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Abstract : The aim of this paper is to investigate the generalized Hyers - Ulam
stability of the following quadratic functional equation

f(ax+ by) = a2g(x) + b2h(y) +
ab
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in non-Archimedean RN-spaces, by using the fixed point method.
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1 Introduction

The stability problem of functional equations originated from a question of
Ulam [1] in 1940. D. H. Hyers [2] gave a first affirmative partial answer to the
question of Ulam for Banach spaces. Hyers theorem was generalized by T. Aoki [3]
for additive mappings and by Rassias [4] for linear mappings. The paper of Rassias
[4] has been influential in the development of what is now known as the generalized
Hyers-Ulam stability or Hyers-Ulam Rassias stability of functional equations. A
generalization of the Rasssias theorem was obtained by Gǎvruta [5] by replacing
the unbounded Cauchy difference with a general control function in the spirit of
Rassias approach.
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The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1.1)

is called the quadratic functional equation. A generalized Hyers-Ulam stability
for the quadratic functional equation was proved by F. Skof [6] for the function
f : X → Y where X is a normal space and Y is a Banach space. Cholewa [7]
noticed that the theorem of Skof is still true if the relevant domain X is replaced
by an abelian group. Czerwik [8] proved the Hyers-Ulam-Rassias stability of the
quadratic functional equation (1.1). Park [9] proved the generalized Hyers-Ulam
stability of the quadratic functional equation in Banach modules over a C∗ alge-
bra. The stability problem of several functional equations have been extensively
investigated by number mathematicians ([10–19]).

In [20], A. Najati and G. Park showed that the functional equation

f(ax+ by) = a2f(x) + b2f(y) +
ab

2
[f(x+ y)− f(x− y)] (1.2)

is equivalent to the quadratic functional equation (1.1), if a, b are rational numbers
such that a2 + b2 6= 1 and, they proved the stability problem of this equation.

Throughout this paper, assume thatX be a vector space over a non-Archimedean
field K , (Y, µ, T ) is a non-Archimedean random Banach space over K and suppose
σ(σ(x)) = x and σ(x + y) = σ(x) + σ(y), for all x, y ∈ X .

In this paper, using the fixed point method, we will prove the generalized
stability of the following equation:

f(ax+ by) = a2g(x) + b2h(y) +
ab

2
[f(x+ y)− f(x+ σ(y))] (1.3)

where a, b ∈ N\{0, 1}.

In the sequel, we shall adopt the usual terminologies, notions, and conventions
of the theory of non-Archimedean random normed spaces (non-ARN-spaces) as
in [21–23]. In this paper, the space of all probability distribution functions is
denoted by ∆+. Elements of ∆+ are functions F : R ∪ {−∞,∞} → [0, 1], such
that F is left continuous and nondecreasing on R and F (0) = 0, F (+∞) = 1. It’s
clear that the subset

D+ := {F ∈ ∆+ : l−F (+∞) = 1},

where l−f(x) = limt→x− f(t), is a subset of ∆+. The space ∆+ is partially ordered
by the usual point-wise ordering of functions, i.e., F ≤ G if and only if F (t) ≤ G(t)
for all t ∈ R. The maximal element for ∆+ in this order is the distribution function
ε0 given by

ε0(t) =

{

1, if t > 0,
0, if t ≤ 0.
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2 Preliminaries

In this section, we give the definition and theorems that are important in the
following.

Theorem 2.1 ([24]). Let (X, d) be a complete generalized metric space and let
J : X → X be a strict contractive mapping with a Lipschitz constant 0 < L < 1. If
there exists a nonnegative integer k such that d(Jk+1x, Jkx) <∞ for some x ∈ X,
then the followings are true:

1. the sequence {Jnx} converge to a fixed point x∗ for J ,

2. x∗ is the unique fixed point of J in

X∗ =
{

y ∈ X, d(Jkx, y) <∞
}

,

3. if y ∈ X∗, then

d(y, x∗) ≤
1

1− L
d(Jy, y).

