Non-Archimedean Random Stability of σ-Quadratic Functional Equation

IZ. EL-Fassi ${ }^{\dagger}, 1$ and S. Kabbaj ${ }^{\dagger}$
\dagger Departement of Mathematics, University of Ibn Tofail
Faculty of sciences, Kenitra, Morocco. e-mail: Izidd-math@hotmail.fr (IZ. EL-Fassi)
e-mail : samkabaj@yahoo.fr (S. Kabbaj)

Abstract : The aim of this paper is to investigate the generalized Hyers - Ulam stability of the following quadratic functional equation

$$
f(a x+b y)=a^{2} g(x)+b^{2} h(y)+\frac{a b}{2}[f(x+y)-f(x+\sigma(y))]
$$

in non-Archimedean RN -spaces, by using the fixed point method.
Keywords : random Banach spaces; fixed point method; stability; quadratic functional equation.
2010 Mathematics Subject Classification : 46S50; 47H10; 39B82; 39B52.

1 Introduction

The stability problem of functional equations originated from a question of Ulam [1] in 1940. D. H. Hyers [2] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers theorem was generalized by T. Aoki 3] for additive mappings and by Rassias [4] for linear mappings. The paper of Rassias [4] has been influential in the development of what is now known as the generalized Hyers-Ulam stability or Hyers-Ulam Rassias stability of functional equations. A generalization of the Rasssias theorem was obtained by Gǎvruta [5] by replacing the unbounded Cauchy difference with a general control function in the spirit of Rassias approach.

[^0]The functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.1}
\end{equation*}
$$

is called the quadratic functional equation. A generalized Hyers-Ulam stability for the quadratic functional equation was proved by F. Skof [6] for the function $f: X \rightarrow Y$ where X is a normal space and Y is a Banach space. Cholewa 7 noticed that the theorem of Skof is still true if the relevant domain X is replaced by an abelian group. Czerwik [8] proved the Hyers-Ulam-Rassias stability of the quadratic functional equation (1.1). Park [9] proved the generalized Hyers-Ulam stability of the quadratic functional equation in Banach modules over a \mathbb{C}^{*} algebra. The stability problem of several functional equations have been extensively investigated by number mathematicians (10-19).

In [20], A. Najati and G. Park showed that the functional equation

$$
\begin{equation*}
f(a x+b y)=a^{2} f(x)+b^{2} f(y)+\frac{a b}{2}[f(x+y)-f(x-y)] \tag{1.2}
\end{equation*}
$$

is equivalent to the quadratic functional equation (1.1), if a, b are rational numbers such that $a^{2}+b^{2} \neq 1$ and, they proved the stability problem of this equation.

Throughout this paper, assume that X be a vector space over a non-Archimedean field $\mathbb{K},(Y, \mu, T)$ is a non-Archimedean random Banach space over \mathbb{K} and suppose $\sigma(\sigma(x))=x$ and $\sigma(x+y)=\sigma(x)+\sigma(y)$, for all $x, y \in X$.

In this paper, using the fixed point method, we will prove the generalized stability of the following equation:

$$
\begin{equation*}
f(a x+b y)=a^{2} g(x)+b^{2} h(y)+\frac{a b}{2}[f(x+y)-f(x+\sigma(y))] \tag{1.3}
\end{equation*}
$$

where $a, b \in \mathbb{N} \backslash\{0,1\}$.
In the sequel, we shall adopt the usual terminologies, notions, and conventions of the theory of non-Archimedean random normed spaces (non-ARN-spaces) as in [21-23]. In this paper, the space of all probability distribution functions is denoted by Δ^{+}. Elements of Δ^{+}are functions $F: \mathbb{R} \cup\{-\infty, \infty\} \rightarrow[0,1]$, such that F is left continuous and nondecreasing on \mathbb{R} and $F(0)=0, F(+\infty)=1$. It's clear that the subset

$$
D^{+}:=\left\{F \in \Delta^{+}: l^{-} F(+\infty)=1\right\}
$$

where $l^{-} f(x)=\lim _{t \rightarrow x^{-}} f(t)$, is a subset of Δ^{+}. The space Δ^{+}is partially ordered by the usual point-wise ordering of functions, i.e., $F \leq G$ if and only if $F(t) \leq G(t)$ for all $t \in \mathbb{R}$. The maximal element for Δ^{+}in this order is the distribution function ε_{0} given by

$$
\varepsilon_{0}(t)= \begin{cases}1, & \text { if } t>0 \\ 0, & \text { if } t \leq 0\end{cases}
$$

2 Preliminaries

In this section, we give the definition and theorems that are important in the following.

Theorem $2.1([24)$. Let (X, d) be a complete generalized metric space and let $J: X \rightarrow X$ be a strict contractive mapping with a Lipschitz constant $0<L<1$. If there exists a nonnegative integer k such that $d\left(J^{k+1} x, J^{k} x\right)<\infty$ for some $x \in X$, then the followings are true:

1. the sequence $\left\{J^{n} x\right\}$ converge to a fixed point x^{*} for J,
2. x^{*} is the unique fixed point of J in

$$
X^{*}=\left\{y \in X, d\left(J^{k} x, y\right)<\infty\right\}
$$

3. if $y \in X^{*}$, then

$$
d\left(y, x^{*}\right) \leq \frac{1}{1-L} d(J y, y)
$$

Definition 2.2 ([23]). A mapping $T:[0,1]^{2} \rightarrow[0,1]$ is a continuous triangular norm (briefly, a continuous t-norm) if T satisfies the following conditions:

1. T is commutative and associative;
2. T is continuous;
3. $T(a, 1)=a$ for all $a \in[0,1]$;
4. $T(a, b) \leq T(c, d)$ whenever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in[0,1]$.

