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1 Introduction

The stability problem of functional equations originated from a question of
Ulam [I] in 1940. D. H. Hyers [2] gave a first affirmative partial answer to the
question of Ulam for Banach spaces. Hyers theorem was generalized by T. Aoki [3]
for additive mappings and by Rassias [4] for linear mappings. The paper of Rassias
[4] has been influential in the development of what is now known as the generalized
Hyers-Ulam stability or Hyers-Ulam Rassias stability of functional equations. A
generalization of the Rasssias theorem was obtained by Gavruta [5] by replacing
the unbounded Cauchy difference with a general control function in the spirit of
Rassias approach.
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The functional equation

fle+y)+ flx—y) =2f(x) +2f(y) (1.1)

is called the quadratic functional equation. A generalized Hyers-Ulam stability
for the quadratic functional equation was proved by F. Skof [6] for the function
f X — Y where X is a normal space and Y is a Banach space. Cholewa [7]
noticed that the theorem of Skof is still true if the relevant domain X is replaced
by an abelian group. Czerwik [8] proved the Hyers-Ulam-Rassias stability of the
quadratic functional equation (1.1). Park [9] proved the generalized Hyers-Ulam
stability of the quadratic functional equation in Banach modules over a C* alge-
bra. The stability problem of several functional equations have been extensively
investigated by number mathematicians ([I0HI9]).

In [20], A. Najati and G. Park showed that the functional equation

flaz+by) = @) + 1) + Sl +y) ~ fe—)]  (2)

is equivalent to the quadratic functional equation (1.1), if a, b are rational numbers
such that a? + b? # 1 and, they proved the stability problem of this equation.
Throughout this paper, assume that X be a vector space over a non-Archimedean
field K, (Y, 1, T) is a non-Archimedean random Banach space over K and suppose
olo(x)) =z and o(x +y) =o(z) + o(y), for all z,y € X.
In this paper, using the fixed point method, we will prove the generalized
stability of the following equation:

flaz+by) = agla) + 0°h(o) + D fe+y) ~ e to)] (1)

where a,b € N\{0,1}.

In the sequel, we shall adopt the usual terminologies, notions, and conventions
of the theory of non-Archimedean random normed spaces (non-ARN-spaces) as
in [2IH23]. In this paper, the space of all probability distribution functions is
denoted by A*. Elements of AT are functions F' : RU {—o00,00} — [0, 1], such
that F is left continuous and nondecreasing on R and F(0) =0, F(4+o00) = 1. It’s
clear that the subset

Dt :={F e A" : 1" F(+00) = 1},
where [~ f(x) = lim,_,,— f(#), is a subset of AT. The space AT is partially ordered

by the usual point-wise ordering of functions, i.e., F' < G if and only if F'(t) < G(t)
for all t € R. The maximal element for At in this order is the distribution function

€o given by
1, ift>0,
fo(®) _{ 0, ift<o.
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2 Preliminaries

In this section, we give the definition and theorems that are important in the
following.

Theorem 2.1 ([24]). Let (X,d) be a complete generalized metric space and let
J : X — X be a strict contractive mapping with a Lipschitz constant 0 < L < 1. If
there exists a nonnegative integer k such that d(J* 1z, J¥x) < co for some x € X,
then the followings are true:

1. the sequence {J™x} converge to a fized point x* for J,

2. x* is the unique fixed point of J in
X = {y € X, d(JFz,y) < oo},

3. if y € X*, then
1
d )< ——d(J .
(y,2") < 7—7d(Jy.y)

Definition 2.2 ([23]). A mapping T : [0,1]> — [0,1] is a continuous triangular
norm (briefly, a continuous t-norm) if T satisfies the following conditions:

1. T is commutative and associative;

2. T 1is continuous;

3. T(a,1)=a for all a € [0,1];

4. T(a,b) < T(c,d) whenever a < c¢ and b < d for all a,b,c,d € [0,1].

Typical examples of continuous t-norms are T, (a, b) = ab, Tn(a,b) = min(a, b)
and T (a,b) = max(a+b—1,0) (the Lukasiewicz t-norm). Recall (see [2520]) that
if T is a t-norm and {z,} is a given sequence of numbers in [0, 1], 77> ; x; is defined
recurrently by T ;z; = x1 and T, x; = T(Ti":]l:vi, xn) =T(x1,...,zy) for n > 1.
T, x; is defined as T2° 4. It is known([26]) that for the Lukasiewicz t-norm

the following holds:

nlLr&(TL){ﬁlxn+i =le Zl(l — Zy) < 00.