Definition 2.2 ([23]). A mapping T : [0, 1]2 → [0, 1] is a continuous triangular
norm (briefly, a continuous t-norm) if T satisfies the following conditions:

1. T is commutative and associative;

2. T is continuous;

3. T (a, 1) = a for all a ∈ [0, 1];

4. T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are Tp(a, b) = ab, TM (a, b) = min(a, b)
and TL(a, b) = max(a+b−1, 0) (the Lukasiewicz t-norm). Recall (see [25,26]) that
if T is a t-norm and {xn} is a given sequence of numbers in [0, 1], T n

i=1xi is defined
recurrently by T 1

i=1xi = x1 and T n
i=1xi = T (T n−1

i=1 xi, xn) = T (x1, ..., xn) for n ≥ 1.
T∞
i=nxi is defined as T∞

i=1xn+i. It is known([26]) that for the Lukasiewicz t-norm
the following holds:

lim
n→∞

(TL)
∞
i=1xn+i = 1 ⇔

∞
∑

n=1

(1 − xn) <∞.

Definition 2.3. By a non-Archimedean field, we mean a field K equipped with
a function(valuation) |.| : K → [0,∞) such that for all r, s ∈ K, the following
conditions hold:

1. |r| = 0 if and only if r = 0;

2. |rs| = |r||s|;

3. |r + s| ≤ max(|r|, |s|) for all r, s ∈ K.
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Clearly,|1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. The function |.| is called the
trivial valuation if |r| = 1, ∀r ∈ K, r 6= 0, and |0| = 0.

Definition 2.4. Let X be a vector space over a scalar field K with a non-Archimedean
non-trivial valuation |.|. A function ‖.‖ : X → R is non-Archimedean norm (val-
uation) if it satisfies the following conditions:

1. ‖x‖ = 0 if and only if x = 0;

2. ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ X;

3. ‖x+ y‖ ≤ max(‖x‖, ‖y‖) for all x, y ∈ X.

Then, (X, ‖.‖) is called a non-Archimedean space. Due to the fact that

‖xm − xn‖ ≤ max{‖xj+1 − xj‖ : m ≤ j ≤ n− 1},

in which n > m, the sequence {xn} is Cauchy if and only if {xn+1 − xn} con-
verges to zero in a non-Archimedean normed space. In a complete non-Archimedean
space, every Cauchy sequence is convergent.

Definition 2.5 ([27]). A non-Archimedean random normed space (briefly, non-
Archimedean RN-space) is a triple (X,µ, T ), where X is a linear space over a
non-Archimedean field K, T is a continuous t-norm, and µ is a mapping from X

into D+ such that, the following conditions hold:

1. µx(t) = ε0(t) for all t > 0 if and only if x = 0;

2. µαx(t) = µx(
t
|α|) for all x ∈ X, t ≥ 0 and α 6= 0;

3. µx+y(max(t, s)) ≥ T (µx(t), µy(s)) for all x, y ∈ X and t, s ≥ 0.

It is easy to see that if (3) holds, then (3’): µx+y(t + s) ≥ T (µx(t), µy(s)) for all
x, y ∈ X and t, s ≥ 0.

Every non-Archimedean normed linear space (X, ‖.‖) defines a non-Archimedean
RN-space (X,µ, TM ) where

µx(t) =
t

t+ ‖x‖

for all t > 0 and x ∈ X .

Definition 2.6. Let (X,µ, T ) be a non-Archimedean RN-space.

1. A sequence {xn} in X is said to be convergent to x in X if for all t > 0,
limn→∞ µxn−x(t) = 1;

2. A sequence {xn} in X is said to be Cauchy sequence in X if for each ε > 0
and t > 0, there exist a positive integer n0 such that for all n ≥ n0 and
p > 0, we have

µxn+p−xn
(t) > 1− ε;
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3. A non-Archimedean RN-space (X,µ, T ) is said to be complete (i.e.,(X,µ, T )
is called a non-Archimedean random Banach space) if every Cauchy sequence
in X is convergent to a point in X.

