A Nonlinear Parabolic Problems with Lower Order Terms and Measure Data

A. Aberqi ${ }^{\dagger}$, J. Bennouna ${ }^{\dagger}$ and H. Redwane ${ }^{\ddagger} \sqrt{1}$
†Université Sidi Mohammed Ben Abdellah, Départementde Mathématiques Laboratoire LAMA. Faculté des Sciences Dhar-Mahrez B.P 1796 Atlas Fés,Morocco
e-mail : aberqi_ahmed@yahoo.fr (A. Aberqi)
e-mail : jbennouna@hotmail.com (J. Bennouna)
${ }^{\ddagger}$ Faculté des Sciences Juridiques, Economiques et Sociales
University Hassan 1, B.P 784, Settat, Morocco
e-mail : redwane_hicham@yahoo.fr

Abstract

We prove the existence of a renormalized solution to the nonlinear parabolic equation and the second member is assumed to be in $L^{1}\left(Q_{T}\right)+$ $L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$.

Keywords : Parabolic problems; Sobolev space; Renormalized Solutions.
2010 Mathematics Subject Classification : Primary 47A15; Secondary; 46A32; 47D20.

1 Introduction

In the present paper, we establish the existence of a renormalized solution for a class of a nonlinear parabolic equations of type:

$$
\left\{\begin{array}{l}
\frac{\partial b(x, u)}{\partial t}-\operatorname{div}(a(x, t, u, \nabla u))+\operatorname{div}(\phi(x, t, u))=\mu \quad \text { in } Q_{T} \tag{1.1}\\
u(x, t)=0 \text { on } \partial \Omega \times(0, T) \\
\left.b(x, u)\right|_{t=0}=b\left(x, u_{0}(x)\right) \text { in } \Omega .
\end{array}\right.
$$

[^0]In the problem 1.1 , Ω is a bounded domain of $\mathbb{R}^{N}(N \geq 2), T$ is a positive real number, $Q_{T}=\Omega \times(0, T)$. Let $-\operatorname{div}(a(x, t, u, \nabla u))$ be a Leray-Lions operator defined on $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$, let $\phi(x, t, u)$ be a Carathéodory function (see assumptions (2.6)-(2.8), and $b: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ is a Carathéodory function such that for every $x \in \Omega, b(x,$.$) is a strictly increasing C^{1}$-function, the data u_{0} is in $L^{1}(\Omega)$ such that $b\left(., u_{0}\right)$ in $L^{1}(\Omega)$. The measure $\mu=f-\operatorname{div}(F)$ with $f \in L^{1}\left(Q_{T}\right)$ and $F \in\left(L^{p^{\prime}}(Q)\right)^{N}$.

Under our assumptions, problem (1.1) does not admit, in general, a weak solution since the term $\phi(x, t, u)$ may not belong $\left(L_{l o c}^{1}(Q)\right)^{N}$. In order to overcome this difficulty, we work with the framework of of renormalized solutions (see Definition 3.1). The notion of renormalized solutions was introduced by R.-J. DiPerna and P.-L. Lions [1 for the study of the Boltzmann equation. It was then adapted to the study of some nonlinear elliptic or parabolic problems and evolution problems in fluid mechanics we refer to ([2], [3, [4).

The existence and uniqueness of a renormalized solution has been proved by D. Blanchard and F. Murat [2] in the case where $a(x, t, s, \xi)$ is independent of s, and with $\phi=0$, by D. Blanchard, F. Murat and H. Redwane [5 with the large monotonicity on a, by L. Aharouch, J. Bennouna and A. Touzani [6] and by A. Benkirane and J. Bennouna [7] in the Orlicz spaces and degenerated spaces.

In the case where $b(x, u)=u$, the existence of renormalized solutions for (1.1) has been established by R.-Di Nardo [8]. For the degenerated parabolic equation with $b(x, u)=u, \operatorname{div}(\phi(x, t, u))=H(x, t, u, \nabla u)$ and $f \in L^{1}(Q)$, the existence of renormalized solution has been proved by Y. Akdim and al 9 .

The case where $\phi(x, t, u)=0$ and $f \in L^{1}\left(Q_{T}\right)$, the existence of renormalized solutions has been established by H. Redwane [10 in the classical Sobolev space, and where $\operatorname{div}(\phi(x, t, u))=H(x, t, u, \nabla u)$ by Y. Akdim and al [11 in the degenerate Sobolev space without the sign condition and the coercivity condition on the term $H(x, t, u, \nabla u)$.

It is our purpose, in this paper to generalize the result of ([11, [9, [8) and we prove the existence of a renormalized solution of (1.1).

The plan of the paper is as follows: In Section 2 we give some preliminaries and basic assumptions. In Section 3 we give the definition of a renormalized solution of 1.1), and we establish (Theorem 3.1) the existence of such a solution.

2 Assumptions on data and Preliminaries

2.1 Preliminaries

Let Ω be a bounded open set of $\mathbb{R}^{N}(N \geq 2), T$ is a positive real number, and $Q_{T}=\Omega \times(0, T)$. We need the Sobolev embeddings result

Theorem 2.1. (Gagliardo-Nirenberg) Let v be a function in $W_{0}^{1, q}(\Omega) \cap L^{\rho}(\Omega)$ with $q \geq 1$ and $\rho \geq 1$. Then there exists a positive constant C, depending on N, q and
ρ, such that

$$
\|v\|_{L^{\gamma}(\Omega)} \leq C\|\nabla v\|_{\left(L^{q}(\Omega)\right)^{N}}^{\theta}\|v\|_{L^{\rho}(\Omega)}^{1-\theta}
$$

for every θ and γ satisfying

$$
0 \leq \theta \leq 1, \quad 1 \leq \gamma \leq+\infty, \quad \frac{1}{\gamma}=\theta\left(\frac{1}{q}-\frac{1}{N}\right)+\frac{1-\theta}{\rho}
$$

2.2 Assumptions

Throughout this paper, we assume that the following assumptions hold true:
$b: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that for every $x \in \Omega$,
$b(x,$.$) is a strictly increasing \mathcal{C}^{1}(\mathbb{R})$-function with $b(x, 0)=0$, for any $k>0$, there exists a constant $\lambda_{k}>0$ and functions $A_{k} \in L^{\infty}(\Omega)$ and $B_{k} \in L^{p}(\Omega)$ such that: for almost every x in Ω

$$
\begin{equation*}
\lambda_{k} \leq \frac{\partial b(x, s)}{\partial s} \leq A_{k}(x) \quad \text { and } \quad\left|\nabla_{x}\left(\frac{\partial b(x, s)}{\partial s}\right)\right| \leq B_{k}(x) \quad \forall|s| \leq k \tag{2.2}
\end{equation*}
$$

Let $a: Q_{T} \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be a Carathéodory function such that, for any $k>0$, there exist ν_{k} and a function $h_{k} \in L^{p^{\prime}}\left(Q_{T}\right)$ with

$$
\begin{gather*}
|a(x, t, s, \xi)| \leq \nu_{k}\left(h_{k}(x, t)+|\xi|^{p-1}\right) \quad \forall|s| \leq k \tag{2.3}\\
a(x, t, s, \xi) \xi \geq \alpha|\xi|^{p} \quad \text { with } \alpha>0 \tag{2.4}\\
(a(x, t, s, \xi)-a(x, t, s, \eta)(\xi-\eta)>0 \quad \text { with } \xi \neq \eta \tag{2.5}
\end{gather*}
$$

Let $\phi: Q_{T} \times \mathbb{R} \rightarrow \mathbb{R}^{N}$ be a Carathéodory function such that

$$
\begin{gather*}
|\phi(x, t, s)| \leq c(x, t)|s|^{\gamma} \tag{2.6}\\
c(x, t) \in L^{\tau}\left(Q_{T}\right) \quad \text { with } \quad \tau=\frac{N+p}{p-1} \tag{2.7}\\
\gamma=\frac{N+2}{N+p}(p-1) \tag{2.8}
\end{gather*}
$$

for almost every $(x, t) \in Q_{T}$, for every $s \in \mathbb{R}$ and every $\xi, \eta \in \mathbb{R}^{N}$.

$$
\begin{gather*}
f \in L^{1}\left(Q_{T}\right) \text { and } \quad F \in\left(L^{p^{\prime}}\left(Q_{T}\right)\right)^{N} \tag{2.9}\\
u_{0} \in L^{1}(\Omega) \text { such that } b\left(x, u_{0}\right) \in L^{1}(\Omega) \tag{2.10}
\end{gather*}
$$

Throughout the paper, T_{k} denotes the truncation function at height $k \geq 0$:

$$
T_{k}(r)=\max (-k, \min (k, r)) \quad \forall r \in \mathbb{R}
$$

3 Main Results

In this section, we study the existence of renormalized solutions to problem (1.1).

