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1 Introduction

The use of fractional differential equations has emerged as a new branch of
applied mathematics, which has been used for constructing many mathematical
models in science and engineering. In fact fractional differential equations are
considered as models alternative to nonlinear differential equations [1] and other
kinds of equations [2–4]. The theory of fractional differential and integrodifferen-
tial equations has been extensively studied by many authors [5–14]. In [15,16] the
authors proved the existence of solutions of abstract fractional differential equa-
tions can be expressed as fractional differential or integrodifferential equations in
some Banach spaces [17].
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Byszewski [18] initiated the study of nonlocal Cauchy problems for abstract
evolution differential equations. Subsequently several authors discussed the prob-
lem for different kinds of nonlinear differential equations and integrodifferential
equations including functional differential equations in Banach spaces [17–19].
Balachandran et al [20–28] established the existence of solutions of quasilinear in-
tegrodifferential equations with local and nonlocal conditions. In these papers the
quasilinear operator is unbounded. Recently N’Guerekata [29] and Balachandran
and Park [30] investigated the existence of solutions of fractional abstract differ-
ential equations with nonlocal condition. Benchohra and Seba [31] studied the
existence problem for impulsive fractional differential equations in Banach spaces.
Balachandran and Kiruthika [32] discussed the nonlocal Cauchy problem with an
impulsive condition for semilinear fractional differential equations, whereas Chang
and Nieto [33] studied the same problem for neutral integrodifferential equations
via fractional operators. Belmekki et al [34] studied the existence of periodic solu-
tions of nonlinear fractional differential equations. Cuevas and Cesar de Souza [19]
discussed ω-periodic solutions of fractional integrodifferential equations. In this
paper we study the existence of solutions of fractional quasilinear integrodifferen-
tial equations in Banach spaces by using the fractional calculus and the Banach
fixed point theorem.

2 Preliminaries

We need some basic definitions and properties of fractional calculus which
are used in this paper. Let X be Banach space and R+ = [0,∞). Suppoose
f ∈ L1(R+). Let C(J ;X) be the Banach space of continuous functions x(t) with
x(t) with x(t) ∈ X for t ∈ J = [0, a] and ‖x‖C(J;X) = maxt∈J ‖x(t)‖. Let B(X)
denotes the Banach space of bounded linear operators from X into X with the
norm ‖A‖B(X) = sup{‖A(y)‖ : ‖y‖ = 1}.

Also consider the Banach space PC(J ;X) = {u : J → X ; u ∈ PC((ti, ti+1];X),
i = 0, 1, 2, · · · ,m and there exist u(ti−) and u(ti+) i = 1, 2, 3, · · · ,m with u(ti−) =
u(ti)} with the norm

‖u‖PC = sup
t∈J

‖u(t)‖. SetJ ′ := [0, a]{t1, · · · , tm}.

Definition 2.1. The Riemann-Lioville fractional integral operator of order α > 0
of function f ∈ L1(R+) is defined as

Iα0+ =
1

Γ(α)

∫ t

d

(t− s)α−1f(s)ds.

where k ∈ R+ and Γ(·) is the Euler gamma function.

Definition 2.2. The Riemann-Liouville fractional derivative order α > 0 n− 1 <

α < n, n ∈ N, is defined as

R−LDα
0+ =

1

Γ(n− α)

( d

dt

)n
∫ t

k

(t− s)n−α−1f(s)ds
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where the function f(t) have absolutely continuous derivatives up to order (n−1).
The Riemann-Liouville fractional derivatives have singularity at zero and the

fractional differential equations in the Riemann-Liouville sense require initial con-
ditions in some point different to x0 = k. To over come this issue Caputo [35]
defined the fractional derivative in the following way.

Definition 2.3. The Caputo fractional derivative order α > 0 n− 1 < α < n, is
defined as

CDα
0+ =

1

Γ(n− α)

∫ t

k

(t− s)n−α−1fn(s)ds,

where the function f(t) have absolutely continuous derivatives up to order (n−1).
If 0 < α < 1, then

CDα
0+ =

1

Γ(n− α)

∫ t

k

f ′(s)

(t− s)α
ds,

where f ′(s) = Df(s) = df(s)
ds

and f is an abstract function with values in X.