Theorem 2.7 ([23]). If (X,µ, T ) is a non-Archimedean RN-space and {xn} is a
sequence such that xn → x, then limn→∞ µxn

(t) = µx(t) almost everywhere.

3 Stability of Equation (1.3) in non-Archimedean

RN-Spaces

In the rest of the paper, we take f, g, h : X → Y and we define

Dh
g f(x, y) = f(ax+ by)− a2g(x)− b2h(y)−

ab

2
[f(x+ y)− f(x+ σ(y))]

where a, b in N\{0, 1}.

Theorem 3.1 ([28, Theorem 2.1]). A mapping f : X → Y satisfies

f(ax+ by) = a2f(x) + b2f(y) +
ab

2
[f(x+ y)− f(x+ σ(y))] (3.1)

if and only if f satisfies

f(x+ y) + f(x+ σ(y)) = 2f(x) + 2f(y) and f(x+ σ(x)) = 0 (3.2)

for all x, y ∈ X.

Now using fixed point approach to the non-Archimedean RN-space under ar-
bitrary t-norm, we prove the stability of the σ- quadratic functional equation
Dh

g f(x, y) = 0.

Theorem 3.2. Let K be a non-Archimedean field, X be a vector space over K and
(Y, µ, TM ) be a non-Archimedean random Banach space over K. Let ϕ : X2 → D+

(ϕ(x, y) is denoted by ϕx,y) be a function such that for some λ ∈ R, 0 < λ < 4

ϕ2x,2y(λt) ≥ ϕx,y(t), (3.3)

for all x, y ∈ X and t > 0. If f, g, h : X → Y be an even mapping such that

µDh
g f(x,y)

(t) ≥ ϕx,y(t), (3.4)

and f(0) = g(0) = h(0) = 0, then there exists a unique quadratic mapping Q :
X → Y satisfying (3.1) and

µf(x)− 1
2 f(x+σ(x))−Q(x)(t) ≥ φx,x(

4− λ

4
t), (3.5)
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µg(x)− 1
2 g(x+σ(x))−Q(x)(t) ≥ TM (φax,ax(

(4− λ)a2

4
t), TM (ϕx,0(a

2t), ϕx+σ(x),0(2a
2t))),

(3.6)
and

µh(x)− 1
2h(x+σ(x))−Q(x)(t) ≥ TM (φbx,bx(

(4− λ)b2

4
t), TM (ϕ0,x(b

2t), ϕ0,x+σ(x)(2b
2t))),

(3.7)
for all x ∈ X and t > 0, where

φx,y(t) = TM (TM (ψx,y(t), ψx+σ(x),y+σ(y)(2t)), ψx+σ(x),y+σ(y)(4t)),

and

ψx,y(t) = TM (ϕx
a
,
y
b
(t), ϕx

a
,
σ(y)

b

(t), ϕx
a
,0(
t

2
), ϕ0, y

b
(
t

2
)).

Moreover

Q(x) = lim
n→∞

1

22n
(f(2nx)−

1

2
f(2nx+ 2nσ(x))).

Proof. Putting y = 0 in (3.4) we get

µf(ax)−a2g(x)(t) ≥ ϕx,0(t) (3.8)

for all x ∈ X and t > 0.
Similarly, for all y ∈ X , we can put x = 0 in (3.4) to obtain

µf(by)−b2h(y)(t) ≥ ϕ0,y(t). (3.9)

Also replace y by σ(y) in (3.4)

µDh
g f(x,σ(y))

(t) ≥ ϕx,σ(y)(t). (3.10)

Hence, (3.8), (3.9) and (3.10) imply

µDh
g f(x,y)+Dh

g f(x,σ(y))−2Dh
g f(x,0)−2Dh

g f(0,y)
(t) ≥ TM (µDh

g f(x,y)
(t), µDh

g f(x,σ(y))
(t),

µ2Dh
g f(x,0)

(t), µ2Dh
g f(0,y)