Definition 3.1. A measurable function u is a renormalized solution to problem (1.1), if

$$
\begin{gather*}
b(x, u) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \tag{3.1}\\
T_{k}(u) \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \text { for any } k>0 \tag{3.2}\\
\lim _{n \rightarrow+\infty} \frac{1}{n} \int_{\left\{(x, t) \in Q_{T}:|u(x, t)| \leq n\right\}} a(x, t, u, \nabla u) \nabla u d x d t=0 \tag{3.3}
\end{gather*}
$$

and if for every function S in $W^{2, \infty}(\mathbb{R})$ which is piecewise C^{1} and such that S^{\prime} has a compact support

$$
\begin{gather*}
\frac{\partial B_{S}(x, u)}{\partial t}-\operatorname{div}\left(a(x, t, u, \nabla u) S^{\prime}(u)\right)+S^{\prime \prime}(u) a(x, t, u, \nabla u) \nabla u \tag{3.4}\\
\quad+\operatorname{div}\left(\phi(x, t, u) S^{\prime}(u)\right)-S^{\prime \prime}(u) \phi(x, t, u) \nabla u \\
=f S^{\prime}(u)-\operatorname{div}\left(S^{\prime}(u) F\right)+S^{\prime \prime}(u) F \nabla u \text { in } D^{\prime}\left(Q_{T}\right)
\end{gather*}
$$

and

$$
\begin{equation*}
B_{S}(x, u)(t=0)=B_{S}\left(x, u_{0}\right) \quad \text { in } \quad \Omega \tag{3.5}
\end{equation*}
$$

where $B_{S}(x, z)=\int_{0}^{z} \frac{\partial b(x, s)}{\partial s} S^{\prime}(s) d s$.
Equation (3.4) is formally obtained through pointwise multiplication of equation (1.1) by $S^{\prime}(u)$. However while $a(x, t, u, \nabla u)$ and $\phi(x, t, u)$ does not in general make sense in (1.1). Recall that for a renormalized solution, due to (3.2), each term in (3.4) has a meaning in $L^{1}(Q)+L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right.$) (see e.g. [5], [2], [12], [13, [14].
We have

$$
\begin{equation*}
\frac{\partial B_{S}(x, u)}{\partial t} \text { belongs to } L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)+L^{1}(Q) \tag{3.6}
\end{equation*}
$$

The properties of S, assumptions (2.2) and (3.2) imply that if K is such that supp $S^{\prime} \subset[-K, K]$

$$
\begin{equation*}
\left|\nabla B_{S}(x, u)\right| \leq\left\|A_{K}\right\|_{L^{\infty}(\Omega)}\left|D T_{K}(u)\right|\left\|S^{\prime}\right\|_{L^{\infty}(\mathbb{R})}+K\left\|S^{\prime}\right\|_{L^{\infty}(\mathbb{R})} B_{K}(x) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{S}(x, u) \text { belongs to } L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \tag{3.8}
\end{equation*}
$$

Then (3.6) and (3.8) imply that $B_{S}(x, u)$ belongs to $C^{0}\left([0, T] ; L^{1}(\Omega)\right)$ (for a proof of this trace result see [15), so that the initial condition (3.5) makes sense.

Remark 3.1. For every $S \in W^{1, \infty}(\mathbb{R})$, nondecreasing function such that supp $S^{\prime} \subset$ $[-K, K]$, in view (2.2) we have

$$
\begin{equation*}
\lambda_{K}\left|S(r)-S\left(r^{\prime}\right)\right| \leq\left|B_{S}(x, r)-B_{S}\left(x, r^{\prime}\right)\right| \leq\left\|A_{K}\right\|_{L^{\infty}(\Omega)}\left|S(r)-S\left(r^{\prime}\right)\right| \tag{3.9}
\end{equation*}
$$

for almost every $x \in \Omega$ and for every $r, r^{\prime} \in \mathbb{R}$.
Theorem 3.2. Under assumptions (2.2)-(2.10), then problem (1.1) admits a renormalized solution u in the sense of Definition 3.1.

Step 1: Approximate problem and a priori estimates. For each $\epsilon>0$, we define the following approximations

$$
\begin{gather*}
b_{\epsilon}(x, r)=T_{\frac{1}{\epsilon}}(b(x, r))+\epsilon r \quad \forall r \in \mathbb{R}, \tag{3.10}\\
a_{\epsilon}(x, t, s, \xi)=a\left(x, t, T_{\frac{1}{\epsilon}}(s), \xi\right) \quad \text { a.e. }(x, t) \in Q_{T}, \forall s \in \mathbb{R}, \forall \xi \in \mathbb{R}^{N}, \tag{3.11}\\
\phi_{\epsilon}(x, t, r)=\phi\left(x, t, T_{\frac{1}{\epsilon}}(r)\right) \quad \text { a.e. }(x, t) \in Q_{T}, \forall r \in \mathbb{R}, \tag{3.12}
\end{gather*}
$$

Let $f_{\epsilon} \in L^{p^{\prime}}\left(Q_{T}\right)$ such that

$$
\begin{equation*}
\left\|f_{\epsilon}\right\|_{L^{1}\left(Q_{T}\right)} \leq\|f\|_{L^{1}\left(Q_{T}\right)} \text { and } f_{\epsilon} \rightarrow f \text { strongly in } L^{1}\left(Q_{T}\right) . \tag{3.13}
\end{equation*}
$$

Let $u_{0 \epsilon} \in \mathcal{C}_{0}^{\infty}(\Omega)$ such that

$$
\begin{equation*}
\left\|b_{\epsilon}\left(x, u_{0 \epsilon}\right)\right\|_{L^{1}(\Omega)} \leq\left\|b\left(x, u_{0}\right)\right\|_{L^{1}(\Omega)} \text { and } b_{\epsilon}\left(x, u_{0 \epsilon}\right) \rightarrow b\left(x, u_{0}\right) \text { strongly in } L^{1}(\Omega) . \tag{3.14}
\end{equation*}
$$

In view of 3.10, b_{ϵ} is a Carathéodory function and satisfies 2.2), there exists $\lambda_{\epsilon}>0$ and a function $A_{\epsilon} \in L^{\infty}(\Omega)$ and $B_{\epsilon} \in L^{p}(\Omega)$ such that:
$\lambda_{\epsilon} \leq \frac{\partial b_{\epsilon}(x, s)}{\partial s} \leq A_{\epsilon}(x) \quad$ and $\quad\left|\nabla_{x}\left(\frac{\partial b_{\epsilon}(x, s)}{\partial s}\right)\right| \leq B_{\epsilon}(x) \quad$ a.e. $x \in \Omega, \forall s \in \mathbb{R}$.
Consider the approximate problem:

$$
\left\{\begin{array}{l}
\frac{\partial b_{\epsilon}\left(x, u_{\epsilon}\right)}{\partial t}-\operatorname{div}\left(a_{\epsilon}\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right)\right)+\operatorname{div}\left(\phi_{\epsilon}\left(x, t, u_{\epsilon}\right)\right)=f_{\epsilon}-\operatorname{div}(F) \text { in } Q_{T} \tag{3.15}\\
u_{\epsilon}(x, t)=0 \text { on } \quad \partial \Omega \times(0, T) \\
b_{\epsilon}\left(x, u_{\epsilon}\right)(t=0)=b_{\epsilon}\left(x, u_{0 \epsilon}\right) \text { in } \Omega .
\end{array}\right.
$$

As a consequence, proving existence of a weak solution $u_{\epsilon} \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ is an easy task (see [16).
Step 2: The estimates derived in this step rely on standard techniques for problems of type (3.15). Let $\tau_{1} \in(0, T)$ and t fixed in $\left(0, \tau_{1}\right)$. Using $T_{k}\left(u_{\epsilon}\right) \chi_{(0, t)}$ as test function in (3.15), we integrate between $\left(0, \tau_{1}\right)$, and by the condition (2.6) we have

$$
\begin{equation*}
\int_{\Omega} B_{k}^{\epsilon}\left(x, u_{\epsilon}(t)\right) d x+\int_{Q_{t}} a_{\epsilon}\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) \nabla T_{k}\left(u_{\epsilon}\right) d x d s \tag{3.16}
\end{equation*}
$$

$$
\leq \int_{Q_{t}} c(x, t)\left|u_{\epsilon}\right|^{\gamma}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right| d x d s+\int_{Q_{t}} f_{\epsilon} T_{k}\left(u_{\epsilon}\right) d x d s+\int_{\Omega} B_{k}^{\epsilon}\left(x, u_{0 \epsilon}\right) d x+\int_{Q_{t}} F \nabla T_{k}(u) d x d s
$$ where $B_{k}^{\epsilon}(x, r)=\int_{0}^{r} T_{k}(s) \frac{\partial b_{\epsilon}(x, s)}{\partial s} d s$. Due to definition of B_{k}^{ϵ} we have:

$$
\begin{equation*}
0 \leq \int_{\Omega} B_{k}^{\epsilon}\left(x, u_{0 \epsilon}\right) d x \leq k \int_{\Omega}\left|b_{\epsilon}\left(x, u_{0 \epsilon}\right)\right| d x=k\left\|b\left(x, u_{0 \epsilon}\right)\right\|_{L^{1}(\Omega)} \quad \forall k>0 \tag{3.17}
\end{equation*}
$$