Now we shall state some properties of the operators Iα0+ and CDα
0+.

Properties 2.4. For α, β > 0 and f as a suitable function (for instance [34]
and [36]) we have

(i) Iα0+I
β
0+f(t) = I

α+β
0+ f(t);

(ii) Iα0+I
β
0+f(t) = I

β
0+I

α
0+f(t);

(iii) Iα0+(f(t) + g(t)) = Iα0+f(t) + Iα0+g(t);

(iv) Iα0+
CDα

0+f(t) = f(t)− f(0), 0 < α < 1;

(v) CDα
0+I

α
0+f(t) = f(t);

(vi) CDα
0+f(t) = I1−α

0+ Df(t) = I1−α
0+ f ′(t), 0 < α < 1;

(vii) CDα
0+

CD
β
0+f(t) 6=

CD
α+β
0+ f(t);

(viii) CDα
0+

CD
β
0+f(t) 6=

CD
β
0+

CDα
0+f(t).

We observe from the above that both the Riemann-Liouville and the Caputo frac-
tional operators do not possess neither semigroup nor commutative properties,
which are inherent to the derivatives on integer order. For basic facts about frac-
tional integral and fractional derivative one can refer the books [36–39]. For our

convenience, let us take CD
β
0+ with the notation CDβ .

Consider the linear fractional impulsive evolution equation

CDqu(t) = A(t)u(t) + f(t), 0 ≤ t ≤ a,

∆u|t=ti = Ii(u(t
−

i )), i = 1, 2, 3, . . . ,m

u(0) = u0, (2.1)
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where 0 < q < 1, A(t) is a bounded linear operator on a Banach space X, u0 ∈
X and f : J → X is continuous, Ii : X → X and u0 ∈ X, 0 = t0 < t1 <

· · · < tm < tm+1 = a, ∆u|t=ti = u(t+k ) − u(t−k ), u(t+k ) = limh→0+ u(tk + h) and
limh→0− u(tk + h) represent the right and the left limits of u(t) at t = ti.

It is easy to prove that the equation (2.1) is equivalent to the integral equation

u(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1A(s)u(s)ds +
1

Γ(q)

∫ t

0

(t− s)q−1f(s)ds, ift ∈ [0, t1],

= u0 +
1

Γ(q)

m∑

i=1

∫ ti

ti−1

(ti − s)q−1A(s)u(s)ds+
1

Γ(q)

∫ t

ti

(t− s)q−1A(s)u(s)ds

+
1

Γ(q)

m∑

i=1

∫ ti

ti−1

(ti − s)q−1f(s)u(s)ds+
1

Γ(q)

∫ t

ti

(t− s)q−1f(s)u(s)ds

+

m∑

i=1

Ii(u(t
−

i )), if t ∈ (ti, ti+1]. (2.2)

By a local solution of the abstract Cauchy problem (2.1), we mean an abstract
function u such that the following conditions are satisfied:

(i) u ∈ PC(J ;X) and u ∈ D(A(t)) on J ′ (here D for domain);

(ii) dqu
dtq

exists and continuous on J ′, where 0 < q < 1;

(iii) u satisfies equation (2.1) on J ′ and satisfies the conditions ∆u|t=ti = Ii(u(t
−

k ),
u(0) = u0 ∈ X or that it is equivalent u satisfy the integral equation (2.2).

3 Quasilinear Integrodifferential Equations

Consider the fractional quasilinear integrodifferential equation of the form

CDqu(t) = A(t, u)u(t) + f(t, u(t)) +

∫ t

0

h(t, s, u(s)ds), 0 ≤ t ≤ a, (3.1)

∆u|t=ti = Ii(u(t
−

i )), i = 1, 2, 3, . . . ,m (3.2)

u(0) = u0, (3.3)

where A(t, u) is a bounded linear operator onX and f : J×X → X, h : Ω×X → X

are continuous. The nonlinear function f of this type with integral term h occurs
in mathematical problems concerned with heat flow in materials with memory and
viscoelastic problems in which the integral term represents the viscosity part of
the problem [16]. Here Ω = (t, s) : 0 ≤ s ≤ t ≤ a.

