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Abstract : In this work, we prove the existence of a coupled coincidence point
theorem for a pair {F,G} of mapping F,G : X×X → X with ϕ- contraction map-
pings in complete metric spaces without G-increasing property of F and mixed
monotone property of G , using concept of (G,F )-closed set. We give some exam-
ples of a nonlinear contraction mapping, which is not applied to the existence of
coupled coincidence point by G using the mixed monotone property. We also show
the uniqueness of a coupled coincidence point of the given mapping. Further, we
apply our results to the existence and uniqueness of a coupled coincidence point
of the given mapping in partially ordered metric spaces.
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1 Introduction

The existence of a fixed point for contraction type of mappings in partially
ordered metric spaces has been first studied by Ran and Reurings [1] and they es-
tablished some new results for contractions in partially ordered metric spaces and
presented applications to matrix equations. Following this line of research, Nieto
and lopez[2, 3] and Agarwal et al.[4] presented some new results for contractions in
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partially ordered metric spaces. In 1987, Guo and Lakshmikantham [5]introduced
the concept of coupled fixed point. Later, Bhaskar and Lakshmikantham [6] in-
troduced the concept of mixed monotone property for contractive operators in
partially ordered metric spaces. They also gived some applications in the exis-
tence and uniqueness of the coupled fixed point theorems for mappings which
satisfy the mixed monotone property. Lakshimikantham and Ćirić [7] extended
the results in [6] by defining the mixed g-monotone and to study the existence
and uniqueness of coupled coincidence point for such mapping which satisfy the
mixed monotone property in partially ordered metric space. As a continuation of
this work, many authors conducted research on the coupled fixed point theory and
coupled coincidence point theory in partially ordered metric spaces and different
spaces. For example see ([8] - [32]).

In the case of a n-tuple fixed point or the multidimensional fixed point theorems
in several spaces. Some authors show that the results of n-tuple fixed point can
be obtained from fixed point theorems and equivalent against the claims of some
authors about reduction of multidimensional versions to unidimensional versions.
For example, Soleimani, Shukla and Rahimi [9] show the validity both n-tuple fixed
point results and fixed point theorems according to another in abstract metric
spaces and Metric-like spaces. They proved that n-tuple fixed point results in
abstract metric spaces and metric-like spaces can be obtained from fixed point
results and conversely. Moreover, the results are true for cone b-metric spaces and
b-metric-like spaces. Roldan and et al. [29] show that most of the multidimensional
fixed point theorems in the context of (ordered) metric spaces are consequences of
well-known fixed point theorems in the literature.

One of the interesting way to developed a coupled fixed point theory in par-
tially ordered metric spaces is to consider the mapping F : X×X → X without the
mixed monotone property. Recently, Sintunavarat and et al. [31, 32] proved some
coupled fixed point theorems for nonlinear contractions without mixed monotone
property and extended some coupled fixed point theorems of Bhaskar and Laksh-
mikantham [6] by using the concept of F -invariant set due to Samet and Vetro
[30]. Very recently, Kutbi and et al.[12] introduced the concept of F -closed set
which is weaker than the concept of F -invariant set and proved some coupled fixed
point theorems without the condition of mixed monotone property.

In 2014, Hussain and et al.[11] presented the new concept of generalized com-
patibility of a pair {F,G} of mappings F,G : X×X → X and proved some coupled
coincidence point results of such mapping without mixed G-monotone property of
F which generalized some recent comparable results in the literature. They also
give some examples and an application to integral equations to support the result.

In this work, we generalize and extend a coupled coincidence point theorem
for a pair {F,G} of mapping F,G : X ×X → X with ϕ- contraction mappings in
complete metric spaces without G-increasing property of F and mixed monotone
property of G , using concept of (G,F )-closed set.
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2 Preliminaries

In this section, we give some definitions, proposition, examples and remarks
which are useful for main results in this paper. Throughout this paper, (X,�)
denotes a partially ordered set with the partial order �. By x � y, we mean y � x

. Let (x,�) is a partially ordered set, the partial order �2 for the product set
X ×X defined in the following way, for all (x, y), (u, v) ∈ X ×X

(x, y) �2 (u, v) ⇒ G(x, y) � G(u, v) and G(v, u) � G(y, x),

where G : X ×X → X is one-one.
We say that (x, y) is comparable to (u, v) if either (x, y) �2 (u, v) or (u, v) �2

(x, y).

Guo and Lakshmikantham [5] introduced the concept of coupled fixed point
as follows:

Definition 2.1 ([5]). An element (x, y) ∈ X ×X is called a coupled fixed point of
a mapping F : X ×X → X if F (x, y) = x and F (y, x) = y.

The concept of a mixed monotone property have been introduced by Bhaskar
and Lakshmikantham in [6].

Definition 2.2 ([6]). Let (X,�) be a partially ordered set and F : X ×X → X.
We say F has the mixed monotone property if for any x, y ∈ X

x1, x2 ∈ X, x1 � x2 implies F (x1, y) � F (x2, y)

and
y1, y2 ∈ X, y1 � y2 implies F (x, y1) � F (x, y2).

Lakshmikantham and Ćirić in [7] introduced the concept of a mixed g-monotone
mapping and a coupled coincidence point.

Definition 2.3 ([7]). Let (X,�) be a partially ordered set and F : X ×X → X

and g : X → X. We say F has the mixed g-monotone property if for any x, y ∈ X

x1, x2 ∈ X, gx1 � gx2 implies F (x1, y) � F (x2, y)

and
y1, y2 ∈ X, gy1 � gy2 implies F (x, y1) � F (x, y2).