Using (3.16) and 2.4 we obtain:

$$
\begin{gather*}
\int_{\Omega} B_{k}^{\epsilon}\left(x, u_{\epsilon}(t)\right) d x+\alpha \int_{Q_{t}}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right|^{p} d x d s \\
\leq \int_{Q_{t}} c(x, t)\left|u_{\epsilon}\right|^{\gamma}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right| d s d x+k\left(\left\|b\left(x, u_{0 \epsilon}\right)\right\|_{L^{1}(\Omega)}+\|f\|_{L^{1}\left(Q_{T}\right)}\right)+\int_{Q_{t}} F \nabla T_{k}(u) d x d s \tag{3.18}
\end{gather*}
$$

Let $M=\left(\|f\|_{L^{1}\left(Q_{T}\right)}+\left\|b\left(x, u_{0 \epsilon}\right)\right\|_{L^{1}(\Omega)}\right)$, remark that

$$
B_{k}^{\epsilon}(x, s)=\int_{0}^{s} T_{k}(\sigma) \frac{\partial b_{\epsilon}(x, \sigma)}{\partial \sigma} d \sigma \geq \frac{\lambda_{\epsilon}}{2}\left|T_{k}(s)\right|^{2}
$$

we deduce from (3.16) and (3.17) that

$$
\begin{gather*}
\frac{\lambda_{\epsilon}}{2} \int_{\Omega}\left|T_{k}\left(u_{\epsilon}\right)\right|^{2} d x+\alpha \int_{Q_{t}}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right|^{p} d x d s \tag{3.19}\\
\leq M k+\int_{Q_{t}} c(x, t)\left|u_{\epsilon}\right|^{\gamma}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right| d x d s+\int_{Q_{t}} F \nabla T_{k}(u) d x d s .
\end{gather*}
$$

By Gagliardo-Nirenberg and Young inequalities we have:

$$
\begin{align*}
& \int_{Q_{t}} c(x, t)\left|u_{\epsilon}\right|^{\gamma}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right| d x d s \leq C \frac{\gamma}{N+2}\|c(x, t)\|_{L^{\tau}\left(Q_{\tau_{1}}\right)} \sup _{t \in\left(0, \tau_{1}\right)} \int_{\Omega}\left|T_{k}\left(u_{\epsilon}\right)\right|^{2} d x \\
& \quad+C \frac{N+2-\gamma}{N+2}\|c(x, t)\|_{L^{\tau}\left(Q_{\tau_{1}}\right)}\left(\int_{Q_{\tau_{1}}}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right|^{p} d x d s\right)^{\left(\frac{1}{p}+\frac{N \gamma}{(N+2) p}\right) \frac{N+2}{N+2-\gamma}} \tag{3.20}
\end{align*}
$$

Since $\gamma=\frac{(N+2)}{N+p}(p-1)$ and by using 3.19 and 3.20 , we obtain

$$
\begin{gathered}
\frac{\lambda_{\epsilon}}{2} \int_{\Omega}\left|T_{k}\left(u_{\epsilon}\right)\right|^{2} d x+\alpha \int_{Q_{t}}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right|^{p} d x d s \\
\leq M k+C \frac{\gamma}{N+2}\|c(x, t)\|_{L^{\tau}\left(Q_{\tau_{1}}\right)} \sup _{t \in\left(0, \tau_{1}\right)} \int_{\Omega}\left|T_{k}\left(u_{\epsilon}\right)\right|^{2} d x \\
+C \frac{N+2-\gamma}{N+2}\|c(x, t)\|_{L^{\tau}\left(Q_{\tau_{1}}\right)} \int_{Q_{\tau_{1}}}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right|^{p} d x d s+\left(\frac{\alpha}{p}\right)^{-(p-1)}\|F\|_{\left(L^{p^{\prime}}(Q)\right)^{N}}+\frac{\alpha}{p} \int_{Q_{t}}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right|^{p} d x d s
\end{gathered}
$$

Which is equivalent to

$$
\begin{gathered}
\left(\frac{\lambda_{\epsilon}}{2}-C \frac{\gamma}{N+2}\|c(x, t)\|_{L^{\tau}\left(Q_{\tau_{1}}\right)}\right) \sup _{t \in\left(0, \tau_{1}\right)} \int_{\Omega}\left|T_{k}\left(u_{\epsilon}\right)\right|^{2} d x+\frac{\alpha}{p^{\prime}} \int_{Q_{\tau_{1}}}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right|^{p} d x d s \\
-\left(C \frac{N+2-\gamma}{N+2}\|c(x, t)\|_{L^{\tau}\left(Q_{\tau_{1}}\right)}\right) \int_{Q_{\tau_{1}}}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right|^{p} d x d s \leq M k
\end{gathered}
$$

If we choose τ_{1} such that

$$
\begin{equation*}
\left(\frac{\lambda_{\epsilon}}{2}-C \frac{\gamma}{N+2}\|c(x, t)\|_{L^{\tau}\left(Q_{\tau_{1}}\right)}\right) \geq 0 \tag{3.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\alpha}{p^{\prime}}-C \frac{N+2-\gamma}{N+2}\|c(x, t)\|_{L^{\tau}\left(Q_{\tau_{1}}\right)}\right) \geq 0 \tag{3.22}
\end{equation*}
$$

then, let us denote by C the minimum between 3.21 and 3.22 , we obtain

$$
\begin{equation*}
\sup _{t \in\left(0, \tau_{1}\right)} \int_{\Omega}\left|T_{k}\left(u_{\epsilon}\right)\right|^{2} d x+\int_{Q_{\tau_{1}}}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right|^{p} d x d t \leq C M k \tag{3.23}
\end{equation*}
$$

Then, by 3.23 and lemma 3.1, we conclude that $T_{k}\left(u_{\epsilon}\right)$ is bounded in $L^{p}\left(0, T, W_{0}^{1, p}(\Omega)\right)$ independently of ϵ and for any $k \geq 0$, so there exists a subsequence still denoted by u_{ϵ} such that

$$
\begin{equation*}
T_{k}\left(u_{\epsilon}\right) \rightharpoonup H_{k} \quad \text { weakly in } \quad L^{p}\left(0, T, W_{0}^{1, p}(\Omega)\right) \tag{3.24}
\end{equation*}
$$

We turn now to prove the almost every convergence of u_{ϵ} and $b_{\epsilon}\left(u_{\epsilon}\right)$.
Let $k>0$ be large enough and and B_{R} be a ball of Ω, we have:

$$
\begin{aligned}
k \text { meas }\left\{\left\{\left|u_{\epsilon}\right|>k\right\} \cap B_{R} \times[0, T]\right\} & =\int_{0}^{T} \int_{\left\{\left|u_{\epsilon}\right|>k\right\} \cap B_{R}}\left|T_{k}\left(u_{\epsilon}\right)\right| d x d t \\
& \leq \int_{0}^{T} \int_{B_{R}}\left|T_{k}\left(u_{\epsilon}\right)\right| d x d t \\
& \leq\left(\int_{Q}\left|T_{k}\left(u_{\epsilon}\right)\right|^{p} d x d t\right)^{\frac{1}{p}}\left(\int_{0}^{T} \int_{B_{R}} d x d t\right)^{\frac{1}{p^{\prime}}} \\
& \leq T C_{R}(C M k)^{\frac{1}{p}}
\end{aligned}
$$

Which implies that: meas $\left\{\left\{\left|u_{\epsilon}\right|>k\right\} \cap B_{R} \times[0, T]\right\} \leq \frac{c_{1}}{k^{1-\frac{1}{p}}} \quad \forall k \geq 1$, so we have

$$
\lim _{k \rightarrow+\infty} \operatorname{meas}\left\{\left\{\left|u_{\epsilon}\right|>k\right\} \cap B_{R} \times[0, T]\right\}=0
$$

