Edge-Chromatic Numbers of Glued Graphs

C. Promsakon and C. Uiyyasathian

Abstract

Let G_{1} and G_{2} be any two graphs. Assume that $H_{1} \subseteq G_{1}$ and $H_{2} \subseteq G_{2}$ are connected, not a single vertex and such that $H_{1} \cong H_{2}$ with an isomorphism f. The glued graph of G_{1} and G_{2} at H_{1} and H_{2} with respect to f, denoted by $G_{1} \underset{H_{1} \cong}{₫} \mathrm{H}_{2}$, G_{2}, is the graph that results from combining G_{1} with G_{2} by identifying H_{1} and H_{2} with respect to the isomorphism f between H_{1} and H_{2}. We give upper bounds of the edge-chromatic numbers of glued graphs; one is in terms of the edge-chromatic numbers of their original graphs where we give a characterization of graphs satisfying its equality. We further obtain a better upper bound of the chromatic numbers of glued graphs when the original graphs are line graphs.

Keywords : Graph coloring; Glued graph.
2000 Mathematics Subject Classification : 05C15, 05C99.

1 Introduction

Let G_{1} and G_{2} be any graphs, $H_{1} \subseteq G_{1}$ and $H_{2} \subseteq G_{2}$ be connected, not a single vertex and such that $H_{1} \cong H_{2}$ with an isomorphism f. The glued graph of G_{1} and G_{2} at H_{1} and H_{2} with respect to f, denoted by $G_{1_{H_{1}}}^{\unlhd} \bigoplus_{f H_{2}} G_{2}$, is the graph that results from combining G_{1} with G_{2} by identifying H_{1} and H_{2} with respect to the isomorphism f. If H is the copy of H_{1} and H_{2} in the glued graph, H is referred as its clone, and G_{1} and G_{2} are referred as its original graphs. The glued graph $G_{1} \triangleleft G_{2}$ at the clone H means that there exist a subgraph H_{1} of G_{1}, a subgraph H_{2} of G_{2}, and an isomorphism f such that $G_{1} \xrightarrow[H_{1} \cong{ }_{f} H_{2}]{\unlhd} G_{2}$ and H is the copy of H_{1} and H_{2} in the resulting graph. Unless we define specifically, we denote $G_{1} \triangleleft G_{2}$ as an arbitrary graph resulting from gluing G_{1} and G_{2}.

A k-edge-coloring of a graph G is a labelling $f: E(G) \rightarrow S$, where $|S|=k$. The labels are colors; the edges of one color form a color class. A k-edge-coloring is proper if incident edges have different labels. A graph is k-edge-colorable if it has a proper k-edge-coloring. The edge-chromatic number of a loopless graph G, $\chi^{\prime}(G)$, is the least k such that G is k-edge-colorable.

Let $\Delta(G)$ be the maximum degree of a graph G. Since all edges incident to a vertex with maximum degree cannot be labelled by the same color, $\chi^{\prime}(G) \leq \Delta(G)$. For simple graph G, a well-known result was independently proved by Vizing [5]
and Gupta [1] that

$$
\chi^{\prime}(G) \leq \Delta(G)+1
$$

We referred to it as Vizing and Gupta's upper bound. Then we denote that G is Class 1 if $\chi^{\prime}(G)=\Delta(G)$ and G is Class 2 if $\chi^{\prime}(G)=\Delta(G)+1$. Nevertheless, Vizing and Gupta's upper bound is not satisfied by loopless non-simple graphs, Shannon [4] proved that

$$
\chi^{\prime}(G) \leq \frac{3}{2} \Delta(G)
$$

which we refer to as Shannon's upper bound. The sharpness of this bound is provided by the fat triangles; the loopless triangles with multiple edges similar to the graph in Figure 1.

Figure 1: A fat triangle

We note few facts that the copy of both original graphs are subgraphs of their glued graphs. The graph gluing does not create an edge. Also, a glued graph of simple graphs may not be simple. Some interesting properties of glued graphs and the chromatic numbers of glued graphs are studied in [3]. Here we investigate the edge-chromatic numbers of glued graphs. In section 3, we apply our result to obtain a better upper bound of the chromatic numbers of glued graphs when original graphs are line graphs. The notation $C_{n}\left(v_{1}, \ldots, v_{n}\right)$ denotes a cycle of n vertices on the vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$.