It is easy to prove that the equation (3.1) is equivalent to the following integral
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equation

u(t) = u0 +
1

Γ(q)

∑

0<ti<t

∫ ti

ti−1

(ti − s)q−1A(s, u)u(s)ds

+
1

Γ(q)

∫ t

ti

(t− s)q−1A(s, u)u(s)ds

+
1

Γ(q)

∑

0<ti<t

∫ ti

ti−1

(ti − s)q−1
[
f(s, u(s)) +

∫ s

0

h(s, τ, u(τ))dτ
]
ds

+
1

Γ(q)

∫ t

ti

(t− s)q−1
[
f(s, u(s)) +

∫ s

0

h(s, τ, u(τ))dτ
]
ds

+
∑

0<ti<t

Ii(u(t
−

i )). (3.4)

We need the following assumptions to prove the existence of solution of the integral
equation (3.1)-(3.3).

(E1) A : J× → B(X) is a continuous bounded linear operator and there exist
constants M1 > 0 and M2 > 0 such that

‖A(t, u)−A(t, v)‖ ≤ M1‖u− v‖, for all u, v ∈ X,

M2 = sup
t∈[0,a]

‖A(t, 0)‖

(E2) f : J ×X → X is continuous and there exist constants FL > 0 and F0 > 0
such that

‖f(t, u)− f(t, v)‖X ≤ FL‖u− v‖, for all u, v ∈ X,

F0 = max
t∈J

‖f(t, 0)‖.

(E3) h : Ω×X → X is continuous and there exist constants HL > 0 and H0 > 0
such that

∫ t

0

‖h(t, s, u)− h(t, s, v)‖ds ≤ HL‖u− v‖, for all u, v ∈ X,

H0 = max{

∫ t

0

‖h(t, s, 0)‖ds : (t, s) ∈ [0, a]}.

(E4) Ii : X → X is continuous and there exist constant li > 0, i = 1, 2, 3, . . . ,m
such that

‖Ii(u)− Ii(v)‖ ≤ li‖u− v‖, u, v ∈ X and

lc = ‖Ii(0)‖
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Let Br := {u ∈ X : ‖u‖ ≤ r} for some r > 0. For brevity let us take η = aq

Γ(q+1) .

From (E1) we observe that

‖A(t, u)‖ ≤ ‖A(t, u)−A(t, 0)‖ + ‖A(t, 0)‖ ≤ M1‖u‖+ ‖A(t, 0)‖ ≤ M1r +M2.

Further assume that

(E5) ‖u0‖+(m+1)η
[
(M1r+M2)r+(FL +HL)r+F0 +H0)

]
+m(lir+ lc) ≤ r,

(E6) Let ρ =
[
η(m+ 1)(2M1r +M2 + FL +HL) +mli

]
be such that 0 ≤ ρ < 1.

Theorem 3.1. If the hypotheses (E1) − (E6) are satisfied, then the fractional

quasilinear integrodifferential equation (3.1)- (3.3) has a unique solution continu-

ous in J.

Proof. Let Z = C([0, a];Br). Define the mapping F : Z → Z by

Fu(t) = u0 +
1

Γ(q)

∑

0<ti<t

∫ ti

ti−1

(ti − s)q−1A(s, u)u(s)ds

+
1

Γ(q)

∫ t

ti

(t− s)q−1A(s, u)u(s)ds

+
1

Γ(q)

∑

0<ti<t

∫ ti

ti−1

(ti − s)q−1A(s, u)u(s)ds
[
f(s, u(s)) +

∫ s

0

h(s, τ, u(τ))dτ
]
ds

+
1

Γ(q)

∫ t

ti

(t− s)q−1A(s, u)u(s)ds
[
f(s, u(s)) +

∫ s

0

h(s, τ, u(τ))dτ
]
ds

+
∑

0<ti<t

Ii(u(t
−

i )). (3.5)

and we have to show that F has a fixed point. This fixed point is then a solution
of the equation (3.1)- (3.3). First we show that FBr ⊂ Br.

