studied in [3]. Here we investigate
the edge-chromatic numbers of glued graphs. In section 3, we apply our result
to obtain a better upper bound of the chromatic numbers of glued graphs when
original graphs are line graphs. The notation Cy,(v1,...,v,) denotes a cycle of n
vertices on the vertex set {vq,...,v,}.

2 Bounds of the Edge-Chromatic Numbers of Glued
Graphs

For any glued graph G; <> G, since G; and G5 are subgraphs G; <> G, the
edge-chromatic number of G; <> Gy is at least x'(G1) and x'(G2). We therefore
get a lower bound for any graphs G; and G4 that

X' (G1 <> G2) > max{x'(G1),x'(G2)}.

An upper bound of the edge-chromatic number of a glued graph is in terms
of the sum of the edge-chromatic numbers of their original graphs. This result is
shown next along with its sharpness.
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Remark 2.1 Since the graph gluing does not identify vertices of the original
graphs, non-incident edges in original graphs are still non-incident in a glued graph.

Theorem 2.2 For any graph G1 and G,

X/(Gl <> Gg) < X/(Gl) + X/(GQ).

Proof. Let G; and G5 be graphs and let G <I‘i> G5 be a glued graph of G; and

G4 at arbitrary clone H. There are proper edge-colorings f : E(G1) — S; and
g : E(Ga) — Ss of G1 and G4, respectively, where S; and Sy are sets of colors such

that |Sl| = X/(Gl), ‘SQ| = X/(GQ) and Sl n 52 = d) Define « : E(G1<}II>G2) —
S1US; by for all e € E(Gl<’]._1> Gg),

afe) = fle) ifee E(Gh),
gle) ifee E(G2\H).

To prove that « is proper, let e; and e be incident edges in G <1LII> Gs.

Case 1. e; € E(Gy) and eo € E(G2\H): Because S; NSy = ¢, we have
aler) # aleq).

Case 2. e; and e; are edges in GG1: By Remark 2.1, e; and e are incident in
G1 and hence a(e;) = f(e1) # f(e2) = a(ez).

Case 3. e; and ep are edges in G\H: Similar to case 2, we have that
aler) = g(e1) # g(e2) = a(e2).

Therefore « is proper and hence x'(G; <> G2) < x'(G1) + X' (G2). O

G Go G Hé?HQ Go

Figure 2: The sharpness of Theorem 2.2

Consider graphs G; and G5 with proper 6-edge-colorings in Figure 2. Note
that both graphs have the maximum degree six. Thus x'(G1) = 6 = x/(G2). We
glue G and G5 with the isomorphism f defined by f(a) =m, f(b) =n, f(c) = o,
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f(d) =p, f(e) = g and f(h) = r. The glued graph G; H;]?HQ G5 with a proper
12-edge-coloring is shown as in Figure 2. Since a fat triangle with the maximum
G1H~ H, Go) > 7(8) = 12.

G2) = 12. Therefore x'(G1 i~ fH G2) = X'(G1) + X' (G2),
and hence the upper bound of the edge-chromatic number in Theorem 2.2 is sharp.

Now consider another upper bound of the edge-chromatic number of any glued
graph. It shall be expressed in terms of the maximum degree of its original graphs
and the minimum degree of its clone. Let §(G) and A(G) denote the minimum
and maximum degrees of a graph G, respectively.

degree 8 is subgraph of G §>H G4, we have x/(
125 Ho

Hence y (GlH ~, H,

Lemma 2.3 Let Gy and Gy be graphs and let H be the clone of a glued graph
Gl 4H> GQ. Then

A(Gr T Ga) < A(Gh) + A(Ga) — 6(H).

Proof. Let G; and G5 be graphs and let H be the clone of a glued graph G <}11> Gs.

For convenience, let G = G <I_‘I> Gs. Let v be a vertex with maximum degree of G.

If v is not in H, then degg(v) =max{A(G1),A(G2)} < A(Gy1) + A(G2) — §(H).
Suppose that v is in H. So v is in both G; and G5. Since each edge which is
incident to v in H contributes twice in the degree sum,

degg (v) =degg, (v)+dega, (v) —degw (v).

Since v € H, we get that degy(v) > d(H). Hence

dega(v) =degg, (v)+dega, (v)—degr (v) < A(G1) + A(G2) — 6(H).
Remark 2.4 Consequently from Lemma 2.3, since 6(H) > 1, A(G; <> Gs) <
A(G1) + A(Gz) —1.

Theorem 2.5 Let G and G5 be graphs and let G <}11> G2 be a glued graph of G
and Go at a clone H. Then

3
X (G F Gy) < 2 (A(G1) + A(Gz) — 6(H)).
In particular, if Gy <I]{> G is a simple graph, then

X (G1F Gs) < A(Gh) + A(G2) — 6(H) + 1.
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Proof. Let G; and G5 be graphs and let G <1]q> G5 be a glued graph of G; and
G at a clone H. Following from Shannon’s upper bound and Lemma 2.3, we have
that x' (G4 <Il{> G2) < 3(A(G1)+A(G2)—0(H)). If Gy <}lI> Gy is a simple graph, by
Vizing and Gupta’s upper bound and Lemma 2.3, we obtain that x'(G <I]{> Gs) <
A(G1) + A(G2) —6(H) + 1.