Definition 2.4 ([7]). An element (x, y) ∈ X ×X is called a coupled coincidence
point of a mapping F : X × X → X and g : X → X if F (x, y) = gx and
F (y, x) = gy.

Definition 2.5 ([7]). Let X be a non-empty set and F : X×X → X and g : X →
X. We say F and g are commutative if gF (x, y) = F (gx, gy) for all x, y ∈ X.
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Hussain et al. [11] introduced the concept of G-increasing and {F,G} gener-
alized compatible as follows.

Definition 2.6 ([11]). Suppose that F,G : X×X → X are two mapping. F is said
to be G-increasing with respect to � if for all x, y, u, v ∈ X, with G(x, y) � G(u, v)
we have F (x, y) � F (u, v).

Definition 2.7 ([11]). An element (x, y) ∈ X ×X is called a coupled coincidence
point of mappings F,G : X ×X → X if F (x, y) = G(x, y) and F (y, x) = G(y, x).

Definition 2.8 ([11]). Let F,G : X × X → X. We say that the pair {F,G} is
generalized compatible if
{

d(F (G(xn, yn), G(yn, xn)), G(F (xn, yn), F (yn, xn))) → 0 as n→ +∞,

d(F (G(yn, xn), G(xn, yn)), G(F (yn, xn), F (xn, yn))) → 0 as n→ +∞,

whenever (xn) and (yn) are sequences in X such that
{

limn→∞ F (xn, yn) = limn→∞G(xn, yn) = t1,

limn→∞ F (yn, xn) = limn→∞G(yn, xn) = t2.

Definition 2.9 ([11]). Let F,G : X ×X → X be two maps. We say that the pair
{F,G} is commuting if

F (G(x, y), G(y, x)) = G(F (x, y), F (y, x)) for all x, y ∈ X.

Let Φ denote the set of all functions φ : [0,∞) → [0,∞) such that :

(i) φ is continuous and increasing,

(ii) φ(t) = 0 if and only if t = 0,

(iii) φ(t + s) ≤ φ(t) + φ(s), for all t, s ∈ [0,∞).

LetΨ be the set of all functions φ : [0,∞) → [0,∞) such that limt→r ψ(t) > 0 for
all r > 0 and limt→0+ ψ(t) = 0.

Hussain and et al. [11] proved the coupled coincidence point for such mappings
involving (ψ, φ)-contractive condition as follows:

Theorem 2.10 ([11]). Let (X,�) be a partially ordered set and M be a nonempty
subset of X4 and let there exist d be a metric on X such that (X, d) is a complete
metric space. Assume that F,G : X × X → X are two generalized compatible
mappings such that F is G-increasing with respect to �, G is continuous and has
the mixed monotone property. suppose that for any x, y ∈ X, there exists u, v ∈ X

such that F (x, y) = G(u, v) and F (y, x) = G(v, u). Suppose that there exists φ ∈ Φ
and ψ ∈ Ψ such that the following holds

φ(d(F (x, y), F (u, v))) ≤
1

2
φ (d(G(x, y), G(u, v)) + d(G(y, x), G(v, u)))

− ψ

(

d(G(x, y), G(u, v)) + d(G(y, x), G(v, u))

2

)
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for all x, y, u, v ∈ X with (G(x, y) � G(u, v) and G(y, x) � G(v, u)).

Also suppose also that either

(a) F is continuous or

(b) X has the following properties: for any two sequences {xn} and {yn} with

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,

(ii) if a non-increasing sequence ({yn} → y, then y � yn for all n.

If there exist x0, y0 ∈ X ×X with

G(x0, y0) � F (x0, y0) and G(y0, x0) � F (y0, x0).

Then there exist (x, y) ∈ X×X such that G(x, y) = F (x, y) and G(y, x) = F (y, x),
that is F and G have a coupled coincidence point.

Kutbi and et al. [12] introduced the notion of F - closed set which extended
the notion of F -invariant set as follow.

Definition 2.11 ([12]). Let F : X×X → X be a mapping, and let M be a subset
of X4. We say that M is an F -closed subset of X4 if, for all x, y, u, v ∈ X,

(x, y, u, v) ∈M ⇒ (F (x, y), F (y, x), F (u, v), F (v, u)) ∈M.

Now, we give the notion of (G,F )-closed set which is useful for our main
results.

Definition 2.12. Let F,G : X ×X → X be two mapping, and let M be a subset
of X4. We say that M is an (G,F )-closed subset of X4 if, for all x, y, u, v ∈ X,

(G(x, y), G(y, x), G(u, v), G(v, u)) ∈M

⇒ (F (x, y), F (y, x), F (u, v), F (v, u)) ∈M.

Definition 2.13. Let (X,6) be a metric space and M be a subset of X4 . We say
that M satisfies the transitive property if and only if, for all x, y, u, v, a, b ∈ X,

(G(x, y), G(y, x), G(u, v), G(v, u)) ∈M and

(G(u, v), G(v, u), G(a, b), G(b, a)) ∈M

⇒ (G(x, y), G(y, x), G(a, b), G(b, a)) ∈M.

Remark The set M = X4 is trivially (G,F )-closed set, which satisfies the tran-
sitive property.



136 Thai J. Math. 14 (2016)/ P. Charoensawan

Example 2.14. Let (X, d) be a metric space endowed with a partial order �.
Let F,G : X × X → X are two generalized compatible mappings such that F
is G-increasing with respect to �, G is continuous and has the mixed monotone
property. Define a subset M ⊆ X4 by

M = {(x, y, u, v) ∈ X4 : x � u, y � v}.