Definition 2.3. By a non-Archimedean field, we mean a field K equipped with
a function(valuation) |.| : K — [0,00) such that for all r,s € K, the following
conditions hold:

1. |r| =0 if and only if r = 0;
2. |rs| = Ir[lsl;

3. |r + s| < max(|r],|s|) for all r,s € K.
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Clearly,|1| = | — 1| = 1 and |n| < 1 for all n € N. The function [.| is called the
trivial valuation if |r| = 1, Vr € K, r # 0, and |0 = 0.

Definition 2.4. Let X be a vector space over a scalar field K with a non-Archimedean
non-trivial valuation |.|. A function |.|| : X — R is non-Archimedean norm (val-
uation) if it satisfies the following conditions:

1. ||z|| = 0 if and only if x = 0;
2. ||rx|| = |r|l|lz|| for allr e K and x € X;
3.z + o)l < max(ell, Iyl for all 2,y € X.
Then, (X, ||.||) is called a non-Archimedean space. Due to the fact that

i = 2ol < max{llajen — ;] m < j < n—1},

in which n > m, the sequence {z,} is Cauchy if and only if {z,+1 — z,} con-
verges to zero in a non-Archimedean normed space. In a complete non-Archimedean
space, every Cauchy sequence is convergent.

Definition 2.5 ([27]). A non-Archimedean random normed space (briefly, non-
Archimedean RN-space) is a triple (X, u,T), where X is a linear space over a
non-Archimedean field K, T is a continuous t-norm, and p is a mapping from X
into DT such that, the following conditions hold:

1. pg(t) =eo(t) for all t > 0 if and only if v = 0;
2. Pag(t) = Mw(ﬁ) forallz € X, t>0 and o #0;
3. Poty(max(t,s)) > T(pz(t), py(s)) for all z,y € X and t,s > 0.

It is easy to see that if (3) holds, then (3°): pgyy(t +5) > T (uz(t), py(s)) for all
z,y € X andt,s > 0.

Every non-Archimedean normed linear space (X, ||.||) defines a non-Archimedean
RN-space (X, p, Tar) where

forallt >0and x € X.

Definition 2.6. Let (X, u,T) be a non-Archimedean RN-space.

1. A sequence {x,} in X is said to be convergent to x in X if for all t > 0,
limy, oo an—w(t) =1
2. A sequence {x,} in X is said to be Cauchy sequence in X if for each e >0

and t > 0, there exist a positive integer ng such that for all n > ng and
p >0, we have

/’l’wn+p_1n (t) > 1- &
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3. A non-Archimedean RN-space (X, 1, T) is said to be complete (i.e.,(X, p,T)
is called a non-Archimedean random Banach space) if every Cauchy sequence
i X s convergent to a point in X.

Theorem 2.7 ([23]). If (X, u,T) is a non-Archimedean RN-space and {xy} is a
sequence such that x, — x, then lim, o e, (t) = p(t) almost everywhere.

3 Stability of Equation (1.3) in non-Archimedean
RN-Spaces

In the rest of the paper, we take f,g,h: X — Y and we define

Dy f(z,y) = flaz +by) — a’g(z) — °h(y) — %b[f(x +y) = flz+o(y))

where a, b in N\{0, 1}.

Theorem 3.1 ([28, Theorem 2.1]). A mapping f : X =Y satisfies

flaz +by) = a® f(z) +b° f(y) + %b[f(fr +y) — flz+0o(y))] (3.1)
if and only if f satisfies
Flo+y)+ F@+o(y) = 2/(x) +2/(y) and fz+o(x) =0 (3.2)
forallz,y € X.