(t)),

i.e.,

µDh
g f(x,y)+Dh

g f(x,σ(y))−2Dh
g f(x,0)−2Dh

g f(0,y)
(t) ≥ TM (ϕx,y(t), ϕx,σ(y)(t), ϕx,0(

t

2
), ϕ0,y(

t

2
))

for all x, y ∈ X and t > 0.
Then, we have

µf(ax+by)+f(ax+bσ(y))−2f(ax)−2f(by)(t) ≥ TM (ϕx,y(t), ϕx,σ(y)(t), ϕx,0(
t

2
), ϕ0,y(

t

2
))

(3.11)
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for all x, y ∈ X and t > 0.
Replacing x by x

a
and y by y

b
in (3.11) we get

µf(x+y)+f(x+σ(y))−2f(x)−2f(y)(t) ≥ ψx,y(t), (3.12)

where ψx,y(t) = TM (ϕx
a
,
y
b
(t), ϕx

a
,
σ(y)

b

(t), ϕx
a
,0(

t
2 ), ϕ0, y

b
( t2 )).

Also, we can replace x by x+ σ(x) and y by y + σ(y) in (3.12) we get

µf(x+σ(x)+y+σ(y))+f(x+σ(x)+y+σ(y))−2f(x+σ(x))−2f(y+σ(y))(t) ≥ ψx+σ(x),y+σ(y)(t)
(3.13)

for all x, y ∈ X and t > 0.
Now we put F (x) = f(x)− 1

2f(x+ σ(x)) and by (3.12) and (3.13) we have

µF (x+y)+F (x+σ(y))−2F (x)−2F (y)(t)

≥ TM (µf(x+y)+f(x+σ(y))−2f(x)−2f(y)(t),

µ− 1
2 f(x+σ(x)+y+σ(y))− 1

2 f(x+σ(x)+y+σ(y))+f(x+σ(x))+f(y+σ(y))(t))

≥ TM (ψx,y(t), µf(x+σ(x)+y+σ(y))+f(x+σ(x)+y+σ(y))−2f(x+σ(x))−2f(y+σ(y))(2t))

≥ TM (ψx,y(t), ψx+σ(x),y+σ(y)(2t)),

that is,

µF (x+y)+F (x+σ(y))−2F (x)−2F (y)(t) ≥ TM (ψx,y(t), ψx+σ(x),y+σ(y)(2t)). (3.14)

If we replace in the first y by x in (3.14) and in the second x and y by x+ σ(x) in
(3.12), we obtain

µF (2x)+F (x+σ(x))−4F (x)(t) ≥ TM (ψx,x(t), ψx+σ(x),x+σ(x)(2t)) (3.15)

and

µ2f(2x+2σ(x))−4f(x+σ(x))(t) ≥ ψx+σ(x),x+σ(x)(t). (3.16)

From (3.15) and (3.16) we have

µF (2x)−4F (x)(t) ≥ TM (µF (2x)+F (x+σ(x))−4F (x)(t), µ−F (x+σ(x))(t))

≥ TM (TM (ψx,x(t), ψx+σ(x),x+σ(x)(2t)), µF (x+σ(x))(t))

= TM (TM (ψx,x(t), ψx+σ(x),x+σ(x)(2t)), µ−1
4 (2f(2x+2σ(x))−4f(x+σ(x)))(t))

= TM (TM (ψx,x(t), ψx+σ(x),x+σ(x)(2t)), µ2f(2x+2σ(x))−4f(x+σ(x))(4t))

≥ TM (TM (ψx,x(t), ψx+σ(x),x+σ(x)(2t)), ψx+σ(x),x+σ(x)(4t)).

That is,

µF (2x)−4F (x)(t) ≥ φx,x(t) (3.17)

where φx,y(t) = TM (TM (ψx,y(t), ψx+σ(x),y+σ(y)(2t)), ψx+σ(x),y+σ(y)(4t)).
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Now, we define the set S by

S := {F : X → Y }

and introduce a generalized metric on S as follows

dφ(F,G) = inf{ε ∈ R+ : µF (x)−G(x)(εt) ≥ φx,x(t), ∀x ∈ X, ∀t > 0}. (3.18)

Then, it is easy to verify that (S, dφ) is complete (see [29]). We define an operator
J : S → S by

JL(x) =
L(2x)

4
,

for all x ∈ X.