Typical examples of continuous t-norms are $T_{p}(a, b)=a b, T_{M}(a, b)=\min (a, b)$ and $T_{L}(a, b)=\max (a+b-1,0)$ (the Lukasiewicz t-norm). Recall (see [25,26]) that if T is a t-norm and $\left\{x_{n}\right\}$ is a given sequence of numbers in $[0,1], T_{i=1}^{n} x_{i}$ is defined recurrently by $T_{i=1}^{1} x_{i}=x_{1}$ and $T_{i=1}^{n} x_{i}=T\left(T_{i=1}^{n-1} x_{i}, x_{n}\right)=T\left(x_{1}, \ldots, x_{n}\right)$ for $n \geq 1$. $T_{i=n}^{\infty} x_{i}$ is defined as $T_{i=1}^{\infty} x_{n+i}$. It is known($\left.[26]\right)$ that for the Lukasiewicz t-norm the following holds:

$$
\lim _{n \rightarrow \infty}\left(T_{L}\right)_{i=1}^{\infty} x_{n+i}=1 \Leftrightarrow \sum_{n=1}^{\infty}\left(1-x_{n}\right)<\infty
$$

Definition 2.3. By a non-Archimedean field, we mean a field \mathbb{K} equipped with a function(valuation) $||:. \mathbb{K} \rightarrow[0, \infty)$ such that for all $r, s \in \mathbb{K}$, the following conditions hold:

1. $|r|=0$ if and only if $r=0$;
2. $|r s|=|r||s|$;
3. $|r+s| \leq \max (|r|,|s|)$ for all $r, s \in \mathbb{K}$.

Clearly, $|1|=|-1|=1$ and $|n| \leq 1$ for all $n \in \mathbb{N}$. The function $|$.$| is called the$ trivial valuation if $|r|=1, \forall r \in \mathbb{K}, r \neq 0$, and $|0|=0$.

Definition 2.4. Let X be a vector space over a scalar field \mathbb{K} with a non-Archimedean non-trivial valuation $|$.$| . A function \|\|:. X \rightarrow \mathbb{R}$ is non-Archimedean norm (valuation) if it satisfies the following conditions:

1. $\|x\|=0$ if and only if $x=0$;
2. $\|r x\|=|r|\|x\|$ for all $r \in \mathbb{K}$ and $x \in X$;
3. $\|x+y\| \leq \max (\|x\|,\|y\|)$ for all $x, y \in X$.

Then, $(X,\|\cdot\|)$ is called a non-Archimedean space. Due to the fact that

$$
\left\|x_{m}-x_{n}\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}\right\|: m \leq j \leq n-1\right\}
$$

in which $n>m$, the sequence $\left\{x_{n}\right\}$ is Cauchy if and only if $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in a non-Archimedean normed space. In a complete non-Archimedean space, every Cauchy sequence is convergent.

Definition 2.5 ([27]). A non-Archimedean random normed space (briefly, nonArchimedean $R N$-space) is a triple (X, μ, T), where X is a linear space over a non-Archimedean field \mathbb{K}, T is a continuous t-norm, and μ is a mapping from X into D^{+}such that, the following conditions hold:

1. $\mu_{x}(t)=\varepsilon_{0}(t)$ for all $t>0$ if and only if $x=0$;
2. $\mu_{\alpha x}(t)=\mu_{x}\left(\frac{t}{|\alpha|}\right)$ for all $x \in X, t \geq 0$ and $\alpha \neq 0$;
3. $\mu_{x+y}(\max (t, s)) \geq T\left(\mu_{x}(t), \mu_{y}(s)\right)$ for all $x, y \in X$ and $t, s \geq 0$.

It is easy to see that if (3) holds, then (3'): $\mu_{x+y}(t+s) \geq T\left(\mu_{x}(t), \mu_{y}(s)\right)$ for all $x, y \in X$ and $t, s \geq 0$.

Every non-Archimedean normed linear space $(X,\|\cdot\|)$ defines a non-Archimedean RN-space (X, μ, T_{M}) where

$$
\mu_{x}(t)=\frac{t}{t+\|x\|}
$$

for all $t>0$ and $x \in X$.
Definition 2.6. Let (X, μ, T) be a non-Archimedean $R N$-space.

1. A sequence $\left\{x_{n}\right\}$ in X is said to be convergent to x in X if for all $t>0$, $\lim _{n \rightarrow \infty} \mu_{x_{n}-x}(t)=1 ;$
2. A sequence $\left\{x_{n}\right\}$ in X is said to be Cauchy sequence in X if for each $\varepsilon>0$ and $t>0$, there exist a positive integer n_{0} such that for all $n \geq n_{0}$ and $p>0$, we have

$$
\mu_{x_{n+p}-x_{n}}(t)>1-\varepsilon
$$

3. A non-Archimedean $R N$-space (X, μ, T) is said to be complete (i.e., (X, μ, T) is called a non-Archimedean random Banach space) if every Cauchy sequence in X is convergent to a point in X.

Theorem 2.7 ([23]). If (X, μ, T) is a non-Archimedean $R N$-space and $\left\{x_{n}\right\}$ is a sequence such that $x_{n} \rightarrow x$, then $\lim _{n \rightarrow \infty} \mu_{x_{n}}(t)=\mu_{x}(t)$ almost everywhere.

3 Stability of Equation (1.3) in non-Archimedean RN-Spaces

In the rest of the paper, we take $f, g, h: X \rightarrow Y$ and we define

$$
D_{g}^{h} f(x, y)=f(a x+b y)-a^{2} g(x)-b^{2} h(y)-\frac{a b}{2}[f(x+y)-f(x+\sigma(y))]
$$

where a, b in $\mathbb{N} \backslash\{0,1\}$.

Theorem 3.1 ([28, Theorem 2.1]). A mapping $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
f(a x+b y)=a^{2} f(x)+b^{2} f(y)+\frac{a b}{2}[f(x+y)-f(x+\sigma(y))] \tag{3.1}
\end{equation*}
$$

if and only if f satisfies

$$
\begin{equation*}
f(x+y)+f(x+\sigma(y))=2 f(x)+2 f(y) \text { and } f(x+\sigma(x))=0 \tag{3.2}
\end{equation*}
$$

for all $x, y \in X$.
Now using fixed point approach to the non-Archimedean RN-space under arbitrary t-norm, we prove the stability of the σ - quadratic functional equation $D_{g}^{h} f(x, y)=0$.