Consider now a function non decreasing $g_{k} \in C^{2}(\mathbb{R})$ such that $g_{k}(s)=s$ for $|s| \leq \frac{k}{2}$ and $g_{k}(s)=k$ for $|s| \geq k$. Multiplying the approximate equation by $g_{k}^{\prime}\left(u_{\epsilon}\right)$, we get
$\frac{\partial B_{k}^{\epsilon}\left(x, u_{\epsilon}\right)}{\partial t}-\operatorname{div}\left(a_{\epsilon}\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) g_{k}^{\prime}\left(u_{\epsilon}\right)\right)+a_{\epsilon}\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) g_{k}^{\prime \prime}\left(u_{\epsilon}\right) \nabla u_{\epsilon}+\operatorname{div}\left(\phi_{\epsilon}\left(x, t, u_{\epsilon}\right) g_{k}^{\prime}\left(u_{\epsilon}\right)\right)$
$-g_{k}^{\prime \prime}\left(u_{\epsilon}\right) \phi_{\epsilon}\left(x, t, u_{\epsilon}\right) \nabla u_{\epsilon}=f_{\epsilon} g_{k}^{\prime}\left(u_{\epsilon}\right)-\operatorname{div}\left(F g_{k}^{\prime}\left(u_{\epsilon}\right)\right)+F g_{k}^{\prime \prime}\left(u_{\epsilon}\right) \nabla u_{\epsilon} \quad$ in $D^{\prime}\left(Q_{T}\right)$
where $B_{g}^{\epsilon}(x, z)=\int_{0}^{z} \frac{\partial b_{\epsilon}(x, s)}{\partial s} g_{k}^{\prime}(s) d s$.
In view of 2.3, 3.11, 3.25 and since $T_{k}\left(u_{\epsilon}\right)$ is bounded in $L^{p}\left(0, T, W_{0}^{1, p}(\Omega)\right)$, we deduce that $g_{k}\left(u_{\epsilon}\right)$ is bounded in $L^{p}\left(0, T, W_{0}^{1, p}(\Omega)\right)$ and $\frac{\partial B_{g}^{\epsilon}\left(x, u_{\epsilon}\right)}{\partial t}$ is bounded in $L^{1}\left(Q_{T}\right)+L^{p^{\prime}}\left(0, T, W^{-1, p^{\prime}}(\Omega)\right)$. Indeed, since $\operatorname{supp}\left(g_{k}^{\prime}\right)$ and $\operatorname{supp}\left(g_{k}^{\prime \prime}\right)$ are both included in $[-\mathrm{k}, \mathrm{k}]$ by 3.12 it follows that for: $0<\epsilon<\frac{1}{k}$

$$
\begin{aligned}
\left|\int_{Q_{T}} \phi_{\epsilon}\left(x, t, u_{\epsilon}\right)^{p^{\prime}}\left(g_{k}^{\prime}\left(u_{\epsilon}\right)\right)^{p^{\prime}} d x d t\right| & \left.\left.\leq \int_{Q_{T}} c(x, t)^{p^{\prime}}\left|T_{\frac{1}{\epsilon}}\left(u_{\epsilon}\right)\right|^{p^{\prime} \gamma} \right\rvert\, g_{k}^{\prime}\left(u_{\epsilon}\right)\right)\left.\right|^{p^{\prime}} d x d t \\
& =\int_{\left\{\left|u_{\epsilon}\right| \leq k\right\}} c(x, t)^{p^{\prime}}\left|T_{k}\left(u_{\epsilon}\right)\right|^{p^{\prime} \gamma}\left|g_{k}^{\prime}\left(u_{\epsilon}\right)\right|^{p^{\prime}} d x d t
\end{aligned}
$$

Furthermore, by Hölder and Gagliardo-Niremberg inequality, it results

$$
\begin{gathered}
\left.\int_{\left\{\left|u_{\epsilon}\right| \leq k\right\}} c(x, t)^{p^{\prime}}\left|T_{k}\left(u_{\epsilon}\right)\right|\right|^{p^{\prime}}\left|g_{k}^{\prime}\left(b_{\epsilon}\left(u_{\epsilon}\right)\right)\right|^{p^{\prime}} d x d t \\
\leq\left\|g_{k}^{\prime}\right\|_{L^{\infty}(\mathbb{R})}\|c(x, t) \mid\|_{L^{\tau}\left(Q_{T}\right)}^{p^{\prime}}\left[s u p_{t \in(0, T)}\left(\int_{\Omega}\left|T_{k}\left(u_{\epsilon}\right)\right|^{2}\right)^{\frac{p}{N}}+\int_{Q_{T}}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right|^{p} d x d t\right] \leq c_{k} .
\end{gathered}
$$

where c_{k} is a constant independently of ϵ which will vary from line to line. In the same by (2.6) we have:

$$
\begin{equation*}
\left|\int_{Q_{T}} \phi_{\epsilon}\left(x, t, u_{\epsilon}\right)^{p^{\prime}}\left(g_{k}^{\prime \prime}\left(u_{\epsilon}\right) \nabla u_{\epsilon}\right)^{p^{\prime}} d x d t\right| \leq \int_{Q_{T}}\left(g_{k}^{\prime \prime}\left(u_{\epsilon}\right)\right)^{p^{\prime}}|c(x, t)|^{p^{\prime}}\left|T_{\frac{1}{\epsilon}}\left(u_{\epsilon}\right)\right|^{p^{\prime}}\left|\nabla u_{\epsilon}\right|^{p^{\prime}} d x d t \tag{3.26}
\end{equation*}
$$

Furthermore, by Hölder and Gagliardo-Niremberg inequality,we obtain for $0<\epsilon<$ $\frac{1}{k}$

$$
\begin{gathered}
\int_{Q_{T}}\left(g_{k}^{\prime \prime}\left(u_{\epsilon}\right)\right)^{p^{\prime}}|c(x, t)|^{p^{\prime}}\left|T_{\frac{1}{\epsilon}}\left(u_{\epsilon}\right)\right|^{p^{\prime} \gamma}\left|\nabla u_{\epsilon}\right|^{p^{\prime}} d x d t \\
=\int_{Q_{T}}\left(g_{k}^{\prime \prime}\left(u_{\epsilon}\right)\right)^{p^{\prime}}|c(x, t)|^{p^{\prime}}\left|T_{k}\left(u_{\epsilon}\right)\right|^{p^{\prime} \gamma}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right|^{p^{\prime}} d x d t \\
\leq\left\|g_{k}^{\prime \prime}\right\|_{L^{\infty}(\mathbb{R})} \int_{Q_{T}}|c(x, t)|^{p^{\prime}}\left|T_{k}\left(u_{\epsilon}\right)\right|^{p^{\prime} \gamma}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right|^{p^{\prime}} d x d t \leq c_{k}
\end{gathered}
$$

We conclude by (3.25) that

$$
\begin{equation*}
\frac{\partial g_{k}\left(u_{\epsilon}\right)}{\partial t} \text { is bounded in } L^{1}(Q)+L^{p^{\prime}}\left(0, T, W^{-1, p^{\prime}}(\Omega)\right) \text {. } \tag{3.27}
\end{equation*}
$$

Arguing again as in [12], estimates (3.24) and (3.27) imply that, for a subsequence, still indexed by ϵ,

$$
\begin{equation*}
u_{\epsilon} \rightarrow u \text { a.e. } Q_{T}, \tag{3.28}
\end{equation*}
$$

where u is a measurable function defined on Q_{T}. Let us prove that $b(x, u)$ belongs to $L^{\infty}\left((0, T), L^{1}(\Omega)\right)$. Using 3.18, 3.19, 3.20 and 3.23) we deduce that

$$
\begin{equation*}
\int_{\Omega} B_{k}^{\epsilon}\left(x, u_{\epsilon}\right) d x \leq M k C+C_{1} \tag{3.29}
\end{equation*}
$$

In view of (3.28) and passing to the limit-inf in (3.29) as ϵ tends to zero, we obtain that with $B_{k}(x, r)=\int_{0}^{r} \frac{\partial b(x, s)}{\partial s} T_{k}(s) d s$. On the other hand, we have

$$
\begin{equation*}
\frac{1}{k} \int_{\Omega} B_{k}(x, u(\tau)) d x \leq C_{2} \tag{3.30}
\end{equation*}
$$

for almost any τ in $(0, T)$. Due to the definition of $B_{k}(x, s)$ and the fact that $\frac{1}{k} B_{k}(x, u)$ converges pointwise to $\int_{0}^{u} s g(s) \frac{\partial b(x, s)}{\partial s} d s=|b(x, u)|$, as k tends to $+\infty$, shows that $b(x, u) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right)$.