Let (G(x, y), G(y, x), G(u, v), G(v, u)) ∈ M , It is easy to see that, since F is G-
increasing with respect to �, we have F (x, y) � F (u, v) and F (y, x) � F (v, u)),
this implies that (F (x, y), F (y, x), F (u, v), F (v, u)) ∈M. Then M is (G,F )-closed
subset of X4, which satisfies the transitive property.

3 Main Results

Let Φ denote the set of functions ϕ : [0,∞) → [0,∞) satisfying

1. ϕ(t) < t for all t > 0,

2. limr→t+ ϕ(r) < t for all t > 0.

Theorem 3.1. LetM be a nonempty subset of X4 and let there exist d be a metric
on X such that (X, d) is a complete metric space. Assume that F,G : X×X → X

are two generalized compatible mappings such that G is continuous and for any
x, y ∈ X, there exists u, v ∈ X such that F (x, y) = G(u, v) and F (y, x) = G(v, u).
Suppose that there exists ϕ ∈ Φ such that the following holds

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

≤ ϕ (d(G(x, y), G(u, v)) + d(G(y, x), G(v, u))) (3.1)

for all x, y, u, v ∈ X with (G(x, y), G(y, x), G(u, v), G(v, u)) ∈M .
Also suppose also that either

(a) F is continuous.

(b) for any two sequences {xn} and {yn} with

(xn, yn, xn+1, yn+1)) ∈M and

{G(xn, yn)} → G(x, y), {G(yn, xn)} → G(y, x) for all n > 1 implies

(G(xn, yn), G(yn, xn), G(x, y), G(y, x)) ∈M, for all n > 1.

If there exist x0, y0 ∈ X ×X such that

(G(x0, y0), G(y0, x0), F (x0, y0), F (y0, x0)) ∈M

and M is an (G,F )-closed. Then there exist (x, y) ∈ X ×X such that G(x, y) =
F (x, y) and G(y, x) = F (y, x), that is F and G have a coupled coincidence point.
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Proof. Let x0, y0 ∈ X be such that (G(x0, y0), G(y0, x0), F (x0, y0), F (y0, x0)) ∈M.

From assumption, there exists (x1, y1) ∈ X ×X such that F (x0, y0) = G(x1, y1)
and F (y0, x0) = G(y1, x1). Again from assumption, we can choose x2, y2 ∈ X such
that F (x1, y1) = G(x2, y2) and F (y1, x1) = G(y2, x2). By repeating this argument,
we can construct two sequences {xn}

∞

n=1 and {yn}
∞

n=1 in X such that

F (xn, yn) = G(xn+1, yn+1) and F (yn, xn) = G(yn+1, xn+1) for all n ≥ 1.
(3.2)

Since (G(x0, y0), G(y0, x0), F (x0, y0), F (y0, x0)) ∈ M and M is an (G,F )-closed,
we get

(G(x0, y0), G(y0, x0), F (x0, y0), F (y0, x0))

= (G(x0, y0), G(y0, x0), G(x1, y1), G(y1, x1)) ∈M

⇒ (F (x0, y0), F (y0, x0), F (x1, y1), F (y1, x1))

= (G(x1, y1), G(y1, x1), G(x2, y2), G(y2, x2)) ∈M.

Again, using the fact that M is an (G,F )-closed, we have

(G(x1, y1), G(y1, x1), G(x2, y2), G(y2, x2)) ∈M

⇒ (F (x2, y2), F (y2, x2), F (x3, y3), F (y3, x3))

= (G(x2, y2), G(y2, x2), G(x3, y3), G(y3, x3)) ∈M.

Continuing this process, for all n ≥ 0 we get

(G(xn, yn), G(yn, xn), G(xn+1, yn+1), G(yn+1, xn+1)) ∈M. (3.3)

For all n ≥ 0, denote

δn = d(G(xn, yn), G(xn+1, yn+1)) + d(G(yn, xn), G(yn+1, xn+1)). (3.4)

We can suppose that δn > 0 for all n ≥ 0. If not, (xn, yn) will be a coupled
coincidence point and the proof is finished. From (3.1), (3.2) and (3.3), we have

d(G(xn+1, yn+1), G(xn+2, yn+2)) + d(G(yn+1, xn+1), G(yn+2, xn+2))

= d(F (xn, yn), F (xn+1, yn+1)) + d(F (yn, xn), F (yn+1, xn+1))

≤ ϕ(d(G(xn, yn), G(xn+1, yn+1)) + d(G(yn, xn), G(yn+1, xn+1)))

= ϕ(δn). (3.5)

Therefore, the sequence {δn}
∞

n=1 satisfies

δn+1 ≤ ϕ(δn), for all n ≥ 0. (3.6)

Using property of ϕ it follow that the sequence {δn}
∞

n=1 is decreasing. There-
fore, there exists some δ ≥ 0 such that

lim
n→∞

δn = lim
n→∞

d(G(xn, yn), G(xn+1, yn+1)) + d(G(yn, xn), G(yn+1, xn+1))

= δ. (3.7)
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We shall prove that δ = 0. Assume, to the contrary, that δ > 0. Then by
letting n→ ∞ in (3.6) and using the property of ϕ, we have

δ = lim
n→∞

δn+1 ≤ lim
n→∞

ϕ(δn) = lim
δn→δ+

ϕ(δn) < δ,

a contradiction. Thus δ = 0 and hence

lim
n→∞

δn = lim
n→∞

d(G(xn, yn), G(xn+1, yn+1)) + d(G(yn, xn), G(yn+1, xn+1))

= 0. (3.8)