From the assumptions we have

‖Fu(t)‖ ≤ ‖u0‖+
1

Γ(q)

∑

0<ti<t

∫ ti

ti−1

(ti − s)q−1‖A(s, u)‖‖u(s)‖ds

+
1

Γ(q)

∫ t

ti

(t− s)q−1‖A(s, u)‖‖u(s)‖ds

+
1

Γ(q)

∑

0<ti<t

∫ ti

ti−1

(ti − s)q−1
[
‖f(s, u(s)) +

∫ s

0

h(s, τ, u(τ))dτ‖
]
ds

+
1

Γ(q)

∫ t

ti

(t− s)q−1
[
‖f(s, u(s)) +

∫ s

0

h(s, τ, u(τ))dτ‖
]
ds

+
∑

0<ti<t

‖Ii(u(t
−

i ))‖
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≤ ‖u0‖+
1

Γ(q)

∑

0<ti<t

∫ ti

ti−1

(ti − s)q−1‖A(s, u)‖‖u(s)‖ds

+
1

Γ(q)

∫ t

ti

(t− s)q−1‖A(s, u)‖‖u(s)‖ds

+
1

Γ(q)

∑

0<ti<t

∫ ti

ti−1

(ti − s)q−1
[
‖f(s, u(s))− f(s, 0)‖+ ‖f(s, 0)‖

+

∫ s

0

[‖h(s, τ, u(τ))− h(s, τ, 0)‖+ ‖h(s, τ, 0)‖]dτ
]
ds

+
1

Γ(q)

∫ t

ti

(t− s)q−1
[
‖f(s, u(s))− f(s, 0)‖+ ‖f(s, 0)‖

+

∫ s

0

[‖h(s, τ, u(τ))− h(s, τ, 0)‖+ ‖h(s, τ, 0)‖]dτ
]
ds

+
∑

0<ti<t

‖Ii(u(t
−

i ))− Ii(0) + Ii(0)‖

≤ ‖u0‖+ (m+ 1)[M1r +M2]r
aq

Γ(q + 1)

+(m+ 1)
[
(FL +HL)r + F0 +H0

] aq

Γ(q + 1)
+m(lir + lc)

= ‖u0‖+ (m+ 1)η
[
(M1r +M2)r + (FL +HL)r + F0 +H0)

]

+m(lir + lc)

≤ r.

Thus, F maps Br into itself. Now, for u1, u2 ∈ Z, we have

‖Fu1(t)−Fu2(t)‖ ≤
1

Γ(q)

∑

0<ti<t

∫ ti

ti−1

(ti − s)q−1‖A(s, u1)u1(s)−A(s, u2)u2(s)‖ds

+
1

Γ(q)

∫ t

ti

(t− s)q−1‖A(s, u1)u1(s)−A(s, u2)u2(s)‖ds

+
1

Γ(q)

∑

0<ti<t

∫ ti

ti−1

(ti − s)q−1
[
‖f(s, u1(s))− f(s, u2(s))‖

+

∫ s

0

‖h(s, τ, u1(τ)) − h(s, τ, u2(τ))‖dτ
]
ds

+
1

Γ(q)

∫ t

ti

(t− s)q−1
[
‖f(s, u1(s))− f(s, u2(s))‖

+
∑

0<ti<t

‖Ii(u1(t
−

i ))− Ii(u2(t
−

i ))‖
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≤
1

Γ(q)

∑

0<ti<t

∫ ti

ti−1

(ti − s)q−1[‖A(s, u1)(u1(s)− u2(s)‖

+‖(A(s, u1)−A(s, u2))u2(s)‖]ds

= ρ ‖u1(t)− u2(t)‖.

Since 0 ≤ ρ < 1, then F is a contraction mapping and therefore there exists
a unique fixed point u ∈ Z such that Fu(t) = u(t). Any fixed point of F is the
solution of (3.1).