Now using fixed point approach to the non-Archimedean RN-space under ar-
bitrary t-norm, we prove the stability of the o- quadratic functional equation

Dgf(x,y) =0.

Theorem 3.2. Let K be a non-Archimedean field, X be a vector space over K and
(Y, u, Tar) be a non-Archimedean random Banach space over K. Let o : X2 — D+
(p(x,y) is denoted by ¢y, ) be a function such that for some A € R, 0 < A <4

<P21,2y()\t) Z Sﬁz,y(t)y (33)

forallz,ye X andt > 0. If f,g,h: X =Y be an even mapping such that

1Dk () () 2 Pay(t), (3.4)

and f(0) = ¢g(0) = h(0) = 0, then there exists a unique quadratic mapping Q :
X =Y satisfying (3.1) and

4— A
Bt (@)-3 fato@)-Q) (1) 2 dza(—1—1), (3.5)
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(4 — N)a?
Hg(z)— 1g(z+o(2))—Q(x) (t) > TM(Qbam,am(Tt)v TM(<Pm,O (azt)v ¢I+G(1),0(2a2t)))7
(3.6)
and
(4 — \)b?
Fh(@)-th(a+o@)-Q) (8) = Thr (dowpe (1), Tar (90,2 (6°1), 0,040 () (26°1))),
(3.7)
for all x € X andt > 0, where
Qbm,y (t) =Ty (TM (1/}z,y(t)7 1/)m-i-a(ac),y-‘:—o(y) (Zt))a ww-l-o(m),y-i-a(y) (4t))7
and ; ,
Vay(t) = TM(<P§,%(15)7<P%,0<5> (t)7</7§,0(§)7</70,%(§))'
Moreover ) )
Q) = lim_ o (f(2"0) — 32" +2"0(2)))
Proof. Putting y =0 in (3.4) we get
Nf(am)fan(l‘) (t) > SDI,O(t) (38)
for all z € X and ¢t > 0.
Similarly, for all y € X, we can put = 0 in (3.4) to obtain
11£ (by)—b2h(y) (t) = o,y (1)- (3.9)
Also replace y by o(y) in (3.4)
,U'D_gf(m,o(y))(t) > Px,o(y) (t) (310)

Hence, (3.8), (3.9) and (3.10) imply
D f (2,y)+ D1 f (2,0 () ~2D% £ (,0)~2D" £(0,5) (8) = Tt (D1 1 (2,) (8)s DR (2,0 () (E)
t2pr £ ,0) (1): B2 £(0,4) (1)),

ie.,

t t
,LLD;;f(m,y)—i—Dgf(z,a(y))—2Dgf(ac,0)—2Dgf(O,y)(t) > TM(‘Pm,y (t)a Px,o(y) (t)v 4/790,0(5)7 4/70,74(5))

for all z,y € X and t > 0.
Then, we have

t t
[ f (az—+by)+ f (az-+bo (1)) -2 (az)—2F (by) (£) = Tnr (Pay (t)s o () (£), 901,0(5)7 sDo,y(§))
(3.11)
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for all z,y € X and t > 0.
Replacing z by £ and y by ¥ in (3.11) we get

R f (@ty)+fatow)-27 () -27 ) (£) 2 Yo ,y(2), (3.12)
where 95, (t) = TM(@%,% (t), Pz o)

. (t)a @%,0(%)7 <PO,% (%))
Also, we can replace x by © 4+ o(z) and y by y + o(y) in (3.12) we get

1§ (40 (2)+y+0 (4)+ F (0 (@) +y+o (1)) —2f (r+0 (2)—2f (y+o () (E) = ‘/’w+o—<w>,y+o<z& (?3)

for all z,y € X and t > 0.
Now we put F(z) = f(z) — 3 f(z + o(z)) and by (3.12) and (3.13) we have