Lemma 3.3. The subsequence of u_{ϵ} defined in Step 1 satisfies

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \limsup _{\epsilon \rightarrow 0} \frac{1}{n} \int_{\left\{\left|u_{\epsilon}\right| \leq n\right\}} a\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) \nabla u_{\epsilon} d x d t=0 \tag{3.31}
\end{equation*}
$$

Proof. Using the test function $\psi_{n}\left(u_{\epsilon}\right) \equiv \frac{T_{n}\left(u_{\epsilon}\right)}{n}$ in (3.15), and by (3.12)we get

$$
\begin{align*}
& \int_{0}^{T}<\frac{\partial b_{\epsilon}\left(x, u_{\epsilon}\right)}{\partial t}, \psi_{n}\left(u_{\epsilon}\right)>d t+\int_{Q_{t}} a_{\epsilon}\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) \nabla \psi_{n}\left(u_{\epsilon}\right) d x d t \tag{3.32}\\
\leq & \int_{Q_{T}} c(x, t)\left|T_{\frac{1}{\epsilon}}\left(u_{\epsilon}\right)\right|^{\gamma}\left|\nabla \psi_{n}\left(u_{\epsilon}\right)\right| d x d t+\int_{Q_{T}} f_{\epsilon} \psi_{n}\left(u_{\epsilon}\right) d x d t+\int_{Q_{T}} F \nabla \psi_{n}\left(u_{\epsilon}\right) d x d t
\end{align*}
$$

$$
\begin{aligned}
& \text { hence } \\
& \qquad \int_{\Omega} B_{n}\left(x, u_{\epsilon}\right)(T) d x+\int_{Q_{t}} a_{\epsilon}\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) \nabla \psi_{n}\left(u_{\epsilon}\right) d x d t \\
& \leq \int_{Q_{T}} c(x, t)\left|T_{\frac{1}{\epsilon}}\left(u_{\epsilon}\right)\right|^{\gamma}\left|\nabla \psi_{n}\left(u_{\epsilon}\right)\right| d x d t+\int_{\Omega} B_{n}\left(x, u_{0 \epsilon}\right) d x+\int_{Q_{T}} f_{\epsilon} \psi_{n}\left(u_{\epsilon}\right) d x d t+\int_{Q_{T}} F \nabla \psi_{n}\left(u_{\epsilon}\right)
\end{aligned}
$$

where $B_{n}(x, r)=\int_{0}^{r} \frac{\partial b(x, s)}{\partial s} \psi_{n}(s) d s$. Since $B_{n}\left(x, u_{\epsilon}\right)(T) \geq 0$, then for every $\epsilon<\frac{1}{n}$, we have

$$
\begin{align*}
& \frac{1}{n} \int_{\left\{\mid u_{\epsilon}\right\} \mid<n} a\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) \nabla u_{\epsilon} d x d t \leq \frac{1}{n} \int_{Q_{T}} c(x, t)\left|T_{n}\left(u_{\epsilon}\right)\right|^{\gamma}\left|\nabla T_{n}\left(u_{\epsilon}\right)\right| d x d t \\
& \quad+\int_{\Omega} B_{n}\left(x, u_{0 \epsilon}\right) d x+\frac{1}{n} \int_{Q_{T}} f_{\epsilon} T_{n}\left(u_{\epsilon}\right) d x d t+\frac{1}{n} \int_{Q_{T}} F \nabla T_{n}\left(u_{\epsilon}\right) d x d t \tag{3.33}
\end{align*}
$$

Proceeding as in ([5], 17]), using Young inequality and Galgliardo-Niremberg inequality, we obtain for all $R<n$:

$$
\begin{gather*}
\frac{1}{n} \int_{\left\{\left|u_{\epsilon}\right|<n\right\}} a\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) \nabla u_{\epsilon} d x d t \tag{3.34}\\
\leq \frac{c_{1}}{n}\left\|c(x, t) \chi_{\left\{\left|u^{\epsilon}\right| \geq R\right\}}\right\|_{L^{r}\left(Q_{T}\right)}\left(\sup _{t \in(0, T)} \int_{\Omega}\left|T_{n}\left(u_{\epsilon}\right)\right|^{2} d x\right)^{\frac{1}{r}}\left(\int_{Q_{T}}\left|T_{n}\left(u_{\epsilon}\right)\right|^{p}\right)^{\frac{N+1}{N+p}} \\
+\frac{1}{n} \int_{\left\{\left|u_{\epsilon}\right| \leq R\right\}} c(x, t)\left|T_{R}\left(u_{\epsilon}\right)\right|^{\gamma}\left|\nabla T_{R}\left(u_{\epsilon}\right)\right| d x d t \\
+\int_{\Omega} B_{n}\left(x, u_{0 \epsilon}\right) d x+\frac{1}{n} \int_{Q_{T}} f_{\epsilon} T_{n}\left(u_{\epsilon}\right) d x d t+\frac{\alpha}{2 p n} \int_{Q_{T}}\left|\nabla T_{n}\left(u_{\epsilon}\right)\right|^{p}+\frac{2^{\frac{p^{\prime}}{p}} \alpha^{\frac{-p^{\prime}}{p}}}{n p^{\prime}}\|F\|_{L^{p^{\prime}(Q)}}^{p^{\prime}}
\end{gather*}
$$

Recalling that u_{ϵ} is bounded in $L^{\infty}\left(0, T ; L^{1}(\Omega)\right)$, we obtain

$$
\begin{gather*}
\frac{1}{n} \int_{\left\{\left|u_{\epsilon}\right|<n\right\}} a\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) \nabla u_{\epsilon} d x d t \tag{3.35}\\
\leq c_{2}\left\|c(x, t) \chi_{\left\{\left|u^{\epsilon}\right| \geq R\right\}}\right\|_{L^{r}\left(Q_{T}\right)}+\frac{\alpha}{2 p n} \int_{Q_{T}}\left|T_{n}\left(u_{\epsilon}\right)\right|^{p} d x d t \\
+\frac{1}{n} \int_{\left\{\left|u_{\epsilon}\right| \leq R\right\}} c(x, t)\left|T_{R}\left(u_{\epsilon}\right)\right|^{\gamma}\left|\nabla T_{R}\left(u_{\epsilon}\right)\right| d x d t \\
+\int_{\Omega} B_{n}\left(x, u_{0 \epsilon}\right) d x+\frac{1}{n} \int_{Q_{T}} f_{\epsilon} T_{n}\left(u_{\epsilon}\right) d x d t+\frac{\alpha}{2 n p} \int_{Q_{T}}\left|\nabla T_{n}\left(u_{\epsilon}\right)\right|^{p}+\frac{2^{\frac{p^{\prime}}{p}} \alpha^{\frac{-p^{\prime}}{p}}}{n p^{\prime}}\|F\|_{L^{p^{\prime}(Q)}}^{p^{\prime}}
\end{gather*}
$$

Note that $T_{n}\left(u_{\epsilon}\right)$ converges to $T_{n}(u)$ in $L^{\infty}\left(Q_{T}\right)$ weak-*, and u is finite almost everywhere in Q_{T}, then $\frac{1}{n} T_{n}(u)$ converges to zero almost everywhere in Q_{T}. Since a satisfies (2.4) and in view of (3.35), we deduce that

$$
\begin{gather*}
\left(\frac{p-1}{p}\right) \frac{1}{n} \int_{\left\{\left|u_{\epsilon}\right|<n\right\}} a\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) \nabla u_{\epsilon} d x d t \tag{3.36}\\
\leq c_{2}\left\|c(x, t) \chi_{\left\{\left|u^{\epsilon}\right| \geq R\right\}}\right\|_{L^{r}\left(Q_{T}\right)}+\frac{1}{n} \int_{Q_{T}} c(x, t)\left|T_{R}\left(u_{\epsilon}\right)\right|^{\gamma}\left|\nabla T_{R}\left(u_{\epsilon}\right)\right| d x d t \\
+\int_{\Omega} B_{n}\left(x, u_{0 \epsilon}\right) d x+\frac{1}{n} \int_{Q_{T}} f_{\epsilon} T_{n}\left(u_{\epsilon}\right) d x d t+\frac{2^{\frac{p^{\prime}}{p}} \alpha^{\frac{-p^{\prime}}{p}}}{n p^{\prime}}\|F\|_{L^{p^{\prime}}\left(Q_{T}\right)}^{p^{\prime}}
\end{gather*}
$$

In view of (2.7), 2.9, (3.13), (3.14, , 3.24, (3.28, using Lebesgue's convergence theorem, and and passing to limit in (3.36) as ϵ tends to zero, then n tends to $+\infty$ and then R tends to $+\infty$, is an easy task and we conclude that u_{ϵ} satisfies lemma (3.3).