Theorem 3.2. Let \mathbb{K} be a non-Archimedean field, X be a vector space over \mathbb{K} and $\left(Y, \mu, T_{M}\right)$ be a non-Archimedean random Banach space over \mathbb{K}. Let $\varphi: X^{2} \rightarrow D^{+}$ $\left(\varphi(x, y)\right.$ is denoted by $\left.\varphi_{x, y}\right)$ be a function such that for some $\lambda \in \mathbb{R}, 0<\lambda<4$

$$
\begin{equation*}
\varphi_{2 x, 2 y}(\lambda t) \geq \varphi_{x, y}(t) \tag{3.3}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. If $f, g, h: X \rightarrow Y$ be an even mapping such that

$$
\begin{equation*}
\mu_{D_{g}^{h} f(x, y)}(t) \geq \varphi_{x, y}(t) \tag{3.4}
\end{equation*}
$$

and $f(0)=g(0)=h(0)=0$, then there exists a unique quadratic mapping Q : $X \rightarrow Y$ satisfying (3.1) and

$$
\begin{equation*}
\mu_{f(x)-\frac{1}{2} f(x+\sigma(x))-Q(x)}(t) \geq \phi_{x, x}\left(\frac{4-\lambda}{4} t\right) \tag{3.5}
\end{equation*}
$$

$\mu_{g(x)-\frac{1}{2} g(x+\sigma(x))-Q(x)}(t) \geq T_{M}\left(\phi_{a x, a x}\left(\frac{(4-\lambda) a^{2}}{4} t\right), T_{M}\left(\varphi_{x, 0}\left(a^{2} t\right), \varphi_{x+\sigma(x), 0}\left(2 a^{2} t\right)\right)\right)$,
and
$\mu_{h(x)-\frac{1}{2} h(x+\sigma(x))-Q(x)}(t) \geq T_{M}\left(\phi_{b x, b x}\left(\frac{(4-\lambda) b^{2}}{4} t\right), T_{M}\left(\varphi_{0, x}\left(b^{2} t\right), \varphi_{0, x+\sigma(x)}\left(2 b^{2} t\right)\right)\right)$,
for all $x \in X$ and $t>0$, where

$$
\phi_{x, y}(t)=T_{M}\left(T_{M}\left(\psi_{x, y}(t), \psi_{x+\sigma(x), y+\sigma(y)}(2 t)\right), \psi_{x+\sigma(x), y+\sigma(y)}(4 t)\right),
$$

and

$$
\psi_{x, y}(t)=T_{M}\left(\varphi_{\frac{x}{a}, \frac{y}{b}}(t), \varphi_{\frac{x}{a}, \frac{\sigma(y)}{b}}(t), \varphi_{\frac{x}{a}, 0}\left(\frac{t}{2}\right), \varphi_{0, \frac{y}{b}}\left(\frac{t}{2}\right)\right) .
$$

Moreover

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{2 n}}\left(f\left(2^{n} x\right)-\frac{1}{2} f\left(2^{n} x+2^{n} \sigma(x)\right)\right)
$$

Proof. Putting $y=0$ in (3.4) we get

$$
\begin{equation*}
\mu_{f(a x)-a^{2} g(x)}(t) \geq \varphi_{x, 0}(t) \tag{3.8}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Similarly, for all $y \in X$, we can put $x=0$ in (3.4) to obtain

$$
\begin{equation*}
\mu_{f(b y)-b^{2} h(y)}(t) \geq \varphi_{0, y}(t) \tag{3.9}
\end{equation*}
$$

Also replace y by $\sigma(y)$ in (3.4)

$$
\begin{equation*}
\mu_{D_{g}^{h} f(x, \sigma(y))}(t) \geq \varphi_{x, \sigma(y)}(t) \tag{3.10}
\end{equation*}
$$

Hence, (3.8), (3.9) and (3.10) imply

$$
\begin{gathered}
\mu_{D_{g}^{h} f(x, y)+D_{g}^{h} f(x, \sigma(y))-2 D_{g}^{h} f(x, 0)-2 D_{g}^{h} f(0, y)}(t) \geq T_{M}\left(\mu_{D_{g}^{h} f(x, y)}(t), \mu_{D_{g}^{h} f(x, \sigma(y))}(t),\right. \\
\left.\mu_{2 D_{g}^{h} f(x, 0)}(t), \mu_{2 D_{g}^{h} f(0, y)}(t)\right),
\end{gathered}
$$

i.e.,
$\mu_{D_{g}^{h} f(x, y)+D_{g}^{h} f(x, \sigma(y))-2 D_{g}^{h} f(x, 0)-2 D_{g}^{h} f(0, y)}(t) \geq T_{M}\left(\varphi_{x, y}(t), \varphi_{x, \sigma(y)}(t), \varphi_{x, 0}\left(\frac{t}{2}\right), \varphi_{0, y}\left(\frac{t}{2}\right)\right)$
for all $x, y \in X$ and $t>0$.
Then, we have

$$
\begin{equation*}
\mu_{f(a x+b y)+f(a x+b \sigma(y))-2 f(a x)-2 f(b y)}(t) \geq T_{M}\left(\varphi_{x, y}(t), \varphi_{x, \sigma(y)}(t), \varphi_{x, 0}\left(\frac{t}{2}\right), \varphi_{0, y}\left(\frac{t}{2}\right)\right) \tag{3.11}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$.
Replacing x by $\frac{x}{a}$ and y by $\frac{y}{b}$ in (3.11) we get

$$
\begin{equation*}
\mu_{f(x+y)+f(x+\sigma(y))-2 f(x)-2 f(y)}(t) \geq \psi_{x, y}(t) \tag{3.12}
\end{equation*}
$$