2 Bounds of the Edge-Chromatic Numbers of Glued Graphs

For any glued graph $G_{1} \triangleleft G_{2}$, since G_{1} and G_{2} are subgraphs $G_{1} \triangleleft G_{2}$, the edge-chromatic number of $G_{1} \triangleleft G_{2}$ is at least $\chi^{\prime}\left(G_{1}\right)$ and $\chi^{\prime}\left(G_{2}\right)$. We therefore get a lower bound for any graphs G_{1} and G_{2} that

$$
\chi^{\prime}\left(G_{1} \triangleright G_{2}\right) \geq \max \left\{\chi^{\prime}\left(G_{1}\right), \chi^{\prime}\left(G_{2}\right)\right\}
$$

An upper bound of the edge-chromatic number of a glued graph is in terms of the sum of the edge-chromatic numbers of their original graphs. This result is shown next along with its sharpness.

Remark 2.1 Since the graph gluing does not identify vertices of the original graphs, non-incident edges in original graphs are still non-incident in a glued graph.

Theorem 2.2 For any graph G_{1} and G_{2},

$$
\chi^{\prime}\left(G_{1} \triangleleft G_{2}\right) \leq \chi^{\prime}\left(G_{1}\right)+\chi^{\prime}\left(G_{2}\right)
$$

Proof. Let G_{1} and G_{2} be graphs and let $G_{1} \underset{H}{\triangleright} G_{2}$ be a glued graph of G_{1} and G_{2} at arbitrary clone H. There are proper edge-colorings $f: E\left(G_{1}\right) \rightarrow S_{1}$ and $g: E\left(G_{2}\right) \rightarrow S_{2}$ of G_{1} and G_{2}, respectively, where S_{1} and S_{2} are sets of colors such that $\left|S_{1}\right|=\chi^{\prime}\left(G_{1}\right),\left|S_{2}\right|=\chi^{\prime}\left(G_{2}\right)$ and $S_{1} \cap S_{2}=\phi$. Define $\alpha: E\left(G_{1} \underset{H}{\triangleright} G_{2}\right) \rightarrow$ $S_{1} \cup S_{2}$ by for all $e \in E\left(G_{1} \underset{H}{\stackrel{\rightharpoonup}{~}} G_{2}\right)$,

$$
\alpha(e)= \begin{cases}f(e) & \text { if } e \in E\left(G_{1}\right), \\ g(e) & \text { if } e \in E\left(G_{2} \backslash H\right)\end{cases}
$$

To prove that α is proper, let e_{1} and e_{2} be incident edges in $G_{1} \underset{H}{\triangleright} G_{2}$.
Case 1. $e_{1} \in E\left(G_{1}\right)$ and $e_{2} \in E\left(G_{2} \backslash H\right)$: Because $S_{1} \cap S_{2}=\phi$, we have $\alpha\left(e_{1}\right) \neq \alpha\left(e_{2}\right)$.

Case 2. e_{1} and e_{2} are edges in G_{1} : By Remark 2.1, e_{1} and e_{2} are incident in G_{1} and hence $\alpha\left(e_{1}\right)=f\left(e_{1}\right) \neq f\left(e_{2}\right)=\alpha\left(e_{2}\right)$.

Case 3. e_{1} and e_{2} are edges in $G_{2} \backslash H$: Similar to case 2, we have that $\alpha\left(e_{1}\right)=g\left(e_{1}\right) \neq g\left(e_{2}\right)=\alpha\left(e_{2}\right)$.

Therefore α is proper and hence $\chi^{\prime}\left(G_{1} \triangleleft G_{2}\right) \leq \chi^{\prime}\left(G_{1}\right)+\chi^{\prime}\left(G_{2}\right)$.

Figure 2: The sharpness of Theorem 2.2

Consider graphs G_{1} and G_{2} with proper 6 -edge-colorings in Figure 2. Note that both graphs have the maximum degree six. Thus $\chi^{\prime}\left(G_{1}\right)=6=\chi^{\prime}\left(G_{2}\right)$. We glue G_{1} and G_{2} with the isomorphism f defined by $f(a)=m, f(b)=n, f(c)=o$,
$f(d)=p, f(e)=q$ and $f(h)=r$. The glued graph $G_{1} \underset{H_{1} \cong{ }_{f} H_{2}}{\unlhd} G_{2}$ with a proper 12-edge-coloring is shown as in Figure 2. Since a fat triangle with the maximum
 Hence $\chi^{\prime}\left(G_{1} \underset{H_{1}}{\cong} \cong_{f} H_{2}\left(G_{2}\right)=12\right.$. Therefore $\chi^{\prime}\left(G_{1} \underset{H_{1} \cong}{\unlhd} H_{H_{2}} G_{2}\right)=\chi^{\prime}\left(G_{1}\right)+\chi^{\prime}\left(G_{2}\right)$, and hence the upper bound of the edge-chromatic number in Theorem 2.2 is sharp.