Step 4: In this step we prove that the weak limit σ_{k} of $a\left(x, t, T_{k}\left(u_{\epsilon}\right), \nabla T_{k}\left(u_{\epsilon}\right)\right)$ can be identified with $a\left(x, t, T_{k}(u), \nabla T_{k}(u)\right)$. In order to prove this result we recall the following lemma:

Lemma 3.4. The subsequence of u_{ϵ} satisfies for any $k \geq 0$:

$$
\begin{gather*}
\underset{\epsilon \rightarrow 0}{\limsup } \int_{Q_{T}} \int_{0}^{t} a\left(x, s, u_{\epsilon}, \nabla T_{k}\left(u_{\epsilon}\right)\right) \nabla T_{k}\left(u_{\epsilon}\right) d s d x d t \leq \int_{Q_{T}} \int_{0}^{t} \sigma_{k} \nabla T_{k}(u) d x d s d t \\
\lim _{\epsilon \rightarrow 0} \int_{Q_{T}} \int_{0}^{t}\left(a\left(x, t, T_{k}\left(u_{\epsilon}\right), \nabla T_{k}\left(u_{\epsilon}\right)\right)-a\left(x, t, T_{k}\left(u_{\epsilon}\right), \nabla T_{k}(u)\right)\right)\left(\nabla T_{k}\left(u_{\epsilon}\right)-\nabla T_{k}(u)\right)=0 \tag{3.37}\\
\left.\sigma_{k}=a\left(x, t, T_{k}(u), \nabla T_{k}(u)\right)\right) \quad \text { a.e. in } Q_{T} \tag{3.38}
\end{gather*}
$$

and as ϵ tends to 0

$$
\begin{equation*}
a\left(x, t, T_{k}\left(u_{\epsilon}\right), \nabla T_{k}\left(u_{\epsilon}\right)\right) \nabla T_{k}\left(u_{\epsilon}\right) \rightharpoonup a\left(x, t, T_{k}(u), \nabla T_{k}(u)\right) \nabla T_{k}(u) \tag{3.40}
\end{equation*}
$$

weakly in $L^{1}\left(Q_{T}\right)$.
Proof. We introduce a time regularization of the $T_{k}(u)$ for $k>0$ in order to perform the monotonicity method. This kind regularization has been introduced at the first time by R. Landes in 18 . Let v_{0}^{μ} be a sequence of function in $L^{\infty}(\Omega) \cap$ $W_{0}^{1, p}(\Omega)$ such that $\left\|v_{0}^{\mu}\right\|_{L^{\infty}(\Omega)} \leq k$ for all $\mu>0$ and v_{0}^{μ} converges to $T_{k}\left(u_{0}\right)$ a.e. in Ω and $\frac{1}{\mu}\left\|v_{0}^{\mu}\right\|_{L^{p}(\Omega)}$ converges to 0 . For $k \geq 0$ and $\mu>0$, let us consider the unique solution $\left(T_{k}(u)\right)_{\mu} \in L^{\infty}\left(Q_{T}\right) \cap L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ of the monotone problem:

$$
\begin{gathered}
\frac{\partial\left(T_{k}(u)\right)_{\mu}}{\partial t}+\mu\left(\left(T_{k}(u)\right)_{\mu}-T_{k}(u)\right)=0 \text { in } D^{\prime}(\Omega) \\
\left(T_{k}(u)\right)_{\mu}(t=0)=\nu_{0}^{\mu} \text { in } \Omega
\end{gathered}
$$

Remark that $\left(T_{k}(u)\right)_{\mu}$ converges to $T_{k}(u)$ a.e. in Q_{T}, weakly-* in $L^{\infty}\left(Q_{T}\right)$ and strongly in $L^{p}\left(0, T ; W_{0}^{p}(\Omega)\right)$ as $\mu \rightarrow+\infty$, and we have

$$
\left\|\left(T_{k}(u)\right)_{\mu}\right\|_{L^{\infty}\left(Q_{T}\right)} \leq \max \left(\left\|\left(T_{k}(u)\right)\right\|_{L^{\infty}\left(Q_{T}\right)},\left\|\nu_{0}^{\mu}\right\|_{L^{\infty}(\Omega)}\right) \leq k, \forall \mu>0, \forall k>0
$$

Lemma 3.5. (see H. Redwane [19]) Let $k \geq 0$ be fixed. Let S be an increasing $C^{\infty}(\mathbb{R})$-function such that $S(r)=r$ for $|r| \leq k$, and supp S^{\prime} is compact. Then

$$
\liminf _{\mu \rightarrow+\infty} \lim _{\epsilon \rightarrow 0} \int_{0}^{T} \int_{0}^{t}<\frac{\partial b_{\epsilon}\left(x, u_{\epsilon}\right)}{\partial t}, S^{\prime}\left(u_{\epsilon}\right)\left(T_{k}\left(u_{\epsilon}\right)-\left(T_{k}(u)\right)_{\mu}\right)>\geq 0
$$

where $<., .>$ denotes the duality pairing between $L^{1}(\Omega)+W^{-1, p^{\prime}}(\Omega)$ and $L^{\infty}(\Omega) \cap$ $W^{1, p}(\Omega)$.

Let S_{n} be a sequence of increasing C^{∞}-function such that:
$S_{n}(r)=r$ for $|r| \leq n, \operatorname{supp}\left(S_{n}^{\prime}\right) \subset[-(n+1),(n+1)]$ and $\left\|S_{n}^{\prime \prime}\right\|_{L^{\infty}(\mathbb{R})} \leq 1$ for any $n \geq 1$.
We use the sequence $\left(T_{k}(u)\right)_{\mu}$ of approximation of $T_{k}(u)$, and plug the test function $S_{n}^{\prime}\left(u_{\epsilon}\right)\left(T_{k}\left(u_{\epsilon}\right)-\left(T_{k}(u)\right)_{\mu}\right)$ for $n>0$ and $\mu>0$. For fixed $k \geq 0$, let $W_{\mu}^{\epsilon}=$ $T_{k}\left(u_{\epsilon}\right)-\left(T_{k}(u)\right)_{\mu}$ we obtain upon integration over $(0, t)$ and then over $(0, T)$:

$$
\begin{gather*}
\int_{0}^{T} \int_{0}^{t}<\frac{\partial b_{\epsilon}\left(x, u_{\epsilon}\right)}{\partial t}, S_{n}^{\prime}\left(u_{\epsilon}\right) W_{\mu}^{\epsilon}>d s d t+\int_{Q_{T}} \int_{0}^{t} a_{\epsilon}\left(x, s, u_{\epsilon}, \nabla u_{\epsilon}\right) S_{n}^{\prime}\left(u_{\epsilon}\right) \nabla W_{\mu}^{\epsilon} d s d t d x \\
+\int_{Q_{T}} \int_{0}^{t} a_{\epsilon}\left(x, s, u_{\epsilon}, \nabla u_{\epsilon}\right) S_{n}^{\prime \prime}\left(u_{\epsilon}\right) \nabla u_{\epsilon} \nabla W_{\mu}^{\epsilon} d s d t d x \tag{3.41}\\
-\int_{Q_{T}} \int_{0}^{t} \phi_{\epsilon}\left(x, s, u_{\epsilon}\right) S_{n}^{\prime}\left(u_{\epsilon}\right) \nabla W_{\mu}^{\epsilon} d s d t d x \\
-\int_{Q_{T}} \int_{0}^{t} S_{n}^{\prime \prime}\left(u_{\epsilon}\right) \phi_{\epsilon}\left(x, s, u_{\epsilon}\right) \nabla u_{\epsilon} \nabla W_{\mu}^{\epsilon} d s d t d x=\int_{Q_{T}} \int_{0}^{t} f_{\epsilon} S_{n}^{\prime}\left(u_{\epsilon}\right) W_{\mu}^{\epsilon} d x d s d t \\
\quad+\int_{Q_{T}} \int_{0}^{t} F S_{n}^{\prime}\left(u_{\epsilon}\right) \nabla W_{\mu}^{\epsilon} d s d t d x+\int_{Q_{T}} \int_{0}^{t} F S_{n}^{\prime \prime}\left(u_{\epsilon}\right) \nabla u_{\epsilon} \nabla W_{\mu}^{\epsilon} d s d t d x
\end{gather*}
$$