where $\psi_{x, y}(t)=T_{M}\left(\varphi_{\frac{x}{a}, \frac{y}{b}}(t), \varphi_{\frac{x}{a}, \frac{\sigma(y)}{b}}(t), \varphi_{\frac{x}{a}, 0}\left(\frac{t}{2}\right), \varphi_{0, \frac{y}{b}}\left(\frac{t}{2}\right)\right)$.
Also, we can replace x by $x+\sigma(x)$ and y by $y+\sigma(y)$ in (3.12) we get

$$
\begin{equation*}
\mu_{f(x+\sigma(x)+y+\sigma(y))+f(x+\sigma(x)+y+\sigma(y))-2 f(x+\sigma(x))-2 f(y+\sigma(y))}(t) \geq \psi_{x+\sigma(x), y+\sigma(y)}(t) \tag{3.13}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$.
Now we put $F(x)=f(x)-\frac{1}{2} f(x+\sigma(x))$ and by (3.12) and (3.13) we have

$$
\begin{aligned}
& \mu_{F(x+y)+F(x+\sigma(y))-2 F(x)-2 F(y)}(t) \\
\geq & T_{M}\left(\mu_{f(x+y)+f(x+\sigma(y))-2 f(x)-2 f(y)}(t),\right. \\
& \left.\mu_{-\frac{1}{2} f(x+\sigma(x)+y+\sigma(y))-\frac{1}{2} f(x+\sigma(x)+y+\sigma(y))+f(x+\sigma(x))+f(y+\sigma(y))}(t)\right) \\
\geq & T_{M}\left(\psi_{x, y}(t), \mu_{f(x+\sigma(x)+y+\sigma(y))+f(x+\sigma(x)+y+\sigma(y))-2 f(x+\sigma(x))-2 f(y+\sigma(y))}(2 t)\right) \\
\geq & T_{M}\left(\psi_{x, y}(t), \psi_{x+\sigma(x), y+\sigma(y)}(2 t)\right),
\end{aligned}
$$

that is,

$$
\begin{equation*}
\mu_{F(x+y)+F(x+\sigma(y))-2 F(x)-2 F(y)}(t) \geq T_{M}\left(\psi_{x, y}(t), \psi_{x+\sigma(x), y+\sigma(y)}(2 t)\right) \tag{3.14}
\end{equation*}
$$

If we replace in the first y by x in (3.14) and in the second x and y by $x+\sigma(x)$ in (3.12), we obtain

$$
\begin{equation*}
\mu_{F(2 x)+F(x+\sigma(x))-4 F(x)}(t) \geq T_{M}\left(\psi_{x, x}(t), \psi_{x+\sigma(x), x+\sigma(x)}(2 t)\right) \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{2 f(2 x+2 \sigma(x))-4 f(x+\sigma(x))}(t) \geq \psi_{x+\sigma(x), x+\sigma(x)}(t) \tag{3.16}
\end{equation*}
$$

From (3.15) and (3.16) we have

$$
\begin{aligned}
\mu_{F(2 x)-4 F(x)}(t) & \geq T_{M}\left(\mu_{F(2 x)+F(x+\sigma(x))-4 F(x)}(t), \mu_{-F(x+\sigma(x))}(t)\right) \\
& \geq T_{M}\left(T_{M}\left(\psi_{x, x}(t), \psi_{x+\sigma(x), x+\sigma(x)}(2 t)\right), \mu_{F(x+\sigma(x))}(t)\right) \\
& =T_{M}\left(T_{M}\left(\psi_{x, x}(t), \psi_{x+\sigma(x), x+\sigma(x)}(2 t)\right), \mu_{\frac{-1}{4}(2 f(2 x+2 \sigma(x))-4 f(x+\sigma(x)))}(t)\right) \\
& =T_{M}\left(T_{M}\left(\psi_{x, x}(t), \psi_{x+\sigma(x), x+\sigma(x)}(2 t)\right), \mu_{2 f(2 x+2 \sigma(x))-4 f(x+\sigma(x))}(4 t)\right) \\
& \geq T_{M}\left(T_{M}\left(\psi_{x, x}(t), \psi_{x+\sigma(x), x+\sigma(x)}(2 t)\right), \psi_{x+\sigma(x), x+\sigma(x)}(4 t)\right) .
\end{aligned}
$$

That is,

$$
\begin{equation*}
\mu_{F(2 x)-4 F(x)}(t) \geq \phi_{x, x}(t) \tag{3.17}
\end{equation*}
$$

where $\phi_{x, y}(t)=T_{M}\left(T_{M}\left(\psi_{x, y}(t), \psi_{x+\sigma(x), y+\sigma(y)}(2 t)\right), \psi_{x+\sigma(x), y+\sigma(y)}(4 t)\right)$.

Now, we define the set S by

$$
S:=\{F: X \rightarrow Y\}
$$

and introduce a generalized metric on S as follows

$$
\begin{equation*}
d_{\phi}(F, G)=\inf \left\{\varepsilon \in \mathbb{R}_{+}: \mu_{F(x)-G(x)}(\varepsilon t) \geq \phi_{x, x}(t), \forall x \in X, \forall t>0\right\} . \tag{3.18}
\end{equation*}
$$