Let F,G ∈ S and ε ∈ R+ be an arbitrary constant with dφ(F,G) ≤ ε, that is,

µF (x)−G(x)(εt) ≥ φx,x(t) (3.19)

for all x ∈ X and t > 0. Then

µJF (x)−JG(x)(
λεt

4
) = µF (2x)

4 −G(2x)
4

(
λεt

4
) = µF (2x)−G(2x)(λεt)

≥ φ2x,2x(λt)

≥ φx,x(t) (3.20)

for all x ∈ X and t > 0, that is, dφ(JF, JG) ≤
λε
4 . We hence conclude that

dφ(JF, JG) ≤
λ

4
dφ(F,G)

for any F,G ∈ S.
As 0 < λ < 4, then operator J is strictly contractive.
It follows from (3.17) that

µJF (x)−F (x)(
εt

4
) = µF (2x)

4 −F (x)
(
εt

4
) = µF (2x)−4F (x)(εt)

≥ φx,x(t) (3.21)

for all x ∈ X and t > 0, that is,

dφ(JF, F ) ≤
ε

4
<∞.

By Theorem 2.1, we deduce existence of a fixed point of J , that is, the existence of
mappingQ : X → Y which is a fixed point of J , such that limn→∞ dφ(J

nF,Q) = 0.
By induction, we can easily show that

JnF (x) =
F (2nx)

22n
,
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for all n ∈ N.
Also dφ(F,Q) ≤ 1

1−L
dφ(JF, F ) implies the inequality

dφ(F,Q) ≤
1

1− λ
4

=
4

4− λ
.

Thus

µF (x)−Q(x)(
4t

4− λ
) ≥ φx,x(t),

i.e.,

µF (x)−Q(x)(t) ≥ φx,x(
(4− λ)t

4
). (3.22)

Therefore

Q(x) = lim
n→∞

JnF (x) = lim
n→∞

F (2nx)

22n

= lim
n→∞

1

22n
(f(2nx)−

1

2
f(2nx+ 2nσ(x)))

for all x ∈ X . Also Q is the unique fixed point of J on the set

S∗ = {G ∈ S : dφ(F,G) <∞}.

It follows from (3.14) that

µF (2nx+2ny)+F (2nx+2nσ(y))−2F (2nx)−2F (2ny)

22n
(t) (3.23)

= µF (2nx+2ny)+F (2nx+2nσ(y))−2F (2nx)−2F (2ny)(2
2nt)

≥ TM (ψ2nx,2ny(2
2nt), ψ2nx+2nσ(x),2ny+2nσ(y)(2

2n+1t)))

≥ TM (ψx,y(
22n

λn
t), ψx+σ(x),y+σ(y)(

22n+1

λn
t)).

As limn→∞ TM (ψx,y(
22n

λn t), ψx+σ(x),y+σ(y)(
22n+1

λn t)) = 1 then

lim
n→∞

F (2nx+ 2ny) + F (2nx+ 2nσ(y)) − 2F (2nx)− 2F (2ny)

22n
= 0.

Hence Q(x+ y) +Q(x+ σ(y)) = 2Q(x) + 2Q(y) and Q(2x) = 4Q(x) that is given
Q(x+ σ(x)) = 0, so Q is solution of (3.1) and

µf(x)− 1
2 f(x+σ(x))−Q(x)(t) ≥ φx,x(

4− λ

4
t).