We pass to the limit in (3.41) as $\epsilon \rightarrow 0, \mu \rightarrow+\infty$ and then $n \rightarrow+\infty$ for k real number fixed. We use lemma 3.5 and proceeding as in ([5], 19]), then it possible to conclude that

$$
\begin{gather*}
\liminf _{\mu \rightarrow+\infty} \lim _{\epsilon \rightarrow 0} \int_{0}^{T} \int_{0}^{t}<\frac{\partial b_{\epsilon}\left(x, u_{\epsilon}\right)}{\partial t}, W_{\mu}^{\epsilon}>d s d t \geq 0 \quad \text { for any } n \geq k \tag{3.42}\\
\lim _{n \rightarrow+\infty} \limsup _{\mu \rightarrow+\infty} \limsup _{\epsilon \rightarrow 0} \int_{Q_{T}} \int_{0}^{t} a_{\epsilon}\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) S_{n}^{\prime \prime}\left(u_{\epsilon}\right) \nabla u_{\epsilon} \nabla W_{\mu}^{\epsilon} d s d t d x=0 \tag{3.43}\\
 \tag{3.44}\\
\lim _{\mu \rightarrow+\infty} \lim _{\epsilon \rightarrow 0} \int_{Q_{T}} \int_{0}^{t} f_{\epsilon} S_{n}^{\prime}\left(u_{\epsilon}\right) W_{\mu}^{\epsilon} \quad d s d t d x=0 \tag{3.45}\\
\quad \lim _{\mu \rightarrow+\infty} \int_{Q_{T}} \int_{0}^{t} F S_{n}^{\prime}\left(u_{\epsilon}\right) \nabla W_{\mu}^{\epsilon} \quad d s d t d x=0 \tag{3.46}\\
\lim _{\mu \rightarrow+\infty} \int_{Q_{T}} \int_{0}^{t} F S_{n}^{\prime \prime}\left(u_{\epsilon}\right) \nabla u_{\epsilon} W_{\mu}^{\epsilon} \quad d s d t d x=0
\end{gather*}
$$

Now we prove that for any $n \geq 1$:

$$
\begin{equation*}
\lim _{\mu \rightarrow+\infty} \lim _{\epsilon \rightarrow 0} \int_{Q_{T}} \int_{0}^{t} \phi_{\epsilon}\left(x, t, u_{\epsilon}\right) S_{n}^{\prime}\left(u_{\epsilon}\right) \nabla W_{\mu}^{\epsilon} d s d t d x=0 \tag{3.47}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\mu \rightarrow+\infty} \lim _{\epsilon \rightarrow 0} \int_{Q_{T}} \int_{0}^{t} S_{n}^{\prime \prime}\left(u_{\epsilon}\right) \phi_{\epsilon}\left(x, t, u_{\epsilon}\right) \nabla u_{\epsilon} \nabla W_{\mu}^{\epsilon} d s d t d x=0 \tag{3.48}
\end{equation*}
$$

Proof of 3.47 : Let us recall the main properties of W_{μ}^{ϵ}. For fixed $\mu>0$: W_{μ}^{ϵ} converges to $T_{k}(u)-\left(T_{k}(u)\right)_{\mu}$ weakly in $L^{p}\left(0, T, W_{0}^{1, p}(\Omega)\right)$ as $\epsilon \rightarrow 0$. Remark that

$$
\begin{equation*}
\left\|W_{\mu}^{\epsilon}\right\|_{L^{\infty}\left(Q_{T}\right)} \leq 2 k \quad \text { for any } \epsilon>0, \mu>0 \tag{3.49}
\end{equation*}
$$

then we deduce that

$$
\begin{equation*}
W_{\mu}^{\epsilon} \rightharpoonup T_{k}(u)-\left(T_{k}(u)\right)_{\mu} \quad \text { a.e in } Q_{T} \text { and in } L^{\infty}\left(Q_{T}\right) \text { weak }_{*}, \text { when } \epsilon \rightarrow 0 \tag{3.50}
\end{equation*}
$$

One had supp $S^{\prime} \subset[-(n+1), n+1]$ for any fixed $n \geq 1$ and $0<\epsilon<\frac{1}{n+1}$, we have $\phi_{\epsilon}\left(x, t, u_{\epsilon}\right) S_{n}^{\prime}\left(u_{\epsilon}\right) \nabla W_{\mu}^{\epsilon}=\phi_{\epsilon}\left(x, t, T_{n+1}\left(u_{\epsilon}\right)\right) S_{n}^{\prime}\left(u_{\epsilon}\right) \nabla W_{\mu}^{\epsilon}$ a.e. in Q_{T}. On the other hand $\phi_{\epsilon}\left(x, t, T_{n+1}\left(u_{\epsilon}\right)\right) S_{n}^{\prime}\left(u_{\epsilon}\right) \rightarrow \phi\left(x, t, T_{n+1}(u)\right) S_{n}^{\prime}(u)$ a.e. in Q_{T} and

$$
\left|\phi_{\epsilon}\left(x, t, T_{n+1}\left(u_{\epsilon}\right)\right) S_{n}^{\prime}\left(u_{\epsilon}\right)\right| \leq c(x, t)(n+1)^{\gamma} \quad \text { for } n \geq 1
$$

By (3.50 and strongly convergence of $T_{k}\left(u_{\epsilon}\right)_{\mu}$ in $L^{p}\left(0, T, W_{0}^{1, p}(\Omega)\right)$ we obtain (3.47).

Proof of $\mathbf{3 . 4 8}$: For any fixed $n \geq 1$ and $0<\epsilon<\frac{1}{n+1}$:

$$
\phi_{\epsilon}\left(x, t, u_{\epsilon}\right) S_{n}^{\prime \prime}\left(u_{\epsilon}\right) \nabla u_{\epsilon} W_{\mu}^{\epsilon}=\phi_{\epsilon}\left(x, t, T_{n+1}\left(u_{\epsilon}\right)\right) S_{n}^{\prime \prime}\left(u_{\epsilon}\right) \nabla T_{n+1}\left(u_{\epsilon}\right) W_{\mu}^{\epsilon} \quad \text { a.e. in } Q_{T}
$$

By (3.49) and 3.50 it is possible to pass to the limit for $\epsilon \rightarrow 0$, and we obtain

$$
\phi_{\epsilon}\left(x, t, T_{n+1}\left(u_{\epsilon}\right)\right) S_{n}^{\prime \prime}\left(u_{\epsilon}\right) W_{\mu}^{\epsilon} \rightarrow \phi\left(x, t, T_{n+1}(u)\right) S_{n}^{\prime \prime}(u) W_{\mu} \quad \text { a.e. in } Q_{T}
$$

Since $\left|\phi\left(x, t, T_{n+1}(u)\right) S_{n}^{\prime \prime}(u) W_{\mu}\right| \leq 2 k|c(x, t)|(n+1)^{\gamma}$ a.e. in Q_{T} and $\left(T_{k}(u)\right)_{\mu}$ converges to 0 in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$, we obtain (3.48).

Recalling (3.42), (3.47), (3.48), (3.43), (3.44), (3.45) and (3.46) the proof of (3.37) is complete.

Proceeding as in [5], it can be deduced from (3.37) that (3.38), (3.39) and (3.40) hold true.

Note that, taking the limit as ϵ tends to 0 in (3.31) and using (3.40) show that u satisfies (3.3). Now we want to prove that u satisfies the equation (3.4).
Let S be a function in $W^{2, \infty}(\mathbb{R})$ such that $\operatorname{supp} S^{\prime} \subset[-k, k]$ where k is a real positive number. Pointwise multiplication of the approximate equation (3.15) by $S^{\prime}\left(u_{\epsilon}\right)$ leads to

$$
\begin{array}{r}
\frac{\partial B_{S}^{\epsilon}\left(x, u_{\epsilon}\right)}{\partial t}-\operatorname{div}\left(a_{\epsilon}\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) S^{\prime}\left(u_{\epsilon}\right)\right)+S^{\prime \prime}\left(u_{\epsilon}\right) a\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) \nabla u_{\epsilon} \tag{3.51}\\
+\operatorname{div}\left(\phi_{\epsilon}\left(x, t, u_{\epsilon}\right) S^{\prime}\left(u_{\epsilon}\right)\right)-S^{\prime \prime}\left(u_{\epsilon}\right) \phi_{\epsilon}\left(x, t, u_{\epsilon}\right) \nabla u_{\epsilon} \\
=f_{\epsilon} S^{\prime}\left(u_{\epsilon}\right)-\operatorname{div}\left(F S^{\prime}\left(u_{\epsilon}\right)\right)+S^{\prime \prime}\left(u_{\epsilon}\right) F \nabla u_{\epsilon} \quad \text { in } D^{\prime}\left(Q_{T}\right)
\end{array}
$$

where $B_{S}^{\epsilon}(x, r)=\int_{0}^{r} \frac{\partial b^{\epsilon}(x, s)}{\partial s} S^{\prime}(s) d s$. In what follows we pass to the limit as ϵ tends to O in each term of 3.51. Since u_{ϵ} converges to u a.e. in Q_{T}
implies that $B_{S}^{\epsilon}\left(x, u_{\epsilon}\right)$ converges to $B_{S}(x, u)$ a.e. in Q_{T} and $L^{\infty}\left(Q_{T}\right)$ weak*, then $\frac{\partial B_{S}^{\epsilon}\left(x, u_{\epsilon}\right)}{\partial t}$ converges to $\frac{\partial B_{S}(x, u)}{\partial t}$ in $D^{\prime}\left(Q_{T}\right)$. We observe that the term $a_{\epsilon}\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) S^{\prime}\left(u_{\epsilon}\right)$ can be identified with $a\left(x, t, T_{k}\left(u_{\epsilon}\right), \nabla T_{k}\left(u_{\epsilon}\right)\right) S^{\prime}\left(u_{\epsilon}\right)$ for $\epsilon \leq \frac{1}{k}$, so using the pointwise convergence of u_{ϵ} to u in Q_{T}, the weakly convergence of $T_{k}\left(u_{\epsilon}\right)$ to $T_{k}(u)$ in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$, we get