O
@ @
U1 U1
1y® o 0, ® ®
U3. .Ug U3. .US
0, ® ® 01 ® o
.US .U6 .’U5 .UG
G Go

Figure 3: The sharpness of Theorem 2.5 for simple glued graphs

We now show the sharpness of Theorem 2.5. In Figure 3, consider H; =
Co(u,ug,...,ug) and Ho = Co(v1,ve,...,v9). We glue G; and G2 at H; and
H, by isomorphism f defined by f(u;) = v; for all ¢ = 1,2,...,9. So we have

G1, P Gy which is isomorphic to Ko. Note that x'(K,) = n when n is odd. [6]
H1:fH2

Hence x'(G1 ngsz G2)=9=6+4—-2+1=A(G1)+A(G2) —6(H) + 1.

For non-simple glued graphs, consider graphs G; and G5 with maximum de-
gree four in Figure 4. Gluing G and G, at edge sets {a,b,c} and {1,2,3} with
isomorphism f such that f(a) =1, f(b) = 2 and f(c) = 3 yields the glued graph

<> . . ! <> _ —
Gh Him, i G2 as shown in Figure 4. Hence we have x'(G; iy i Gy) =9 =

2(4 +4-2)= g(NGl) + A(G2) — 6(H)).

Gy Ga G ngHQ Ga

Figure 4: The sharpness of Theorem 2.5 for non-simple glued graphs

We next discuss a characterization of graphs with the edge-chromatic number
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is precisely the sum of the edge-chromatic number of the original graphs, that is,
it satisfies the equality in Theorem 2.2.

Corollary 2.6 If G, G2 and G; <> Go are simple graphs, x'(G1 <> G3) =
X' (G1) + X' (G2) if and only if G1 and G5 are Class 1, G1 <> G5 is Class 2, and
A(Gl <> GQ) = A(Gl) + A(GQ) —1.

Proof. Necessity. Assume x'(G1 <> G2) = X'(G1) + X' (G2). By Vizing and
Gupta’s upper bound and Remark 2.4, we have that

X/(Gl <> Gg) < A(Gl <> Gg) +1< A(Gl) -+ A(Gg) < X/(Gl) =+ X/(GQ).

Therefore, X/(Gl <> Gg) = A(Gl <> G2)+1, A(Gl <> Gg) = A(Gl)-i-A(GQ)—l,
X'(G1) = A(G1) and X'(G2) = A(G2).
Sufficiency. All conditions in the right hand side yield that

X (G <> Go) = A(Gy <> Go)+1 = (A(G1) +A(G2) — 1) +1 = '(G1) + X' (Ga).
O

Determining whether a graph is Class 1 or Class 2 is generally hard [2, 6].
Gluing Class 1 graphs may get a Class 2 glued graph and vice versa. It is an
open problem to determine conditions that forbid or guarantee A(G; <> Ga2)-
edge-colorability.

3 The Chromatic Numbers of Glued Line Graphs

The line graph L(G) of a connected graph G is the graph generated from G
by V(L(G)) = E(G) and for any two vertices e, f € V(L(G)), vertex e and vertex
f are adjacent in L(G) if and only if edge e and edge f share a common vertex in
G. If H is the line graph of G, we call G the root graph of H. All graphs have their
line graphs, but not all graphs are line graphs. For example, there is no graph G
such that L(G) = K1,3. So the K7 3 is not a line graph.

A k-coloring of a graph G is a labelling f : V(G) — S, where |S| = k. The
labels are colors; the vertices of one color form a color class. A k-coloring is proper
if adjacent vertices have different labels. A graph is k-colorable if it has a proper
k-coloring. The chromatic number of graph G, x(G), is the least k such that G is
k-colorable.

Omnes may intuitively believe that x(G1 <> G2) < x(G1) + x(G2). However,
we proved in [3] and showed its sharpness that x(G; <> G2) < x(G1)x(Gz2) for
any graphs G; and Ga. Here we shall show by using Theorem 2.2 that if G; and
G4 are line graphs, G; <> G2 has a proper (x(G1) + x(G2))-coloring.

Remark 3.1 For any subgraph H of a graph G, L(H) C L(G).

Remark 3.2 For any graph G, x'(G) = x(L(Q)).



Edge-Chromatic Numbers of Glued Graphs 401

Lemma 3.3 Let G1 and Gy be graphs. L(G1) <> L(G2) C L(G; <> G3).

Proof. Since G; and G are subgraphs of G; <> Ga, the line graphs L(G;)
and L(G2) are subgraphs of L(G; <> G2). So L(G1) U L(G2) C L(G; <> Gba).
Because for each vertex and edge in L(G1) < L(G2) are in L(G1) U L(G2) which
is a subgraph of L(G1 <> G3), so L(G1) <> L(G3) C L(Gy <> G3). O

Theorem 3.4 Let Gy and Gs be graphs. If G1 and G2 are line graphs, then
X(G1 < G2) < x(G1) + x(G2)-

Proof. Let G; and G5 be graphs. Assume that G; and G are line graphs. So
there are graphs G} and G3 such that L(G%) = G; and L(G%) = G3. By lemma
3.3, we have that L(G7) <> L(G3) C L(G7 <> G3). This yields x(L(GT) <>
L(G%)) < x(L(Gt <> G%)). Hence
X(G1 <> Ga) = x(L(GY) <> L(G3)) < x(L(G] <> G3))

=X'(GT < G3)

<X'(GY)+X'(G5)  (by Theorem 2.2.)

= X(E(G)) + X(E(GH) = X(G1) + X(G2).
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