Now, we put G(x) = g(x) − 1
2g(x + σ(x)) and H(x) = h(x) − 1

2h(x + σ(x)), by
(3.8) and (3.9) we have

µF (ax)−a2G(x)(t) = µf(ax)− 1
2 f(ax+aσ(x))−a2(g(x)− 1

2 g(x+σ(x)))(t)

≥ TM (µf(ax)−a2g(x)(t), µ− 1
2 (f(ax+aσ(x))−a2g(x+σ(x)))(t))

≥ TM (ϕx,0(t), ϕx+σ(x),0(2t)), (3.24)
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and

µF (bx)−b2H(x)(t) = µf(bx)− 1
2 f(bx+bσ(x))−b2(h(x)− 1

2h(x+σ(x)))(t)

≥ TM (µf(ax)−b2h(x)(t), µ− 1
2 (f(bx+bσ(x))−b2h(x+σ(x)))(t))

≥ TM (ϕ0,x(t), ϕ0,x+σ(x)(2t)). (3.25)

It follows from (3.22), (3.23) and (3.24) that

µQ(ax)−a2G(x)(t) ≥ TM (µQ(ax)−F (ax)(t), µF (ax)−a2G(x)(t))

≥ TM (φax,ax(
4− λ

4
t), TM (ϕx,0(t), ϕx+σ(x),0(2t))),

and

µQ(bx)−b2H(x)(t) ≥ TM (µQ(bx)−F (bx)(t), µF (bx)−b2H(x)(t))

≥ TM (φbx,bx(
4− λ

4
t), TM (ϕ0,x(t), ϕ0,x+σ(x)(2t))).

Finally, we obtain

µG(x)−Q(x)(t) ≥ TM (φax,ax(
(4− λ)a2

4
t), TM (ϕx,0(a

2t), ϕx+σ(x),0(2a
2t))),

and

µH(x)−Q(x)(t) ≥ TM (φbx,bx(
(4− λ)b2

4
t), TM (ϕ0,x(b

2t), ϕ0,x+σ(x)(2b
2t))),

that is,

µg(x)− 1
2 g(x+σ(x))−Q(x)(t) ≥ TM (φax,ax(

(4− λ)a2

4
t), TM (ϕx,0(a

2t), ϕx+σ(x),0(2a
2t))),

and

µh(x)− 1
2h(x+σ(x))−Q(x)(t) ≥ TM (φbx,bx(

(4− λ)b2

4
t), TM (ϕ0,x(b

2t), ϕ0,x+σ(x)(2b
2t))),

for all x ∈ X and t > 0. This completes the proof of Theorem.

Corollary 3.3. Let K be a non-Archimedean field, X be a vector space over K and
(Y, µ, TM ) be a non-Archimedean random Banach space over K. Let ϕ : X2 → D+

(ϕ(x, y) is denoted by ϕx,y) be a function such that for some λ ∈ R, 0 < λ < 8

ϕx,y(
λ

32
t) ≥ ϕ2x,2y(t),

for all x, y ∈ X and t > 0. If f, g, h : X → Y be an even mapping such that

µDh
g f(x,y)

(t) ≥ ϕx,y(t), (3.26)



Non-Archimedean Random Stability... 161

and f(0) = g(0) = h(0) = 0, then there exists a unique quadratic mapping Q :
X → Y satisfying (3.1) and

µf(x)− 1
2 f(x+σ(x))−Q(x)(t) ≥ φx,x(

8− λ

8
t), (3.27)

µg(x)− 1
2 g(x+σ(x))−Q(x)(t) ≥ TM (φax,ax(

(8 − λ)a2

8
t), TM (ϕx,0(a

2t), ϕx+σ(x),0(2a
2t))),

and

µh(x)− 1
2h(x+σ(x))−Q(x)(t) ≥ TM (φbx,bx(

(8 − λ)b2

8
t), TM (ϕ0,x(b

2t), ϕ0,x+σ(x)(2b
2t))),

for all x ∈ X and t > 0, where

φx,y(t) = TM (TM (ψx,y(t), ψx+σ(x),y+σ(y)(2t)), ψx+σ(x),y+σ(y)(4t)),

and

ψx,y(t) = TM (ϕx
a
,
y
b
(t), ϕx

a
,
σ(y)

b

(t), ϕx
a
,0(
t

2
), ϕ0, y

b
(
t

2
)).