$$
a_{\epsilon}\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) S^{\prime}\left(u_{\epsilon}\right) \rightharpoonup a\left(x, t, T_{k}\left(u_{\epsilon}\right), \nabla T_{k}(u)\right) S^{\prime}(u) \quad \text { in } L^{p^{\prime}}\left(Q_{T}\right),
$$

and

$$
S^{\prime \prime}\left(u_{\epsilon}\right) a_{\epsilon}\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) \nabla u_{\epsilon} \rightharpoonup S^{\prime \prime}(u) a\left(x, t, T_{k}\left(u_{\epsilon}\right), \nabla T_{k}(u)\right) \nabla T_{k}(u) \quad \text { in } L^{1}\left(Q_{T}\right) .
$$

Furthermore, since $\phi_{\epsilon}\left(x, t, u_{\epsilon}\right) S^{\prime}\left(u_{\epsilon}\right)=\phi_{\epsilon}\left(x, t, T_{k}\left(u_{\epsilon}\right)\right) S^{\prime}\left(u_{\epsilon}\right)$ a.e. in Q_{T}. By (3.12) we obtain $\left|\phi_{\epsilon}\left(x, t, T_{k}\left(u_{\epsilon}\right)\right) S^{\prime}\left(u_{\epsilon}\right)\right| \leq|c(x, t)| k^{\gamma}$, it follows that

$$
\phi_{\epsilon}\left(x, t, T_{k}\left(u_{\epsilon}\right)\right) S^{\prime}\left(u_{\epsilon}\right) \rightarrow \phi_{\epsilon}\left(x, t, T_{k}(u)\right) S^{\prime}(u) \quad \text { strongly in } L^{p^{\prime}}\left(Q_{T}\right) .
$$

In a similar way, it results

$$
S^{\prime \prime}\left(u_{\epsilon}\right) \phi_{\epsilon}\left(x, t, u_{\epsilon}\right) \nabla u_{\epsilon}=S^{\prime \prime}\left(T_{k}\left(u_{\epsilon}\right)\right) \phi_{\epsilon}\left(x, t, T_{k}\left(u_{\epsilon}\right)\right) \nabla T_{k}\left(u_{\epsilon}\right) \quad \text { a.e. in } Q_{T} .
$$

Using the weakly convergence of $T_{k}\left(u_{\epsilon}\right)$ in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ it is possible to prove that

$$
S^{\prime \prime}\left(u_{\epsilon}\right) \phi_{\epsilon}\left(x, t, u_{\epsilon}\right) \nabla u_{\epsilon} \rightarrow S^{\prime \prime}(u) \phi(x, t, u) \nabla u \quad \text { in } L^{1}\left(Q_{T}\right),
$$

and $S^{\prime \prime}\left(u_{\epsilon}\right) F \nabla u_{\epsilon}$ converges to $S^{\prime \prime}(u) F \nabla u$ in $L^{1}\left(Q_{T}\right)$. Since $\left|S^{\prime}\left(u_{\epsilon}\right)\right| \leq C$, it follow that $F S^{\prime \prime}\left(u_{\epsilon}\right)$ converges to $F S^{\prime \prime}(u)$ strongly in $L^{p^{\prime}}\left(Q_{T}\right)$.

Finally by 3.13) we deduce that $f_{\epsilon} S^{\prime}\left(u_{\epsilon}\right)$ converges to $f S^{\prime}(u)$ in $L^{1}\left(Q_{T}\right)$. It remains to prove that $B_{S}(x, u)$ satisfies the initial condition $B_{S}(x, u)(t=$ $0)=B_{S}\left(x, u_{0}\right)$ in Ω. To this end, firstly remark that $B_{S}^{\epsilon}\left(x, u_{\epsilon}\right)$ is bounded in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ (see 3.7). Secondly the above considerations of the behavior of the terms of this equation show that $\frac{\partial B_{S}^{\epsilon}\left(x, u_{c}\right)}{\partial t}$ is bounded in $L^{1}\left(Q_{T}\right)+$ $L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$. As a consequence, $B_{S}^{\epsilon}\left(u_{\epsilon}\right)(t=0)=B_{S}^{\epsilon}\left(x, u_{0 \epsilon}\right)$ converges to $B_{S}(x, u)(t=0)$ strongly in $L^{1}(\Omega)$ (for a proof of this trace result see [15). On the other hand, the smoothness of of S implies that $B_{S}(x, u)(t=0)=B_{S}\left(x, u_{0}\right)$ in Ω. The proof of Theorem 3.1 is complete.

Acknowledgements : I would like to thank the referees for his comments and suggestions on the manuscript.

References

[1] R.-J. Diperna, P.-L. Lions, On the Cauchy Problem for the Boltzmann Equations: Global existence and weak stability, Ann. of Math. 130, pp. 285-366, 1989.
[2] D. Blanchard, F. Murat, Renormalized solutions of nonlinear parabolic with L^{1} data: existence and uniqueness. Proc. Roy. Soc. Edinburgh Sect, A 127, pp. 1137-1152, 1997.
[3] L. Boccardo, D. Giachetti, J.-I. Diaz, F. Murat, Existence and regularity of renormalized solutions of some elliptic problems involving derivatives of nonlinear terms. Journal of differential equations 106, pp. 215-237, 1993.
[4] G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuala Norm. Sup. Pisa Cl.Sci. (4), 28, 1999.
[5] D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of renormalized solution for fairly general class of non linear parabolic problems, J. Differential Equations. No. 177, 331-374, 2001.
[6] L. Aharouch, J. Bennouna and A. Touzani, Existence of renormalized solutions of some elliptic problems in Orlicz spaces. Rev. Mat. complut. 22, (2009), N 1, 91-110.
[7] A. Benkirane and J. Bennouna, Existence of solution for nonlinear elliptic degenrate equations. Nonlinear Analysis 54(2003) 9-37.
[8] R.-Di Nardo, Nonlinear parabolic equations with a lower order term, Prepint N.60-2008, Departimento di Matematica e Applicazioni "R.Caccippoli", Universita degli Studi di Napoli "FedericoII".
[9] Y. Akdim, J. Bennouna, M. Mekkour, Solvability of degenerate parabolic equations without sign condition and three unbounded nonlinearities. Electronic Journal of Differetial Equations, No. 03, pp.1-25, 2011.
[10] H. Redwane, Existence of Solution for a class of a parabolic equation with three unbounded nonlinearities, Adv. Dyn. Syt. A2PL. 2, pp. 241-264, 2007.
[11] Y. Akdim, J. Bennouna, M. Mekkour, Renormalized solutions of nonlinear degenerated parabolic equations with natural growth terms and L^{1} data. International journal of evolution equations, Volume 5, Number 4, pp. 421446, 2011.
[12] D. Blanchard, H. Redwane, Renormalized solutions for class of nonlinear evolution problems, J. Math. Pure. 77, pp. 117-151, 1998.
[13] D. Blanchard, and A. Porretta, Nonlinear parabolic equations with natural growth terms and measure initial data. Scuola Norm. Sup. Pisa Cl. Sci., 4, pp. 583-622, 2001.
[14] D. Blanchard and A. Porretta, Stefan problems with nonlinear diffusion and convection, J. Diff. Equations, 210, pp. 383-428, 2005.
[15] A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of trauncations, Ann. Mat. Pura ed Applicata, 177, pp. 143-172, 1999
[16] J.-L. Lions, Quelques méthodes de resolution des problémes aux limites non linéaires, Dunod et Gauthier-Villars, Paris, 1969.
[17] R. Di Nardo, F. Filomena and O. Guibé, Existence result for nonlinear parabolic equations with lower order terms. Anal. Appl. Singap. 9, no. 2, 161-186, 2011.
[18] R. Landes, On the existence of weak solutions for quasilinear parabolic initialboundary problems, Proc. Roy. Soc. Edinburgh Sect. A89, pp. 321-366, 1981.
[19] H. Redwane, Solution renormalisé de problémes paraboliques et elliptiques non linéaires, Ph.D., Rouen 1997.
(Received 23 May 2013)
(Accepted 22 July 2014)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright (c) 2016 by the Mathematical Association of Thailand. All rights reserved.