4 Quasilinear Nonlocal Cauchy Problem

In this section we discuss the existence of solution of fractional impulsive quasi-
linear integrodifferential equation (3.1)-(3.2) with nonlocal condition of the form

u(0) + g(u) = u0, (4.1)

where g : PC(J ;X) → X is a given function. We assume the following conditions

(E7) g : PC(J ;X) → X is continuous and there exists a constant GL > 0 such
that

‖g(u)− g(v)‖ ≤ GL‖u− v‖PC , for u, v ∈ PC([0, a];X).

(E8) ‖u0‖+GLr + ‖g(0)‖+ (m+ 1)η
[
(M1r +M2)r + (FL +HL)r + F0 +H0)

]

+m(lir + lc) ≤ r.

(E9) ρ̂ =
[
[GL+(m+1)η

(
2M1r+M2+FL+HL

)
+mli

]
be such that 0 ≤ ρ̂ < 1.

Theorem 4.1. If the hypotheses (E1) − (E4), (E7) − (E9)are satisfied, then the

fractional quasilinear integrodifferential equation (3.1)-(3.2) with nonlocal condi-

tion (4.1) has a unique solution continuous in J.

Proof. We want to prove that the operator P : Z → Z defined by

Pu(t) = u0 − g(u) +
1

Γ(q)

∑

0<ti<t

∫ ti

ti−1

(ti − s)q−1A(s, u)u(s)ds

+
1

Γ(q)

∫ t

ti

(t− s)q−1A(s, u)u(s)ds

+
1

Γ(q)

∑

0<ti<t

∫ ti

ti−1

(ti − s)q−1
[
f(s, u(s)) +

∫ s

0

h(s, τ, u(τ))dτ
]
ds

+
1

Γ(q)

∫ t

ti

(t− s)q−1
[
f(s, u(s)) +

∫ s

0

h(s, τ, u(τ))dτ
]
ds

+
∑

0<ti<t

Ii(u(t
−

i )) (4.2)
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has a fixed point. Then this fixed point is a solution of the equation (3.1)-(3.2)
and (4.1). Then from the assumption (E8) it is easy to see that PBr ⊂ Br. Now,
for u1, u2 ∈ Z, we have

‖Pu1(t)− Pu2(t)‖ ≤
[
GL + (m+ 1)η

(
2M1r +M2 + FL +HL

)

+mli

]
‖u1(t)− u2(t)‖

= ρ̂ ‖u1(t)− u2(t)‖.

Since 0 ≤ ρ̂ < 1, the result follows by the application of contraction mapping
principle.

5 Quasilinear Delay Integrodifferential Equations

In this section we discuss the existence of solution of fractional impulsive delay
quasilinear integrodifferential equation (3.2) and (4.1) with the nonlocal condition
of the form

CDqu(t)=A(t, u)u(t)+f(t, u(t), u(α(t))+

∫ t

0

h(t, s, u(s), u(β(s)ds),0 ≤ t≤ a,(5.1)

where α, β: J → J are continuous and A, f, g, h are as for above. Assume the
following additional conditions:

(E10) ‖u0‖+GLr+ ‖g(0)‖+(m+1)η
[
(M1r+M2)r+2r(FL +HL)+F0 +H0)

]
+

m(lir + lc) ≤ r.

(E11) p∗ =
[
GL + (m + 1)η

(
2M1r + M2 + 2FL + 2HL

)
+ mli

]
be such that

0 ≤ p∗ < 1.

Theorem 5.1. If the hypotheses (E1) − (E4), (E10) − (E11)are satisfied, then

the fractional quasilinear integrodifferential equation (3.2), (4.1) and (5.1) has a

unique solution continuous in J.