I (24y)+ F (v+0(y)) —2F (2)—2F () (1)
Ty (Bf otry)+f (ato ) —2f () —2£ (1) (),
=1 f (oo (@) +y+o(y)— 1 fato @) +yto @) +f (@to@)+f o) (L)

Tt (Va,y ()s bf (ot o (@) +y+o )+ (+0 (@) +y+o(y)—2f (@+o(@) —2f (y+o(y)) (21))
Tm (wﬂc,y (t) ) ww-l-o(m),y-i-a(y) (2t))7

Y%

AR,

that is,

BF(z4y)+F(zto(y)—2F ()2 (3) (1) = Tt (Y () Yato(z) yro() (2)). (3.14)

If we replace in the first y by z in (3.14) and in the second = and y by = + o(x) in
(3.12), we obtain

HF(2x)+F(z+o(z))—4F () (t) >Tm (wz,z (t)v wm-i-a(ac),w-‘ro(m) (2t)) (315)

and

/1*2j'(2m+2cr(m))74f(m+o(z))(t) > wm+o(z),z+o(m) (t) (316)
From (3.15) and (3.16) we have

Br@e)—ar@ () 2 Tv(pr@Ee)+F(@to(@)—aF@) () B-F(ato(x) (t))
> T (Tar(Yaw(t), Vot o(),oto(z)(28), BE(@to@)) ()
= Tr(Trt (V2,2 (1) Yato(@),ato(@) (20); =1 25 (20420 (0)) 4 f (4o (2))) (D)
= Tu(Tv(Y2,2(t), Yoto(a),o+o(x) (2), Haf (20420 (2)—4f (v+0(2)) (4))
> Trv(Tr (Ya,z(t), Vovo (@) ato@)(28); Yoto (@) ato@) (41))-

That is,
1P (2)—aF (@) () 2 Po,a(l) (3.17)

where ¢x,y(t) = TM(TM(U)m,y( ) ww-l-a(m),y-i-a ( )) U)m-i-a (z),y+o(y) (4t))
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Now, we define the set S by
S={F:X—>Y}
and introduce a generalized metric on S as follows
d¢(F,G) = inf{e € Ry : pipz)y—c(a)(€t) > ¢poa(t), Vo € X,Vt >0} (3.18)

Then, it is easy to verify that (S, dg) is complete (see [29]). We define an operator
J: 85— S by

for all x € X.
Let F,G € S and € € Ry be an arbitrary constant with dy(F, G) < ¢, that is,

HF(2)—G () (E) = b,z () (3.19)

for all z € X and ¢ > 0. Then

Aet Aet
MJF(z)fJG(z)(T) = M%,%(T) = Up(20)—G(2x)(Aet)
2 ¢2m,21()\t)
> () (3.20)

for all z € X and t > 0, that is, dg(JF, JG) < %. We hence conclude that

%uﬂﬂng%%mc)

for any F,G € S.
As 0 < A < 4, then operator J is strictly contractive.
It follows from (3.17) that

et et
N,]F(m)fF(z)(Z) = MF(iz) —F(w)(z) = MF(Qm)74F(m)(€t)

> za(t) (3.21)

V

for all x € X and ¢ > 0, that is,

%Uﬂm<i<w.

By Theorem 2.1, we deduce existence of a fixed point of J, that is, the existence of
mapping @ : X — Y which is a fixed point of J, such that lim,, . dy(J"F, Q) = 0.
By induction, we can easily show that

F(2™z)
22n '

J"F(x) =
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for all n € N.
Also dg(F,Q) < :dg(JF, F) implies the inequality
1 4
dy(F, < = —.
Thus
4t
— —) > Z,T t )
HF(x) Q(z)(4_)\) > G, (t)
i.e.,
4— Nt
@) -Q@) (1) 2 Poa(—F7). (3.22)
Therefore
L n .. F(2™)
Q)= i JUF@ = oy~

1 1
= Mmoo (f(2") - 5 f(2"2 +2"0(2)))
for all x € X. Also @ is the unique fixed point of J on the set
S*={G € S :dy(F,G) < }.