We now prove that {G(xn, yn)}
∞

n=1 and {G(yn, xn)}
∞

n=1 are Cauchy sequences in
(X, d). Suppose, to the contrary, that at least one of the sequences {G(xn, yn)}

∞

n=1

or {G(yn, xn)}
∞

n=1 is not a Cauchy sequence. Then exists an ǫ > 0 for which
we can find subsequences {G(xm(k), ym(k))} , {G(xn(k), yn(k))} of {G(xn, yn)}

∞

n=1

and {G(ym(k), xm(k))} , {G(yn(k), xn(k))} of {G(yn, xn)}
∞

n=1, respectively, with
n(k) > m(k) ≥ k such that

Dk = d(G(xm(k), ym(k)), G(xn(k), yn(k))) + d(G(ym(k), xm(k)), G(yn(k), xn(k)))

> ǫ. (3.9)

Further, corresponding to m(k), we can choose n(k) in such a way that is the
smallest integer with n(k) > m(k) > k and satisfying (3.9). Then

d(G(xm(k), ym(k)), G(xn(k)−1, yn(k)−1)) + d(G(ym(k), xm(k)), G(yn(k)−1, xn(k)−1))

≤ ǫ. (3.10)

Using (3.9) and (3.10) and the triangle inequality, we have

ǫ < Dk

≤ d(G(xm(k), ym(k)), G(xn(k)−1, yn(k)−1))

+ d(G(xn(k)−1, yn(k)−1), G(xn(k), yn(k)))

+ d(G(ym(k), xm(k)), G(yn(k)−1, xn(k)−1))

+ d(G(yn(k)−1, xn(k)−1), G(yn(k), xn(k)))

≤ ǫ+ δn(k)−1. (3.11)

Letting k → ∞ in (3.11) and using (3.8) , we get

lim
n→∞

Dk = ǫ (3.12)



(G,F )-Closed Set and Coupled Coincidence Point ... 139

Again, for all k ≥ 0, we have

Dk = d(G(xm(k), ym(k)), G(xn(k), yn(k))) + d(G(ym(k), xm(k)), G(yn(k), xn(k)))

≤ d(G(xm(k), ym(k)), G(xm(k)+1, ym(k)+1))

+ d(G(xm(k)+1, ym(k)+1), G(xn(k)+1, yn(k)+1))

+ d(G(xn(k)+1, yn(k)+1), G(xn(k), yn(k)))

+ d(G(ym(k), xm(k)), G(ym(k)+1, xm(k)+1))

+ d(G(ym(k)+1, xm(k)+1), G(yn(k)+1, xn(k)+1))

+ d(G(yn(k)+1, xn(k)+1), G(yn(k), xn(k)))

≤ δm(k) + δn(k) + d(G(xm(k)+1 , ym(k)+1), G(xn(k)+1, yn(k)+1))

+ d(G(ym(k)+1, xm(k)+1), G(yn(k)+1, xn(k)+1)) (3.13)

From (3.3) and n(k) > m(k) we have

(G(xm(k), ym(k)), G(ym(k), xm(k)), G(xm(k)+1, ym(k)+1), G(ym(k)+1, xm(k)+1)) ∈M

and

(G(xm(k)+1, ym(k)+1), G(ym(k)+1, xm(k)+1), G(xm(k)+2, ym(k)+2), G(ym(k)+2, xm(k)+2)) ∈M.

Using M is G-transitive property, we get

(G(xm(k), ym(k)), G(ym(k), xm(k)), G(xm(k)+2, ym(k)+2), G(ym(k)+2, xm(k)+2)) ∈M.

Continue this process, we have

(G(xm(k), ym(k)), G(ym(k), xm(k)), G(xn(k), yn(k)), G(yn(k), xn(k))) ∈M. (3.14)

From (3.1),(3.2) and (3.14), we have

d(G(xm(k)+1, ym(k)+1), G(yn(k)+1, xn(k)+1))

+ d(G(xm(k)+1 , ym(k)+1), G(yn(k)+1, xn(k)+1))

= d(F (xm(k), ym(k)), F (xn(k), yn(k))) + d(F (ym(k), xm(k)), F (yn(k), xn(k)))

≤ ϕ(d(G(xm(k), ym(k)), G(xn(k), yn(k))) + d(G(ym(k), xm(k)), G(yn(k), xn(k))))

= ϕ(Dk) (3.15)

which, by (3.13), yields

Dk ≤ δm(k) + δn(k) + ϕ(Dk). (3.16)

Letting k → ∞ in the above inequality and using (3.8) and (3.12) we get

ǫ = lim
k→∞

Dk ≤ lim
k→∞

(δm(k) + δn(k) + ϕ(Dk)) = lim
Dk→ǫ+

ϕ(Dk) < ǫ,
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a contradiction. Hence {G(xn, yn)}
∞

n=1 and {G(yn, xn)}
∞

n=1 are Cauchy sequences
in (X, d). Since (X, d) is complete and (3.2), there exists x, y ∈ X such that

lim
n→∞

G(xn, yn) = lim
n→∞

F (xn, yn) = x

and

lim
n→∞

G(yn, xn) = lim
n→∞

F (yn, xn) = y. (3.17)

Since the pair {F,G} satisfies the generalized compatibility, from (3.17), we have

lim
n→∞

d(F (G(xn, yn), G(yn, xn)), G(F (xn, yn), F (yn, xn))) = 0

and

lim
n→∞

d(F (G(yn, xn), G(xn, yn)), G(F (yn, xn), F (xn, yn))) = 0. (3.18)