Then, it is easy to verify that (S, d_{ϕ}) is complete (see [29]). We define an operator $J: S \rightarrow S$ by

$$
J L(x)=\frac{L(2 x)}{4},
$$

for all $x \in X$.
Let $F, G \in S$ and $\varepsilon \in \mathbb{R}_{+}$be an arbitrary constant with $d_{\phi}(F, G) \leq \varepsilon$, that is,

$$
\begin{equation*}
\mu_{F(x)-G(x)}(\varepsilon t) \geq \phi_{x, x}(t) \tag{3.19}
\end{equation*}
$$

for all $x \in X$ and $t>0$. Then

$$
\begin{align*}
\mu_{J F(x)-J G(x)}\left(\frac{\lambda \varepsilon t}{4}\right)=\mu_{\frac{F(2 x)}{4}-\frac{G(2 x)}{4}\left(\frac{\lambda \varepsilon t}{4}\right)} & =\mu_{F(2 x)-G(2 x)}(\lambda \varepsilon t) \\
& \geq \phi_{2 x, 2 x}(\lambda t) \\
& \geq \phi_{x, x}(t) \tag{3.20}
\end{align*}
$$

for all $x \in X$ and $t>0$, that is, $d_{\phi}(J F, J G) \leq \frac{\lambda \varepsilon}{4}$. We hence conclude that

$$
d_{\phi}(J F, J G) \leq \frac{\lambda}{4} d_{\phi}(F, G)
$$

for any $F, G \in S$.
As $0<\lambda<4$, then operator J is strictly contractive.
It follows from (3.17) that

$$
\begin{align*}
\mu_{J F(x)-F(x)}\left(\frac{\varepsilon t}{4}\right)=\mu_{\frac{F(2 x)}{4}-F(x)}\left(\frac{\varepsilon t}{4}\right) & =\mu_{F(2 x)-4 F(x)}(\varepsilon t) \\
& \geq \phi_{x, x}(t) \tag{3.21}
\end{align*}
$$

for all $x \in X$ and $t>0$, that is,

$$
d_{\phi}(J F, F) \leq \frac{\varepsilon}{4}<\infty .
$$

By Theorem 2.1, we deduce existence of a fixed point of J, that is, the existence of mapping $Q: X \rightarrow Y$ which is a fixed point of J, such that $\lim _{n \rightarrow \infty} d_{\phi}\left(J^{n} F, Q\right)=0$. By induction, we can easily show that

$$
J^{n} F(x)=\frac{F\left(2^{n} x\right)}{2^{2 n}}
$$

for all $n \in \mathbb{N}$.
Also $d_{\phi}(F, Q) \leq \frac{1}{1-L} d_{\phi}(J F, F)$ implies the inequality

$$
d_{\phi}(F, Q) \leq \frac{1}{1-\frac{\lambda}{4}}=\frac{4}{4-\lambda}
$$

Thus

$$
\mu_{F(x)-Q(x)}\left(\frac{4 t}{4-\lambda}\right) \geq \phi_{x, x}(t)
$$

i.e.,

$$
\begin{equation*}
\mu_{F(x)-Q(x)}(t) \geq \phi_{x, x}\left(\frac{(4-\lambda) t}{4}\right) . \tag{3.22}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
Q(x)=\lim _{n \rightarrow \infty} J^{n} F(x) & =\lim _{n \rightarrow \infty} \frac{F\left(2^{n} x\right)}{2^{2 n}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{2^{2 n}}\left(f\left(2^{n} x\right)-\frac{1}{2} f\left(2^{n} x+2^{n} \sigma(x)\right)\right)
\end{aligned}
$$

for all $x \in X$. Also Q is the unique fixed point of J on the set

$$
S^{*}=\left\{G \in S: d_{\phi}(F, G)<\infty\right\}
$$

It follows from (3.14) that

$$
\begin{align*}
& \mu_{\frac{F\left(2^{n} x+2^{n} y\right)+F\left(2^{n} x+2^{n} \sigma(y)\right)-2 F\left(2^{n} x\right)-2 F\left(2^{n} y\right)}{2^{2 n}}}(t) \tag{3.23}\\
= & \mu_{F\left(2^{n} x+2^{n} y\right)+F\left(2^{n} x+2^{n} \sigma(y)\right)-2 F\left(2^{n} x\right)-2 F\left(2^{n} y\right)}\left(2^{2 n} t\right) \\
\geq & \left.T_{M}\left(\psi_{2^{n} x, 2^{n} y}\left(2^{2 n} t\right), \psi_{2^{n} x+2^{n} \sigma(x), 2^{n} y+2^{n} \sigma(y)}\left(2^{2 n+1} t\right)\right)\right) \\
\geq & T_{M}\left(\psi_{x, y}\left(\frac{2^{2 n}}{\lambda^{n}} t\right), \psi_{x+\sigma(x), y+\sigma(y)}\left(\frac{2^{2 n+1}}{\lambda^{n}} t\right)\right) .
\end{align*}
$$

As $\lim _{n \rightarrow \infty} T_{M}\left(\psi_{x, y}\left(\frac{2^{2 n}}{\lambda^{n}} t\right), \psi_{x+\sigma(x), y+\sigma(y)}\left(\frac{2^{2 n+1}}{\lambda^{n}} t\right)\right)=1$ then

$$
\lim _{n \rightarrow \infty} \frac{F\left(2^{n} x+2^{n} y\right)+F\left(2^{n} x+2^{n} \sigma(y)\right)-2 F\left(2^{n} x\right)-2 F\left(2^{n} y\right)}{2^{2 n}}=0
$$

Hence $Q(x+y)+Q(x+\sigma(y))=2 Q(x)+2 Q(y)$ and $Q(2 x)=4 Q(x)$ that is given $Q(x+\sigma(x))=0$, so Q is solution of (3.1) and

$$
\mu_{f(x)-\frac{1}{2} f(x+\sigma(x))-Q(x)}(t) \geq \phi_{x, x}\left(\frac{4-\lambda}{4} t\right)
$$