It follows from (3.14) that

L F (270427 0) £ F (27 54270 (1)) —2F (27 2)—2F (27y) (1) (3.23)
22n

LR (2m 04 20y)+ F(2n 24270 (y))—2F (272)—2F (274 (2°7F)

Ty (¢2"z,2"y (22nt); ¢2"m+2"o’(m),2"y+2"o(y) (22n+1t)>)
2277, 22n+1

TM(ww,y(/\_nt)u¢z+o(m)7y+a(y)( " t).

Y

Y

2n+41

. 2n
As limy, o0 Ts (z/]m,u(%\_nt)a mera'(z),ercr(y)(th)) =1 then
L F@2Ma+2my) + F(2Ma + 20(y)) — 2F(2"2) — 2F(2"y)
1m
n— o0 922n

Hence Q(z +y) + Q(z + o(y)) = 2Q(z) + 2Q(y) and Q(2x) = 4Q(x) that is given
Q(z + o(x)) =0, so Q is solution of (3.1) and

=0.

4-A
Bt (@)=3 fato@)-Q@) (8) 2 boa(—F—1).
Now, we put G(z) = g(z) — 3g(z + o(z)) and H(z) = h(z) — $h(z + o(z)), by
(3.8) and (3.9) we have

PFa)-a2G@) () = Hf(aa)-1 f(aa+ao(@)—a(g(e) — bala+o(@)) ()
> Tu (:uf(aw)—azg(w) (t)5 :u—%(f(am-i—aa(m))—a2g(m+a(;ﬂ))) (t))
> TM(@z,O(t)a @z+a(m),0(2t))v (324)
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and

BPma)—02H (@) () = Bpe)— L f(betbo(e))—b2 (h(z)— Lh(e+o(2))) (T)
Toa (B (az)—b2h(z) (0 Bo L (£ (batbo(a)) b2 h(ato(2))) (D)
TM(SDO,;E (t)a P0,z+0(x) (2t)) (325)

It follows from (3.22), (3.23) and (3.24) that

>
>

HQ(az)—a2G(zx) (t) > Tm (UQ(am)—F(am) (t>a HF(az)—a2G(zx) (t))
4—- )
2 TM(Qbar,ar(Tt)v T (pz,0(1), @m-ﬁ-o(z),o(?t)))v

and

Y]

HQ(bx)—b2 H (z) () Tra (BQ(bx)—F(be) (8)s BF (ba)—b2 H(2) ()

4 — )\
> TM(%m,bz(Tt),TM(@o,m(t)aSﬁo,m+a(m)(2t)))-

Finally, we obtain

(4 — N)a?

4 t), TM(@z,O(azﬂa @z+a(m),0(2a2t>))a

'UG(I)_Q(w)(t) > TM(¢az,az(

and

(4 — \)b?

4 t)vTM(<P0,z(b2t)v $0,x+0(x) (2b2t)))a

1o ()~ Q) (1) = Tar (v b
that is,

(4 —N\)a?
Ng(m)—%g(m—i—a(m))—@(m) (t) 2 TM(Qbam,am(Tt)v TM(‘PI,O (CLQt), <Pm+a(m),0(2a2t)))v

and

(4 — A2
Hh(z) - L h(zto(a)-Qa) (t) = TM(fbbm,bz(Tt)a Tar(@0,2(b*t), o040 (x) (20°1))),

for all x € X and ¢ > 0. This completes the proof of Theorem. O

Corollary 3.3. Let K be a non-Archimedean field, X be a vector space over K and
(Y, u, Tar) be a non-Archimedean random Banach space over K. Let o : X2 — D+
(p(x,y) is denoted by ¢y, ) be a function such that for some A€ R, 0 < A <8

A
@w,y(ﬁt) > 22,2y(1),
forallz,ye X andt > 0. If f,g,h: X =Y be an even mapping such that

KDk () () = Pay (D), (3.26)
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and f(0) = g(0) = h(0) = 0, then there exists a unique quadratic mapping Q :
X =Y satisfying (3.1) and