Suppose that assumption (a) hold. For all n ≥ 0, by the triangle inequality we
have

d(G(x, y), F (G(xn , yn), G(yn, xn)))

≤ d(G(x, y), G(F (xn , yn), F (yn, xn)))

+ d(G(F (xn, yn), F (yn, xn)), F (G(xn, yn), G(yn, xn))). (3.19)

and

d(G(y, x), F (G(yn, xn), G(xn, yn)))

≤ d(G(y, x), G(F (yn, xn), F (xn, yn)))

+ d(G(F (yn, xn), F (xn, yn)), F (G(yn, xn), G(xn, yn))). (3.20)

Taking the limit as n→ ∞ in (3.19) and (3.20), Using (3.17) ,(3.18) and the fact
that F and G are continuous, we have

G(x, y) = F (x, y) and G(y, x) = F (y, x). (3.21)

Therefore (x, y) is a coupled coincidence point of F and G.
Suppose now assumption (b) holds. Since {G(xn, yn)}

∞

n=1 is converges to x and
{G(yn, xn)}

∞

n=1 is converges to y. Since the pair {F,G} satisfies the generalized
compatibility, G is continuous and by (3.17), we have

lim
n→∞

G(G(xn, yn), G(yn, xn)) = G(x, y)

= lim
n→∞

G(F (xn, yn), F (yn, xn))

= lim
n→∞

F (G(xn, yn), G(yn, xn)) (3.22)

and

lim
n→∞

G(G(yn, xn), G(xn, yn)) = G(y, x)

= lim
n→∞

G(F (yn, xn), F (xn, yn))

= lim
n→∞

F (G(yn, xn), G(xn, yn)) (3.23)
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From (3.3) and assumption (b) , for all n > 1 we have

(G(G(xn, yn), G(yn, xn)), G(G(yn, xn), G(xn, yn)), G(x, y), G(y, x)) ∈M. (3.24)

Then, by (3.1), (3.2), (3.24), (3.22) , (3.23) and triangle inequality, we have

d(G(x, y), F (x, y)) + d(G(y, x), F (y, x))

≤ d(G(x, y), F (G(xn , yn), G(yn, xn))) + d(F (G(xn, yn), G(yn, xn)), F (x, y))

+ d(G(y, x), F (G(yn, xn), G(xn, yn))) + d(F (G(yn, xn), G(xn, yn)), F (y, x))

≤ ϕ(d(G(G(xn , yn), G(yn, xn)), G(x, y)) + d(G(G(yn, xn), G(xn, yn)), G(y, x)))

+ d(G(x, y), F (G(xn , yn), G(yn, xn))) + d(G(y, x), F (G(yn, xn), G(xn, yn)))

Letting now n → ∞ in the above inequality and using property of ϕ such that
limr→0+ ϕ(r) = 0, we have

d(G(x, y), F (x, y)) + d(G(y, x), F (y, x)) = 0

which implies that G(x, y) = F (x, y) and G(y, x) = F (y, x).

Next, we give an example to validate Theorem 3.1

Example 3.2. Let X = [0, 1], d(x, y) = |x− y| and F,G : X ×X → X be defined
by

F (x, y) =

{

x2
−y2

8 if x ≥ y,

0 if x < y.

and

G(x, y) =

{

x+ y if x ≥ y,

0 if x < y.

Clearly, G does not satisfy mixed monotone property and if x > y, u = v 6= 0 ,
consider

G(x, y) ≤ G(u, v) ⇒ x+ y ≤ u+ v

but F (x, y) = x2 − y2 = (x− y)(x+ y) > 0 = F (u, v).

Then F is not G-increasing.
Now we prove that for any x, y ∈ X, there exists u, v ∈ X such that F (x, y) =
G(u, v) and F (y, x) = G(v, u). It is easy to see the following cases.

Case 1: If x = y, then we have F (y, x) = F (x, y) = 0 = G(0, 0).

Case 2: If x > y, then (x− y)x > (x− y)y and we have

F (x, y) =
x2 − y2

8
=

(x− y)x+ (x− y)y

8
= G(

(x − y)x

8
,
(x − y)y

8
)

and

F (y, x) = 0 = G(
(x − y)y

8
,
(x− y)x

8
).
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Case 3: If y > x, then (y − x)y > (y − x)x and we have

F (y, x) =
y2 − x2

8
=

(y − x)y + (y − x)x

8
= G(

(y − x)y

8
,
(y − x)x

8
)

and

F (x, y) = 0 = G(
(y − x)x

8
,
(y − x)y

8
).

Now, we prove that the pair {F,G} satisfies the generalized compatibility hypothe-
sis. Let {xn}

∞

n=1 and {yn}
∞

n=1 be two sequences in X such that

t1 = lim
n→∞

F (xn, yn) = lim
n→∞

G(xn, yn)

and

t2 = lim
n→∞

F (yn, xn) = lim
n→∞

G(yn, xn).

Then we must have t1 = 0 = t2 and it is easy to prove that

{

limn→∞ d(F (G(xn, yn), G(yn, xn)), G(F (xn, yn), F (yn, xn))) = 0
limn→∞ d(F (G(yn, xn), G(xn, yn)), G(F (yn, xn), F (xn, yn))) = 0.