Now consider another upper bound of the edge-chromatic number of any glued graph. It shall be expressed in terms of the maximum degree of its original graphs and the minimum degree of its clone. Let $\delta(G)$ and $\Delta(G)$ denote the minimum and maximum degrees of a graph G, respectively.

Lemma 2.3 Let G_{1} and G_{2} be graphs and let H be the clone of a glued graph $G_{1} \underset{H}{\triangleright} G_{2}$. Then

$$
\Delta\left(G_{1} \underset{H}{\oplus} G_{2}\right) \leq \Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H) .
$$

Proof. Let G_{1} and G_{2} be graphs and let H be the clone of a glued graph $G_{1} \underset{H}{\triangleright} G_{2}$. For convenience, let $G=G_{1} \underset{H}{\triangleright} G_{2}$. Let v be a vertex with maximum degree of G. If v is not in H, then $\operatorname{deg}_{G}(v)=\max \left\{\Delta\left(G_{1}\right), \Delta\left(G_{2}\right)\right\} \leq \Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)$. Suppose that v is in H. So v is in both G_{1} and G_{2}. Since each edge which is incident to v in H contributes twice in the degree sum,

$$
\operatorname{deg}_{G}(v)=\operatorname{deg}_{G_{1}}(v)+\operatorname{deg}_{G_{2}}(v)-\operatorname{deg}_{H}(v) .
$$

Since $v \in H$, we get that $\operatorname{deg}_{H}(v) \geq \delta(H)$. Hence

$$
\operatorname{deg}_{G}(v)=\operatorname{deg}_{G_{1}}(v)+\operatorname{deg}_{G_{2}}(v)-\operatorname{deg}_{H}(v) \leq \Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)
$$

Remark 2.4 Consequently from Lemma 2.3, since $\delta(H) \geq 1, \Delta\left(G_{1} \triangleleft G_{2}\right) \leq$ $\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-1$.

Theorem 2.5 Let G_{1} and G_{2} be graphs and let $G_{1} \stackrel{\downarrow}{\perp} G_{2}$ be a glued graph of G_{1} and G_{2} at a clone H. Then

$$
\chi^{\prime}\left(G_{1} \underset{H}{\triangleright} G_{2}\right) \leq \frac{3}{2}\left(\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)\right) .
$$

In particular, if $G_{1} \underset{H}{\triangleright} G_{2}$ is a simple graph, then

$$
\chi^{\prime}\left(G_{1} \underset{H}{\triangleright} G_{2}\right) \leq \Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)+1
$$

Proof. Let G_{1} and G_{2} be graphs and let $G_{1} \underset{H}{\triangleright} G_{2}$ be a glued graph of G_{1} and G_{2} at a clone H. Following from Shannon's upper bound and Lemma 2.3, we have that $\chi^{\prime}\left(G_{1} \underset{H}{\triangleright} G_{2}\right) \leq \frac{3}{2}\left(\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)\right)$. If $G_{1} \underset{H}{\triangleright} G_{2}$ is a simple graph, by Vizing and Gupta's upper bound and Lemma 2.3, we obtain that $\chi^{\prime}\left(G_{1} \underset{H}{\triangleright} G_{2}\right) \leq$ $\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)+1$.

Figure 3: The sharpness of Theorem 2.5 for simple glued graphs

We now show the sharpness of Theorem 2.5. In Figure 3, consider $H_{1}=$ $C_{9}\left(u_{1}, u_{2}, \ldots, u_{9}\right)$ and $H_{2}=C_{9}\left(v_{1}, v_{2}, \ldots, v_{9}\right)$. We glue G_{1} and G_{2} at H_{1} and H_{2} by isomorphism f defined by $f\left(u_{i}\right)=v_{i}$ for all $i=1,2, \ldots, 9$. So we have $G_{1} \underset{H_{1} \cong{ }_{f} H_{2}}{\unrhd} G_{2}$ which is isomorphic to K_{9}. Note that $\chi^{\prime}\left(K_{n}\right)=n$ when n is odd. [6] Hence $\chi^{\prime}\left(G_{1} \underset{H_{1} \cong}{\bigoplus} H_{2} G_{2}\right)=9=6+4-2+1=\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)+1$.