8~ A
Bt (@)-3 fato@)-Q@) () 2 dza(—g—1), (3.27)

(8 — N)a?
Hg(z)— 1g(z+o(2))—Q(x) (t) >Tm ((bam,aw (Tt)u Tm ((p;n,O (a2t)7 Prto(x),0 (2a2t)))7

and

(8 — \)b?
Nh(m)—%h(z-i—o(m))—Q(m) (t) > TM(bez,bm(Tt)v TM(@O,QE (b2t)7 $0,x+0(x) (2b2t)))7

forallx € X and t > 0, where

(bz,y(t) =Ty (TM (1/}z,y(t)7 1/)m-i-a(ac),y-‘:—o(y) (Zt))a ww-l-o(m),y-i-a(y) (4t))7

and

Yay(t) = Tapz 1 (t), 02 2w (1), 02.0(5) 00,3 (5))-

Moreover ) 1
Q) = lim oo (F(2"0) = 3 f(2"0 + 20 (2))).

n—oo 221

Proof. 1t is enough to define an operator J : S — S by
x
JL(x) = 4L(§).
The result will be obtained from argument as in proof of Theorem 3.2. (|

Corollary 3.4. Let K be a non-Archimedean field, X be a vector space over K and
(Y, u, Tar) be a non-Archimedean random Banach space over K. Let o : X? — DT
(p(x,y) is denoted by ¢y, ) be a function such that for some A € R, 0 < A <4

P2w,2y (ML) 2 Puy (1), (3.28)

forallz,y e X andt > 0. If f,g,h: X =Y be an even mapping such that

Hf(aatby)—a2g(@)—t2h ()~ 2 (o)~ f ) (D) Z Py (1), (3.29)

and f(0) = g(0) = h(0) = 0, then there exists a unique quadratic mapping Q :
X =Y satisfying (3.1) and

4- X
@) -Q@) (1) 2 boo(—1—1), (3.30)

(4 — N)a? ;

1 )s T (@x,0(a%t), 00.0(20°t))),

/J’g(z)fQ(z) (t) > TM(¢aw,am(
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and

4 — \)b?
fh(z)-Q(z) (1) = TM((bbm,bz(%t)v Tar(0,2(b°t), @o,0(26°1))),

for all x € X andt > 0, where
Gay(t) = Tonr (Tas (Y, (), 1h0,0(21)), 0,0 (42)),

and

t t
Ve (®) = Turl 5 (1), 02 (1), 02 0(5), 00,4 (2))
Moreover .
Proof. By Theorem 3.2 and o(z) = —x we get the result. O

Corollary 3.5. Let K be a non-Archimedean field, X be a vector space over K and
(Y, i, Tar) be a non-Archimedean random Banach space over K. Let o : X2 — D+
(p(x,y) is denoted by ¢y ) be a function such that for some A € R, 0 < A < 8

A
@w,y(ﬁt) > p2a,2y(1),
forallz,ye X andt > 0. If f,g,h: X =Y be an even mapping such that

:uf(am—i-by)—azg(w)—lﬁh(y)—%b(f(w-l-y)—f(w—y))(t) > @qu(t)a (331)
and f(0) = ¢g(0) = h(0) = 0, then there exists a unique quadratic mapping Q :
X =Y satisfying (3.1) and

8-\
@) -Q@) (1) 2 boo(—g—1), (3.32)

8 — \)a?
Hg(2)-Q(a) (1) = TM(Qbam,am(%t)vTM(@I,O(QQt)v ©0,0(2a°1))),

and
(8 — /\)b2t

S )7TM(<PO,z(b2t>a 900,0(2()215)))7

H (@)~ Q(w) (£) = Taa (@babar (
forallz € X andt > 0, where

G,y (t) = Trar(Tas (Ve (t), Y0,0(21)), Y0,0(41)),

and ; ;
Y (®) = Tl 1 (1), 02 (1), 02 0(5), 00,4 (2))
Moreover ]
Proof. By Corollary 3.3 and o(x) = —x we get the result. O
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