Now, for all x, y, u, v ∈ X with (G(x, y), G(y, x), G(u, v), G(v, u)) ∈ M = X4 and
let ϕ : [0,+∞) → [0,+∞) be a function defined by ϕ(t) = t

8 , we have

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

= |
x2 − y2

8
−
u2 − v2

8
|+ |

y2 − x2

8
−
v2 − u2

8
|

= 2|
x2 − y2

8
−
u2 − v2

8
|

= 2|
(x− y)(x+ y)

8
−

(u− v)(u+ v)

8
|

≤
1

4
|(x + y)− (u+ v)|

= ϕ (2|(x+ y)− (u+ v)|)

= ϕ (|(x + y)− (u+ v)|+ |(y + x)− (v + u)|)

= ϕ (d(G(x, y), G(u, v)) + d(G(y, x), G(v, u))) .

Therefore condition (3.1) is satisfied. Thus all the requirements of Theorem3.1 are
satisfied and (0, 0) is a coupled coincidence point of F and G.

Next, we show the uniqueness of the coupled coincidence point and coupled
fixed point of F and G.
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Theorem 3.3. In addition to the hypotheses of Theorem3.1, suppose that for
every (x, y), (z, t) ∈ X ×X, there exists (u, v) ∈ X ×X such that

(G(x, y), G(y, x), G(u, v), G(v, u)) ∈M and

(G(z, t), G(t, z), G(u, v), G(v, u)) ∈M.

Then F and G have a unique coupled coincidence point. Moreover, if the pair
{F,G} is commuting, then F and G have a unique coupled fixed point, that is,
there exists a unique (a, b) ∈ X2 such that

a = G(a, b) = F (a, b) and b = G(b, a) = f(b, a)

Proof. From Theorem 3.1, we know that F and G have a coupled coincidence
points. Suppose that (x, y), (z, t) are coupled coincidence point of F and G, that
is,

F (x, y) = G(x, y), F (y, x) = G(y, x) and F (z, t) = G(z, t), F (t, z) = G(t, z).
(3.25)

Now we show that G(x, y) = G(z, t) and G(y, x) = G(t, z). By the hypothesis
there exists (u, v) ∈ X ×X such that (G(x, y), G(y, x), G(u, v), G(v, u)) ∈ M and
(G(z, t), G(t, z), G(u, v), G(v, u)) ∈ M . We put u0 = u and v0 = v and define two
sequence {G(un, vn)}

∞

n=1 and {G(vn, un)}
∞

n=1 as follow,

F (un, vn) = G(un+1, vn+1) and F (vn, un) = G(vn+1, un+1) for all n ≥ 0.

Since M is (G,F )-closed and (G(x, y), G(y, x), G(u, v), G(v, u)) ∈M , we have

(G(x, y), G(y, x), G(u, v), G(v, u))

= (G(x, y), G(y, x), G(u0, v0), G(v0, u0)) ∈M

⇒ (F (x, y), F (y, x), F (u0, v0), F (v0, u0))

= (G(x, y), G(y, x), G(u1, v1), G(v1, u1)) ∈M.

From (G(x, y), G(y, x), G(u1, v1), G(v1, u1)) ∈ M , if we use again the property of
(G,F )-closed, then

(G(x, y), G(y, x), G(u1 , v1), G(v1, u1)) ∈M

⇒ (F (x, y), F (y, x), F (u1, v1), F (v1, u1))

= (G(x, y), G(y, x), G(u2, v2), G(v2, u2)) ∈M.

By repeating this process, we get

(G(x, y), G(y, x), G(un , vn), G(vn, un)) ∈M for all n ≥ 0 (3.26)

Using (3.1), (3.25) and (3.26), we have

d(G(x, y), G(un+1, vn+1)) + d(G(y, x), G(vn+1, un+1))

= d(F (x, y), F (un, vn)) + d(F (y, x), F (vn, un))

≤ ϕ(d(G(x, y), G(un, vn)) + d(G(y, x), G(vn, un))) for all n. (3.27)
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Using property that ϕ(t) < t and repeating this process, we get

d(G(x, y), G(un+1, vn+1)) + d(G(y, x), G(vn+1, un+1))

≤ ϕn(d(G(x, y), G(u1, v1)) + d(G(y, x), G(v1 , u1))) for all n. (3.28)

From ϕ(t) < t and limr→t+ ϕ(r) < t, it follow that limn→∞ ϕn(t) = 0 for each
t > 0. Therefore, from (3.28) we have

lim
n→∞

(d(G(x, y), G(un+1, vn+1)) + d(G(y, x), G(vn+1 , un+1))) = 0. (3.29)

This implies that

lim
n→∞

d(G(x, y), G(un+1, vn+1)) = 0 and lim
n→∞

d(G(y, x), G(vn+1, un+1)) = 0.

(3.30)

Similarly, we show that

lim
n→∞

d(G(z, t), G(un+1, vn+1)) = 0 and lim
n→∞

d(G(t, z), G(vn+1, un+1)) = 0.

(3.31)

From (3.30) and (3.31), we have

G(x, y) = G(z, t) and G(y, x) = G(t, z). (3.32)

Now let the pair {F,G} is commuting, we shall prove that F and G have a unique
coupled fixed point. Since

F (x, y) = G(x, y) and F (y, x) = G(y, x), (3.33)

and F and G commutes, we have

G(G(x, y), G(y, x)) = G(F (x, y), F (y, x)) = F (G(x, y), G(y, x))

and

G(G(y, x), G(x, y)) = G(F (y, x), F (x, y)) = F (G(y, x), G(x, y)). (3.34)

Denote G(x, y) = a and G(y, x) = b. Then, by (3.33) and (3.34) one get

G(a, b) = F (a, b) and G(b, a) = F (b, a). (3.35)

Therefore, (a, b) is a coupled coincidence point of F and G. Then, by (3.32) with
z = a and t = b, it follows that

a = G(x, y) = G(a, b) and b = G(y, x) = G(b, a). (3.36)

Thus (a, b) is a coupled fixed point of G, by (3.33) (a, b) is also a coupled fixed
point of F . To prove the uniqueness, assume (p, q) is another coupled fixed point
of F and G. Then by (3.32) and (3.36) we have

p = G(p, q) = G(a, b) = a and q = G(q, p) = G(b, a) = b.
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Next, we give some application of our results to coupled coincidence point
theorems.