Proof. We want to prove that the operator Q : Z → Z defined by

Qu(t) = u0 − g(u) +
1

Γ(q)

∑

0<ti<t

∫ ti

ti−1

(ti − s)q−1A(s, u)u(s)ds

+
1

Γ(q)

∫ t

ti

(t− s)q−1A(s, u)u(s)ds

+
1

Γ(q)

∑

0<ti<t

∫ ti

ti−1

(ti − s)q−1
[
f(s, u(s), u(α(s)) +

∫ s

0

h(s, τ, u(τ), u(β(τ))dτ
]
ds

+
1

Γ(q)

∫ t

ti

(t− s)q−1
[
[f(s, u(s), u(α(s))+

∫ s

0

h(s, τ, u(τ), u(β(τ))dτ
]
ds

+
∑

0<ti<t

Ii(u(t
−

i )) (5.2)
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has a fixed point. This fixed point is then a solution of the equation (3.2), (4.1)
and (5.1). Then from the assumption (E10) it is easy to see that QBr ⊂ Br. Now,
for u1, u2 ∈ Z, we have

‖Qu1(t)−Qu2(t)‖ ≤
[
GL + (m+ 1)η

(
2M1r +M2 + 2FL + 2HL

)
+mli

]
‖u1(t)− u2(t)‖

= p∗ ‖u1(t)− u2(t)‖.

Since 0 ≤ p∗ < 1, the result follows by the application of contraction mapping
principle.

6 Example

Consider the following fractional integrodifferential equation

CDqu(t) =
1

100
sin u(t)u(t) +

e−tu(t)

(49 + et)(1 + u(t))
+

∫ t

0

e−
1
4
u(s)ds, (6.1)

∆u|t= 1
2

=
|u(12

−|

9 + |u(12
−)|

, i = 1, 2, 3, . . . ,m, t ∈ J, (6.2)

u(0) = u0. (6.3)

where 0 < q ≤ 1. Take X = R+, t ∈ [0, 1] and so a = 1. Set

A(t, u) =
1

100
sin u(t)I,

f(t, u) =
e−t|u|

(49 + et)(1 + |u|)
,

∫ t

0

h(t, s, u(s)ds =

∫ t

0

e−
1
4
u(s)ds, and

Ii(u) =
|u|

4 + |u|
, u ∈ X.

Let u, v ∈ C([J ;X) and t ∈ J. Then we have

‖

∫ t

0

[h(t, s, u(s))− h(t, s, v(s))]ds‖ =
∣∣∣
∫ t

0

e−
1
4
u(s)ds−

∫ t

0

e−
1
4
v(s)ds

∣∣∣ ≤ 1

4
|u− v|.

‖f(t, u)− f(t, v)‖ =
e−t

(49 + et)

∣∣∣ u

1 + u
−

v

1 + v

∣∣∣

=
e−t|u− v|

(49 + et)(1 + u)(1 + v)

=
e−t

(49 + et)
|u − v|

≤
1

50
|u− v|
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Hence the condition (E1) − (E3) hold with M1 = 1
100 , FL = 1

50 , HL = 1
4 . Here

M2 = 1
100 . Let u, v ∈ X. Then we have by (E4)

‖Ii(u)− Ii(v)‖ =
∣∣∣ u

9 + u
−

v

9 + v

∣∣∣ = 9|u− v|

(9 + u)(9 + v)
≤

1

9
|u− v|.

Here li =
1
9 . Choose r = 1,m = 1. We shall check that condition

η(m+ 1)(2M1r +M2 + FL +HL) +mli < 1

is satisfied. Indeed

η(m+ 1)(2M1r +M2 + FL +HL) +mli < 1 ⇔ Γ(q + 1) >
10

27
, (6.4)

which is satisfied for some q ∈ (0, 1]. Further (E4) is satisfied by a suitable choice of
u0. Then by Theorem 3.1 the problem (6.1)- (6.3)has a unique solution on [0, 1] for
the values of q satisfying (6.4). Next we consider the following nonlocal condition

u(0) +
m∑

i=1

ciu(ti) = u0

for the fractional integrodifferential equation. Here the function g(u) =
∑m

i=1 ciu(ti)
and the constant G =

∑m

i=1 ci. By the similar way one can easily verify that the
conditions (E6) − (E8) by properly choosing ci and u0. Hence the equation (6.1)
with the above nonlocal condition has a unique solution by Theorem 4.1.
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