Moreover

Q(x) = lim
n→∞

1

22n
(f(2nx)−

1

2
f(2nx+ 2nσ(x))).

Proof. It is enough to define an operator J : S → S by

JL(x) = 4L(
x

2
).

The result will be obtained from argument as in proof of Theorem 3.2.

Corollary 3.4. Let K be a non-Archimedean field, X be a vector space over K and
(Y, µ, TM ) be a non-Archimedean random Banach space over K. Let ϕ : X2 → D+

(ϕ(x, y) is denoted by ϕx,y) be a function such that for some λ ∈ R, 0 < λ < 4

ϕ2x,2y(λt) ≥ ϕx,y(t), (3.28)

for all x, y ∈ X and t > 0. If f, g, h : X → Y be an even mapping such that

µf(ax+by)−a2g(x)−b2h(y)−ab
2 (f(x+y)−f(x−y))(t) ≥ ϕx,y(t), (3.29)

and f(0) = g(0) = h(0) = 0, then there exists a unique quadratic mapping Q :
X → Y satisfying (3.1) and

µf(x)−Q(x)(t) ≥ φx,x(
4− λ

4
t), (3.30)

µg(x)−Q(x)(t) ≥ TM (φax,ax(
(4 − λ)a2

4
t), TM (ϕx,0(a

2t), ϕ0,0(2a
2t))),



162 Thai J. Math. 14 (2016)/ IZ. EL-Fassi and S. Kabbaj

and

µh(x)−Q(x)(t) ≥ TM (φbx,bx(
(4− λ)b2

4
t), TM (ϕ0,x(b

2t), ϕ0,0(2b
2t))),

for all x ∈ X and t > 0, where

φx,y(t) = TM (TM (ψx,y(t), ψ0,0(2t)), ψ0,0(4t)),

and

ψx,y(t) = TM (ϕx
a
,
y
b
(t), ϕx

a
,
−y
b
(t), ϕx

a
,0(
t

2
), ϕ0, y

b
(
t

2
)).

Moreover

Q(x) = lim
n→∞

1

22n
f(2nx).

Proof. By Theorem 3.2 and σ(x) = −x we get the result.

Corollary 3.5. Let K be a non-Archimedean field, X be a vector space over K and
(Y, µ, TM ) be a non-Archimedean random Banach space over K. Let ϕ : X2 → D+

(ϕ(x, y) is denoted by ϕx,y) be a function such that for some λ ∈ R, 0 < λ < 8

ϕx,y(
λ

32
t) ≥ ϕ2x,2y(t),

for all x, y ∈ X and t > 0. If f, g, h : X → Y be an even mapping such that

µf(ax+by)−a2g(x)−b2h(y)−ab
2 (f(x+y)−f(x−y))(t) ≥ ϕx,y(t), (3.31)

and f(0) = g(0) = h(0) = 0, then there exists a unique quadratic mapping Q :
X → Y satisfying (3.1) and

µf(x)−Q(x)(t) ≥ φx,x(
8− λ

8
t), (3.32)

µg(x)−Q(x)(t) ≥ TM (φax,ax(
(8− λ)a2

8
t), TM (ϕx,0(a

2t), ϕ0,0(2a
2t))),

and

µh(x)−Q(x)(t) ≥ TM (φbx,bx(
(8− λ)b2

8
t), TM (ϕ0,x(b

2t), ϕ0,0(2b
2t))),

for all x ∈ X and t > 0, where

φx,y(t) = TM (TM (ψx,y(t), ψ0,0(2t)), ψ0,0(4t)),

and

ψx,y(t) = TM (ϕx
a
, y
b
(t), ϕx

a
,
−y
b
(t), ϕx

a
,0(
t

2
), ϕ0, y

b
(
t

2
)).

Moreover

Q(x) = lim
n→∞

1

22n
f(2nx).

Proof. By Corollary 3.3 and σ(x) = −x we get the result.
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