Corollary 3.4. Let (X,�) be a partially ordered set and M be a nonempty subset
of X4 and let there exist d be a metric on X such that (X, d) is a complete metric
space. Assume that F,G : X ×X → X are two generalized compatible mappings
such that F is G-increasing with respect to �, G is continuous and has the mixed
monotone property. suppose that for any x, y ∈ X, there exists u, v ∈ X such that
F (x, y) = G(u, v) and F (y, x) = G(v, u). Suppose that there exists φ ∈ Φ and
ψ ∈ Ψ such that the following holds

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

≤ ϕ (d(G(x, y), G(u, v)) + d(G(y, x), G(v, u)))

for all x, y, u, v ∈ X with (G(x, y) � G(u, v) and G(y, x) � G(v, u)).
Also suppose also that either

(a) F is continuous or

(b) X has the following properties: for any two sequences {xn} and {yn} with

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,

(ii) if a non-increasing sequence ({yn} → y, then y � yn for all n.

If there exist x0, y0 ∈ X ×X with

G(x0, y0) � F (x0, y0) and G(y0, x0) � F (y0, x0).

Then there exist (x, y) ∈ X×X such that G(x, y) = F (x, y) and G(y, x) = F (y, x),
that is F and G have a coupled coincidence point.

Proof. We define the subset M ⊆ X4 by

M = { (x, y, u, v) ∈ X4 : x � u and y � v}.

From Example 2.14, M is an (G,F )-closed set which satisfies the transitive prop-
erty. for all x, y, u, v ∈ X with (G(x, y) � G(u, v) and G(y, x) � G(v, u)), we have
(G(x, y), G(y, x), G(u, v), G(v, u)) ∈M . By (3.1),we get

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

≤ ϕ (d(G(x, y), G(u, v)) + d(G(y, x), G(v, u)))

Since x0, y0 ∈ X ×X with

G(x0, y0) � F (x0, y0) and G(y0, x0) � F (y0, x0). (3.37)

We have
(G(x0, y0), G(y0, x0), F (x0, y0), F (y0, x0)) ∈M.
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For the assumption (a) holds, F is continuous. By assumption (a) of Theorem
3.1, we have G(x, y) = F (x, y) and G(y, x) = F (y, x).

Next, for the assumption (b) holds, Since F is G-increasing with respect to �,
using (3.37) and (3.2), we have

G(xn, yn) � G(xn+1, yn+1) and G(yn, xn) � G(yn+1, xn+1) for all n.

Therefore (G(xn, yn), G(yn, xn), G(xn+1, yn+1), G(yn+1, xn+1)) ∈M .
From H is continuous and by (3.17), we have

lim
n→∞

G(G(xn, yn), G(yn, xn)) = G(x, y)

and

lim
n→∞

G(G(yn, xn), G(xn, yn)) = G(y, x).

For any two sequences {G(xn, yn)}
∞

n=1 and {G(yn, xn)}
∞

n=1 such that {G(xn, yn)}
∞

n=1

is a non-decreasing sequence in X with G(xn, yn) → x and {G(yn, xn)}
∞

n=1 is a
non-increasing sequence in X with G(yn, xn) → y. Using assumption (b), we have

G(xn, yn) � x and G(yn, xn) � y for all n.

Since G has the mixed monotone property, we have

G(G(xn, yn), G(yn, xn))} � G(x, y)

G(G(yn, xn), G(xn, yn))} � G(y, x).

Therefore, we have

(G(G(xn, yn), G(yn, xn)), G(G(yn, xn), G(xn, yn)), G(x, y), G(y, x)) ∈M.

for all n ≥ 1, and so assumption (b) of Theorem 3.1 holds. Now, since all the
hypotheses of Theorem3.1 hold, then F and G have a coupled coincidence point.
The proof is completed.

Corollary 3.5. In addition to the hypotheses of Corollary 3.4, suppose that for
every (x, y), (z, t) ∈ X × X, there exists (u, v) ∈ X × X which is comparable to
(x, y) and (z, t). Then F and G have a unique coupled coincidence point.

Proof. We define the subset M ⊆ X4 by

M = { (x, y, u, v) ∈ X4 : x � u and y � v}.

From Example 2.14, M is an (G,F )-closed set which satisfies the transitive prop-
erty. Thus, the proof of the existence of a coupled coincidence point is straight-
forward by following the same lines as in the proof of Corollary 3.4.
Next, we show the uniqueness of a coupled coincidence point of F and G.
Since for all (x, y), (z, t) ∈ X ×X , there exists (u, v) ∈ X ×X such that

G(x, y) � G(u, v), G(y, x) � G(v, u)
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and
G(z, t) � G(u, v), G(t, z) � G(v, u),

we can conclude that

(G(x, y), G(y, x), G(u, v), G(v, u)) ∈M

and
(G(z, t), G(t, z), G(u, v), G(v, u)) ∈M.

Therefore, since all the hypotheses of Theorem 3.3 hold, F and G have a unique
coupled coincidence point. The proof is completed.
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[7] V. Lakshmikantham, L. Ćirić, Coupled fixed point theorems for nonlinear
contractions in partially ordered metric spaces, Nonliear Anal. TMA 70 (2009)
4341-4349.