For non-simple glued graphs, consider graphs G_{1} and G_{2} with maximum degree four in Figure 4. Gluing G_{1} and G_{2} at edge sets $\{a, b, c\}$ and $\{1,2,3\}$ with isomorphism f such that $f(a)=1, f(b)=2$ and $f(c)=3$ yields the glued graph $G_{1} \underset{H_{1} \cong{ }_{f} H_{2}}{\unrhd} G_{2}$ as shown in Figure 4. Hence we have $\chi^{\prime}\left(G_{1}{ }_{H_{1}} \xlongequal{\unrhd}{ }_{f H_{2}} G_{2}\right)=9=$ $\frac{3}{2}(4+4-2)=\frac{3}{2}\left(\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)\right)$.

Figure 4: The sharpness of Theorem 2.5 for non-simple glued graphs

We next discuss a characterization of graphs with the edge-chromatic number
is precisely the sum of the edge-chromatic number of the original graphs, that is, it satisfies the equality in Theorem 2.2.

Corollary 2.6 If G_{1}, G_{2} and $G_{1} \triangleleft G_{2}$ are simple graphs, $\chi^{\prime}\left(G_{1} \triangleleft G_{2}\right)=$ $\chi^{\prime}\left(G_{1}\right)+\chi^{\prime}\left(G_{2}\right)$ if and only if G_{1} and G_{2} are Class 1, $G_{1} \triangleleft G_{2}$ is Class 2, and $\Delta\left(G_{1} \triangleleft G_{2}\right)=\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-1$.

Proof. Necessity. Assume $\chi^{\prime}\left(G_{1} ৫ G_{2}\right)=\chi^{\prime}\left(G_{1}\right)+\chi^{\prime}\left(G_{2}\right)$. By Vizing and Gupta's upper bound and Remark 2.4, we have that

$$
\chi^{\prime}\left(G_{1} \triangleleft G_{2}\right) \leq \Delta\left(G_{1} \triangleleft G_{2}\right)+1 \leq \Delta\left(G_{1}\right)+\Delta\left(G_{2}\right) \leq \chi^{\prime}\left(G_{1}\right)+\chi^{\prime}\left(G_{2}\right)
$$

Therefore, $\chi^{\prime}\left(G_{1} \triangleleft G_{2}\right)=\Delta\left(G_{1} \triangleleft G_{2}\right)+1, \Delta\left(G_{1} \triangleleft G_{2}\right)=\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-1$, $\chi^{\prime}\left(G_{1}\right)=\Delta\left(G_{1}\right)$ and $\chi^{\prime}\left(G_{2}\right)=\Delta\left(G_{2}\right)$.

Sufficiency. All conditions in the right hand side yield that

$$
\chi^{\prime}\left(G_{1} \triangleleft G_{2}\right)=\Delta\left(G_{1} \triangleleft G_{2}\right)+1=\left(\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-1\right)+1=\chi^{\prime}\left(G_{1}\right)+\chi^{\prime}\left(G_{2}\right) .
$$

Determining whether a graph is Class 1 or Class 2 is generally hard $[2,6]$. Gluing Class 1 graphs may get a Class 2 glued graph and vice versa. It is an open problem to determine conditions that forbid or guarantee $\Delta\left(G_{1} \triangleleft G_{2}\right)$ -edge-colorability.

3 The Chromatic Numbers of Glued Line Graphs

The line graph $L(G)$ of a connected graph G is the graph generated from G by $V(L(G))=E(G)$ and for any two vertices $e, f \in V(L(G))$, vertex e and vertex f are adjacent in $L(G)$ if and only if edge e and edge f share a common vertex in G. If H is the line graph of G, we call G the root graph of H. All graphs have their line graphs, but not all graphs are line graphs. For example, there is no graph G such that $L(G)=K_{1,3}$. So the $K_{1,3}$ is not a line graph.

A k-coloring of a graph G is a labelling $f: V(G) \rightarrow S$, where $|S|=k$. The labels are colors; the vertices of one color form a color class. A k-coloring is proper if adjacent vertices have different labels. A graph is k-colorable if it has a proper k-coloring. The chromatic number of graph $G, \chi(G)$, is the least k such that G is k-colorable.