Now, we put $G(x)=g(x)-\frac{1}{2} g(x+\sigma(x))$ and $H(x)=h(x)-\frac{1}{2} h(x+\sigma(x))$, by (3.8) and (3.9) we have

$$
\begin{align*}
\mu_{F(a x)-a^{2} G(x)}(t) & =\mu_{f(a x)-\frac{1}{2} f(a x+a \sigma(x))-a^{2}\left(g(x)-\frac{1}{2} g(x+\sigma(x))\right)}(t) \\
& \geq T_{M}\left(\mu_{f(a x)-a^{2} g(x)}(t), \mu_{-\frac{1}{2}\left(f(a x+a \sigma(x))-a^{2} g(x+\sigma(x))\right)}(t)\right) \\
& \geq T_{M}\left(\varphi_{x, 0}(t), \varphi_{x+\sigma(x), 0}(2 t)\right), \tag{3.24}
\end{align*}
$$

and

$$
\begin{align*}
\mu_{F(b x)-b^{2} H(x)}(t) & =\mu_{f(b x)-\frac{1}{2} f(b x+b \sigma(x))-b^{2}\left(h(x)-\frac{1}{2} h(x+\sigma(x))\right)}(t) \\
& \geq T_{M}\left(\mu_{f(a x)-b^{2} h(x)}(t), \mu_{-\frac{1}{2}\left(f(b x+b \sigma(x))-b^{2} h(x+\sigma(x))\right)}(t)\right) \\
& \geq T_{M}\left(\varphi_{0, x}(t), \varphi_{0, x+\sigma(x)}(2 t)\right) \tag{3.25}
\end{align*}
$$

It follows from (3.22), (3.23) and (3.24) that

$$
\begin{aligned}
\mu_{Q(a x)-a^{2} G(x)}(t) & \geq T_{M}\left(\mu_{Q(a x)-F(a x)}(t), \mu_{F(a x)-a^{2} G(x)}(t)\right) \\
& \geq T_{M}\left(\phi_{a x, a x}\left(\frac{4-\lambda}{4} t\right), T_{M}\left(\varphi_{x, 0}(t), \varphi_{x+\sigma(x), 0}(2 t)\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\mu_{Q(b x)-b^{2} H(x)}(t) & \geq T_{M}\left(\mu_{Q(b x)-F(b x)}(t), \mu_{F(b x)-b^{2} H(x)}(t)\right) \\
& \geq T_{M}\left(\phi_{b x, b x}\left(\frac{4-\lambda}{4} t\right), T_{M}\left(\varphi_{0, x}(t), \varphi_{0, x+\sigma(x)}(2 t)\right)\right)
\end{aligned}
$$

Finally, we obtain

$$
\mu_{G(x)-Q(x)}(t) \geq T_{M}\left(\phi_{a x, a x}\left(\frac{(4-\lambda) a^{2}}{4} t\right), T_{M}\left(\varphi_{x, 0}\left(a^{2} t\right), \varphi_{x+\sigma(x), 0}\left(2 a^{2} t\right)\right)\right)
$$

and

$$
\mu_{H(x)-Q(x)}(t) \geq T_{M}\left(\phi_{b x, b x}\left(\frac{(4-\lambda) b^{2}}{4} t\right), T_{M}\left(\varphi_{0, x}\left(b^{2} t\right), \varphi_{0, x+\sigma(x)}\left(2 b^{2} t\right)\right)\right)
$$

that is,
$\mu_{g(x)-\frac{1}{2} g(x+\sigma(x))-Q(x)}(t) \geq T_{M}\left(\phi_{a x, a x}\left(\frac{(4-\lambda) a^{2}}{4} t\right), T_{M}\left(\varphi_{x, 0}\left(a^{2} t\right), \varphi_{x+\sigma(x), 0}\left(2 a^{2} t\right)\right)\right)$,
and
$\mu_{h(x)-\frac{1}{2} h(x+\sigma(x))-Q(x)}(t) \geq T_{M}\left(\phi_{b x, b x}\left(\frac{(4-\lambda) b^{2}}{4} t\right), T_{M}\left(\varphi_{0, x}\left(b^{2} t\right), \varphi_{0, x+\sigma(x)}\left(2 b^{2} t\right)\right)\right)$,
for all $x \in X$ and $t>0$. This completes the proof of Theorem.
Corollary 3.3. Let \mathbb{K} be a non-Archimedean field, X be a vector space over \mathbb{K} and $\left(Y, \mu, T_{M}\right)$ be a non-Archimedean random Banach space over \mathbb{K}. Let $\varphi: X^{2} \rightarrow D^{+}$ $\left(\varphi(x, y)\right.$ is denoted by $\left.\varphi_{x, y}\right)$ be a function such that for some $\lambda \in \mathbb{R}, 0<\lambda<8$

$$
\varphi_{x, y}\left(\frac{\lambda}{32} t\right) \geq \varphi_{2 x, 2 y}(t)
$$

for all $x, y \in X$ and $t>0$. If $f, g, h: X \rightarrow Y$ be an even mapping such that

$$
\begin{equation*}
\mu_{D_{g}^{h} f(x, y)}(t) \geq \varphi_{x, y}(t) \tag{3.26}
\end{equation*}
$$

and $f(0)=g(0)=h(0)=0$, then there exists a unique quadratic mapping Q : $X \rightarrow Y$ satisfying (3.1) and

$$
\begin{equation*}
\mu_{f(x)-\frac{1}{2} f(x+\sigma(x))-Q(x)}(t) \geq \phi_{x, x}\left(\frac{8-\lambda}{8} t\right) \tag{3.27}
\end{equation*}
$$

$\mu_{g(x)-\frac{1}{2} g(x+\sigma(x))-Q(x)}(t) \geq T_{M}\left(\phi_{a x, a x}\left(\frac{(8-\lambda) a^{2}}{8} t\right), T_{M}\left(\varphi_{x, 0}\left(a^{2} t\right), \varphi_{x+\sigma(x), 0}\left(2 a^{2} t\right)\right)\right)$,
and
$\mu_{h(x)-\frac{1}{2} h(x+\sigma(x))-Q(x)}(t) \geq T_{M}\left(\phi_{b x, b x}\left(\frac{(8-\lambda) b^{2}}{8} t\right), T_{M}\left(\varphi_{0, x}\left(b^{2} t\right), \varphi_{0, x+\sigma(x)}\left(2 b^{2} t\right)\right)\right)$,
for all $x \in X$ and $t>0$, where

$$
\phi_{x, y}(t)=T_{M}\left(T_{M}\left(\psi_{x, y}(t), \psi_{x+\sigma(x), y+\sigma(y)}(2 t)\right), \psi_{x+\sigma(x), y+\sigma(y)}(4 t)\right)
$$

and

$$
\psi_{x, y}(t)=T_{M}\left(\varphi_{\frac{x}{a}, \frac{y}{b}}(t), \varphi_{\frac{x}{a}, \frac{\sigma(y)}{b}}(t), \varphi_{\frac{x}{a}, 0}\left(\frac{t}{2}\right), \varphi_{0, \frac{y}{b}}\left(\frac{t}{2}\right)\right) .
$$