[8] M. Abbas, W. Sintunavarat, P. Kumam, Coupled fixed point of generalized
contractive mappings on partially ordered G-metric spaces. Fixed Point The-
ory Appl. 2012, 31 (2012).

[9] G.S. Rad, S. Shukla, H. Rahimi, Some relations between n-tuple fixed point
and fixed point results, Revista de la Real Academia de Ciencias Exactas,
Fisicas y Naturales. Serie A. Matematicas, DOI :10.1007/s13398-014-0196-0.



148 Thai J. Math. 14 (2016)/ P. Charoensawan

[10] N. Hussain, A. Latif, M.H. Shah, Coupled and tripled coincidence point
results without compatibility, Fixed Point Theory and Applications. 2012,
2012:77.

[11] N. Hussain, M. Abbas, A. Azam, J. Ahmad, Coupled coincidence point results
for a generalized compatible pair with applications, Fixed Point Theory and
Applications 2014, 2014:62 doi:10.1186/1687-1812-2014-62.

[12] M.A. Kutbi, A. Rolda’n, W. Sintunavarat, J. Marti’nez-Moreno, C.
Rolda’n, F -closed sets and coupled fixed point theorems without the mixed
monotone property, Fixed Point Theory and Applications 2013, 2013:330
doi:10.1186/1687-1812-2013-330.

[13] N.V. Luong, N.X. Thuan, Coupled fixed points in partially ordered metric
spaces and application, Nonlinear Anal. 74 (2011) 983-992.

[14] S.A. Mohiuddine , A. Alotaibi, On coupled fixed point theorems for nonlin-
ear contractions in partially ordered G-metric spaces, Abstract and Applied
Analysis, Volume 2012, Article ID 897198, 15 pages, 2014.

[15] S.A. Mohiuddine, A. Alotaibi, Some results on tripled fixed point for nonlinear
contractions in partially ordered G-metric spaces, Fixed Point Theory and
Applications, vol. 2012, Article ID 179, 2012.

[16] M. Mursaleen, S.A. Mohiuddine, R.P. Agawal, Coupled fixed point theorems
for α−ψ-contractive type mappings in partially ordered metric spaces, Fixed
Point Theory and Applications 2012, 2012:228. [Corrigendum to Coupled
fixed point theorems for α−ψ-contractive type mappings in partially ordered
metric spaces, Fixed Point Theory and Applications 2013, 2013:127].

[17] Z. Mustafa, B. Sims, A new approach to generalized metric spaces. J. Non-
linear Convex Anal. 7 (2) 289-297 (2006).

[18] Z. Mustafa, H. Aydi, E. Karapinar, On common fixed points in
image-metric spaces using (E.A) property. Comput.Math. Appl. (2012)
doi:10.1016/j.camwa.2012.03.051.

[19] Z. Mustafa, H. Obiedat, F. Awawdeh, Some fixed point theorem for mapping
on complete G-metric spaces. Fixed Point Theory Appl. 2008, Article ID
189870 (2008).

[20] Z. Mustafa, M. Khandaqji, W. Shatanawi, Fixed point results on complete
G-metric spaces. Studia Sci. Math. Hung. 48 (2011) 304-319.

[21] Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in com-
plete G-metric spaces. Fixed Point Theory Appl. 2009, Article ID 917175
(2009).

[22] Z. Mustafa, W. Shatanawi, M. Bataineh, Existence of fixed point results in
G-metric spaces. Int. J. Math. Math. Sci. 2009, Article ID 283028 (2009).



(G,F )-Closed Set and Coupled Coincidence Point ... 149

[23] Z. Mustafa, H. Aydi, E. Karapinar, Generalized Meir Keeler Type Contrac-
tions on G-metric spaces, Applied Mathematics and Computation 219 (21)
(2013) 10441-10447.

[24] Nashine, HK: Coupled common fixed point results in ordered G-metric spaces.
J. Nonlinear Sci. Appl. 1 (2012) 1-13.

[25] A. Roldan, J. Martinez-Moreno, C. Roldan, Multidimensional fixed point the-
orems in partially ordered complete metric spaces, Journal of Mathematical
Analysis and Applications, Volume 396 (2) (2012) 536-545.

[26] A. Roldan, J. Martinez-Moreno, C. Roldan, Karapinar,E: Multidimensional
fixed point theorems in partially ordered complete partial metric spaces under
(ψ, ϕ)-contractivity conditions, Abstract and Applied Analysis, 2013.

[27] A. Roldan, E. Karapinar, Some multidimensional fixed point theorems on
partially preordered G∗-metric spaces under (ψ,ϕ)-contractivity conditions,
Fixed Point Theory and Applications, (2013).

[28] A. Roldan, E. Karapinar, P. Kumam, G-metric spaces in any number of argu-
ments and related fixed point theorems, Fixed Point Theory and Applications,
2014, 2014:13 doi:10.1186/1687-1812-2014-13.

[29] A. Roldan, J. Martinez-Moreno, C. Roldan, and E. Karapinar, Some remarks
on multidimensional fixed point theorems, Fixed Point Theory, Fixed Point
Theory. 15 (2) (2014)545-558.

[30] B. Samet, C. Vetro, Coupled fixed point F -invariant set and fixed point of
N -order, Ann.Funct.Anal. 1 (2010) 46-56.

[31] W. Sintunavarat, P. Kumam, Y.J. Cho, Coupled fixed point theorems for
nonlinear contractions without mixed monotone property, Fixed Point Theory
Appl. 2012, 2012:170.
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