Ones may intuitively believe that $\chi\left(G_{1} \triangleleft G_{2}\right) \leq \chi\left(G_{1}\right)+\chi\left(G_{2}\right)$. However, we proved in [3] and showed its sharpness that $\chi\left(G_{1} \triangleleft G_{2}\right) \leq \chi\left(G_{1}\right) \chi\left(G_{2}\right)$ for any graphs G_{1} and G_{2}. Here we shall show by using Theorem 2.2 that if G_{1} and G_{2} are line graphs, $G_{1} \triangleleft G_{2}$ has a proper $\left(\chi\left(G_{1}\right)+\chi\left(G_{2}\right)\right)$-coloring.

Remark 3.1 For any subgraph H of a graph $G, L(H) \subseteq L(G)$.
Remark 3.2 For any graph $G, \chi^{\prime}(G)=\chi(L(G))$.

Lemma 3.3 Let G_{1} and G_{2} be graphs. $L\left(G_{1}\right) \triangleleft L\left(G_{2}\right) \subseteq L\left(G_{1} \triangleleft G_{2}\right)$.
Proof. Since G_{1} and G_{2} are subgraphs of $G_{1} \triangleleft G_{2}$, the line graphs $L\left(G_{1}\right)$ and $L\left(G_{2}\right)$ are subgraphs of $L\left(G_{1} \triangleleft G_{2}\right)$. So $L\left(G_{1}\right) \cup L\left(G_{2}\right) \subseteq L\left(G_{1} \triangleleft G_{2}\right)$. Because for each vertex and edge in $L\left(G_{1}\right) \triangleleft L\left(G_{2}\right)$ are in $L\left(G_{1}\right) \cup L\left(G_{2}\right)$ which is a subgraph of $L\left(G_{1} \triangleleft G_{2}\right)$, so $L\left(G_{1}\right) \triangleleft L\left(G_{2}\right) \subseteq L\left(G_{1} \triangleleft G_{2}\right)$.

Theorem 3.4 Let G_{1} and G_{2} be graphs. If G_{1} and G_{2} are line graphs, then $\chi\left(G_{1} \triangleleft G_{2}\right) \leq \chi\left(G_{1}\right)+\chi\left(G_{2}\right)$.

Proof. Let G_{1} and G_{2} be graphs. Assume that G_{1} and G_{2} are line graphs. So there are graphs G_{1}^{*} and G_{2}^{*} such that $L\left(G_{1}^{*}\right)=G_{1}$ and $L\left(G_{2}^{*}\right)=G_{2}$. By lemma 3.3, we have that $L\left(G_{1}^{*}\right) \triangleleft L\left(G_{2}^{*}\right) \subseteq L\left(G_{1}^{*} \triangleleft G_{2}^{*}\right)$. This yields $\chi\left(L\left(G_{1}^{*}\right) \triangleleft\right.$ $\left.L\left(G_{2}^{*}\right)\right) \leq \chi\left(L\left(G_{1}^{*} \triangleleft G_{2}^{*}\right)\right)$. Hence

$$
\begin{aligned}
\chi\left(G_{1} \bowtie G_{2}\right) & =\chi\left(L\left(G_{1}^{*}\right) \bowtie L\left(G_{2}^{*}\right)\right) \leq \chi\left(L\left(G_{1}^{*} \bowtie G_{2}^{*}\right)\right) \\
& =\chi^{\prime}\left(G_{1}^{*} \oplus G_{2}^{*}\right) \\
& \leq \chi^{\prime}\left(G_{1}^{*}\right)+\chi^{\prime}\left(G_{2}^{*}\right) \quad(\text { by Theorem 2.2. }) \\
& =\chi\left(L\left(G_{1}^{*}\right)\right)+\chi\left(L\left(G_{2}^{*}\right)\right)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right) .
\end{aligned}
$$

References

[1] R. P. Gupta, The Chromatic Index and the degree of a graph (Abstract 66T429), Not. Amer. Math. Soc., 13(1966),719.
[2] I. Holyer, The NP-Completeness of edge-coloring, SIAM J. Computing 10(1981), 718-720.
[3] C. Promsakon and C. Uiyyasathian, Chromatic Numbers of Glued Graphs, Thai J. Math., (special issued)(2006), 75-81.
[4] C. E. Shannon, A theorem on coloring the lines of a network, J. Math. Phys., 28(1949), 148-151.
[5] V. G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz., 3(1964), 25-60.
[6] D. West, Introduction to Graph Theory, Prentice Hall, 2001.
(Received 21 March 2006)
C. Promsakon and C. Uiyyasathian

Department of Mathematics
Chulalongkorn University
Bangkok 10330, Thailand.
e-mail : Promsakon@Gmail.com, Chariya.U@Chula.ac.th