Moreover

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{2 n}}\left(f\left(2^{n} x\right)-\frac{1}{2} f\left(2^{n} x+2^{n} \sigma(x)\right)\right)
$$

Proof. It is enough to define an operator $J: S \rightarrow S$ by

$$
J L(x)=4 L\left(\frac{x}{2}\right)
$$

The result will be obtained from argument as in proof of Theorem 3.2.
Corollary 3.4. Let \mathbb{K} be a non-Archimedean field, X be a vector space over \mathbb{K} and $\left(Y, \mu, T_{M}\right)$ be a non-Archimedean random Banach space over \mathbb{K}. Let $\varphi: X^{2} \rightarrow D^{+}$ $\left(\varphi(x, y)\right.$ is denoted by $\left.\varphi_{x, y}\right)$ be a function such that for some $\lambda \in \mathbb{R}, 0<\lambda<4$

$$
\begin{equation*}
\varphi_{2 x, 2 y}(\lambda t) \geq \varphi_{x, y}(t) \tag{3.28}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. If $f, g, h: X \rightarrow Y$ be an even mapping such that

$$
\begin{equation*}
\mu_{f(a x+b y)-a^{2} g(x)-b^{2} h(y)-\frac{a b}{2}(f(x+y)-f(x-y))}(t) \geq \varphi_{x, y}(t) \tag{3.29}
\end{equation*}
$$

and $f(0)=g(0)=h(0)=0$, then there exists a unique quadratic mapping Q : $X \rightarrow Y$ satisfying (3.1) and

$$
\begin{gather*}
\mu_{f(x)-Q(x)}(t) \geq \phi_{x, x}\left(\frac{4-\lambda}{4} t\right) \tag{3.30}\\
\mu_{g(x)-Q(x)}(t) \geq T_{M}\left(\phi_{a x, a x}\left(\frac{(4-\lambda) a^{2}}{4} t\right), T_{M}\left(\varphi_{x, 0}\left(a^{2} t\right), \varphi_{0,0}\left(2 a^{2} t\right)\right)\right),
\end{gather*}
$$

and

$$
\mu_{h(x)-Q(x)}(t) \geq T_{M}\left(\phi_{b x, b x}\left(\frac{(4-\lambda) b^{2}}{4} t\right), T_{M}\left(\varphi_{0, x}\left(b^{2} t\right), \varphi_{0,0}\left(2 b^{2} t\right)\right)\right),
$$

for all $x \in X$ and $t>0$, where

$$
\phi_{x, y}(t)=T_{M}\left(T_{M}\left(\psi_{x, y}(t), \psi_{0,0}(2 t)\right), \psi_{0,0}(4 t)\right),
$$

and

$$
\psi_{x, y}(t)=T_{M}\left(\varphi_{\frac{x}{a}, \frac{y}{b}}(t), \varphi_{\frac{x}{a}, \frac{-y}{b}}(t), \varphi_{\frac{x}{a}, 0}\left(\frac{t}{2}\right), \varphi_{0, \frac{y}{b}}\left(\frac{t}{2}\right)\right) .
$$

Moreover

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{2 n}} f\left(2^{n} x\right)
$$

Proof. By Theorem 3.2 and $\sigma(x)=-x$ we get the result.
Corollary 3.5. Let \mathbb{K} be a non-Archimedean field, X be a vector space over \mathbb{K} and $\left(Y, \mu, T_{M}\right)$ be a non-Archimedean random Banach space over \mathbb{K}. Let $\varphi: X^{2} \rightarrow D^{+}$ $\left(\varphi(x, y)\right.$ is denoted by $\left.\varphi_{x, y}\right)$ be a function such that for some $\lambda \in \mathbb{R}, 0<\lambda<8$

$$
\varphi_{x, y}\left(\frac{\lambda}{32} t\right) \geq \varphi_{2 x, 2 y}(t),
$$

for all $x, y \in X$ and $t>0$. If $f, g, h: X \rightarrow Y$ be an even mapping such that

$$
\begin{equation*}
\mu_{f(a x+b y)-a^{2} g(x)-b^{2} h(y)-\frac{a b}{2}(f(x+y)-f(x-y))}(t) \geq \varphi_{x, y}(t), \tag{3.31}
\end{equation*}
$$

and $f(0)=g(0)=h(0)=0$, then there exists a unique quadratic mapping Q : $X \rightarrow Y$ satisfying (3.1) and

$$
\begin{gather*}
\mu_{f(x)-Q(x)}(t) \geq \phi_{x, x}\left(\frac{8-\lambda}{8} t\right), \tag{3.32}\\
\mu_{g(x)-Q(x)}(t) \geq T_{M}\left(\phi_{a x, a x}\left(\frac{(8-\lambda) a^{2}}{8} t\right), T_{M}\left(\varphi_{x, 0}\left(a^{2} t\right), \varphi_{0,0}\left(2 a^{2} t\right)\right)\right),
\end{gather*}
$$

and

$$
\mu_{h(x)-Q(x)}(t) \geq T_{M}\left(\phi_{b x, b x}\left(\frac{(8-\lambda) b^{2}}{8} t\right), T_{M}\left(\varphi_{0, x}\left(b^{2} t\right), \varphi_{0,0}\left(2 b^{2} t\right)\right)\right),
$$

for all $x \in X$ and $t>0$, where

$$
\phi_{x, y}(t)=T_{M}\left(T_{M}\left(\psi_{x, y}(t), \psi_{0,0}(2 t)\right), \psi_{0,0}(4 t)\right),
$$

and

$$
\psi_{x, y}(t)=T_{M}\left(\varphi_{\frac{x}{a}, \frac{y}{b}}(t), \varphi_{\frac{x}{a}, \frac{-y}{b}}(t), \varphi_{\frac{x}{a}, 0}\left(\frac{t}{2}\right), \varphi_{0, \frac{y}{b}}\left(\frac{t}{2}\right)\right) .
$$

Moreover

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{2 n}} f\left(2^{n} x\right)
$$

Proof. By Corollary 3.3 and $\sigma(x)=-x$ we get the result.

Acknowledgement(s) : The authors are thankful to anonymous referees for valuable suggestions.

References

[1] S.M. Ulam, Problems in Modern Mathematics, John Wiley \& Sons, New York, NY, USA, 1964.
[2] D.H. Hyers, On the stability of the linear functional equation, Proceedings of the National Academy of Sciences of the United States of America 27 (4) (1941) 222-224.
[3] T. Aoki, On the stability of the linear transformation n Banach spaces, J. Math. Soc. Japan 2 (1950) 64-66.
[4] Th.M. Rassias, On the stability of linear mapping in Banach spaces, Proc. Amer.Math. Soc. 72 (1978) 297-300.
[5] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, Journal of Mathematical Analysis and Applications 184 (3) (1994) 431-436.
[6] F. Skof, Local properties and approximation of operators, Rendiconti del Seminario Matematico e Fisico di Milano 53 (1983) 113-129.
[7] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Mathematicae 27 (1)(2) (1984) 76-86.
[8] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abhandlungen aus dem Mathematischen Seminar der Universit at Hamburg 62 (1992) 59-64.
[9] C.G. Park, On the stability of the quadratic mapping in Banach modules, Journal of Mathematical Analysis and Applications 276 (1) (2002) 135-144.
[10] B. Bouikhalene, E. Elqorachi, Th.M. Rassias, On the generalized Hyers-Ulam stability of the quadratic functional equation with a general involution, Nonlinear Funct. Anal. Appl. 12 (2007) 247-262.
[11] L. Cadariu, V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, in Iteration Theory, vol. 346 of Grazer Mathematische Berichte, pp. 43-52, Karl-Franzens-Universita et Graz, Graz, Austria, 2004.
[12] A. Charifi, B. Bouikhalene, E. Elqorachi, Hyers-Ulam-Rassias stability of a generalized Pexider functional equation, Banach J. Math. Anal. 1 (2007) 176185.
[13] G. Isac, Th.M. Rassias, Stability of additive mappings: applications to nonlinear analysis, International Journal of Mathematics and Mathematical Sciences 19 (2) (1996) 219-228.
[14] K.W. Jun, Y.H. Lee, On the Hyers-Ulam-Rassias stability of a pexiderized quadratic inequality, Mathematical Inequalities \& Applications 4 (1) (2001) 93-118.
[15] S.M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, Journal of Mathematical Analysis and Applications 222 (1)(1998) 126-137.
[16] M. Mirzavaziri, M.S. Moslehian, Fixed point approach to stability of a quadratic equation, Bulletin of the Brazilian Mathematical Society 37 (3) (2006) 361-376.
[17] C.G. Park, Th. M. Rassias, Hyers-Ulam stability of a generalized Apollonius type quadratic mapping, Journal of Mathematical Analysis and Applications 322 (1) (2006) 371-381.
[18] C. Park, Generalized Hyers-Ulam Stability of Quadratic Functional Equations: A Fixed Point Approach, Hindawi Publishing Corporation Fixed Point Theory and Applications Volume 2008.
[19] Th.M. Rassias, On the stability of functional equations in Banach spaces, Journal of Mathematical Analysis and Applications 251 (1) (2000) 264-284.
[20] A. Najati, C. Park, Fixed Points and Stability of a Generalized Quadratic Functional Equation, Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2009, Article ID 193035, 19 pages doi:10.1155/2009/193035.
[21] D. Mihet, R. Saadati, S.M. Vaezpour, The stability of the quartic functional equation in random normed spaces, Acta Appl. Math. In press.
[22] R. Saadati, S.M. Vaezpour, Y.J. Cho, note to paper " On the stability of cubic mappings and quartic mappings in random normed spaces, Jour. Inequal. Appl. vol. 2009, Article ID 214530, 6 pages, 2009.
[23] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland, New York, NY, USA, 1983.
[24] J.B. Diaz, B. Margolis, Fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bulletin of the American Mathematical Society 74 (1968) 305-309.
[25] O. Hadžic, E. Pap, Fixed Point Theory in PM Spaces, Kluwer Academic Pub-lishers, Dordrecht, 2001.
[26] O. Hadžic, E. Pap, M. Budincevic, Countable extension of triangular normsand their applications to the fixed point theory in probabilistic metric spaces, Kybernetica 38 (3) (2002) 363-381.
[27] A.N. Sherstnev, On the notion of a random normed space, Dokl. Akad. Nauk SSSR 149 (1963) 280-283 (in Russian).
[28] Iz. EL-Fassi, N. Bounader, A. Chahbi, S. Kabbaj, on the stability of σ quadratic functional equation, Jyoti Academic Press 2 (2) (2013) 61-76, ISSN 2319-6939.
[29] D. Mihet, V. Radu, Generalized pseudo-metric and fixed points in probabilistic metric space, carpathian Journal of Mathematics 23 (1)(2) (2007) 126-132.
(Received 30 September 2013)
(Accepted 14 January 2015)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author
 Copyright © 2016 by the Mathematical Association of Thailand. All rights reserved.

