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1 Introduction

In the present paper, we establish the existence of a renormalized solution for
a class of a nonlinear parabolic equations of type:

Ob(x,u)

—div(a(z, t,u, Vu)) + div(¢(z, t,u)) = p in Qp
u(z,t) =0 on 0Q x (0,T) (1.1)
b(x,u)|i=0 = b(z, up(z)) in Q.
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In the problem (1.1, Q is a bounded domain of RN (N > 2), T is a positive
real number, Qr = Q x (0,T). Let —div (a(:mt,qu)) be a Leray-Lions oper-

ator defined on L?(0,T; VVOLP(Q))7 let ¢(x,t,u) be a Carathéodory function (see
assumptions (2.6)-(2.8)), and b : @ x R — R is a Carathéodory function such
that for every z € Q, b(x,.) is a strictly increasing C'-function, the data ug is in
LY(Q) such that b(.,ug) in L1(2). The measure p = f — div(F) with f € L'(Qr)
and F e (L (Q))N.

Under our assumptions, problem does not admit, in general, a weak solu-
tion since the term ¢(x,t,u) may not belong (L}, .(Q))". In order to overcome this
difficulty, we work with the framework of of renormalized solutions (see Definition
3.1). The notion of renormalized solutions was introduced by R.-J. DiPerna and
P.-L. Lions [I] for the study of the Boltzmann equation. It was then adapted to
the study of some nonlinear elliptic or parabolic problems and evolution problems
in fluid mechanics we refer to ([2], [3], [4]).

The existence and uniqueness of a renormalized solution has been proved by
D. Blanchard and F. Murat [2] in the case where a(z,t,s,&) is independent of s,
and with ¢ = 0, by D. Blanchard, F. Murat and H. Redwane [5] with the large
monotonicity on a, by L. Aharouch, J. Bennouna and A. Touzani [6] and by A.
Benkirane and J. Bennouna [7] in the Orlicz spaces and degenerated spaces.

In the case where b(z, u) = u, the existence of renormalized solutions for
has been established by R.-Di Nardo [§]. For the degenerated parabolic equation
with b(z,u) = u, div(é(x,t,u)) = H(z,t,u,Vu) and f € L1(Q), the existence of
renormalized solution has been proved by Y. Akdim and al [9)].

The case where ¢(x,t,u) = 0 and f € L'(Qr), the existence of renormalized
solutions has been established by H. Redwane [10] in the classical Sobolev space,
and where div(¢(z,t,u)) = H(x,t,u, Vu) by Y. Akdim and al [I1] in the degener-
ate Sobolev space without the sign condition and the coercivity condition on the
term H (z,t,u, Vu).

It is our purpose, in this paper to generalize the result of ([I1], [9], [§]) and we
prove the existence of a renormalized solution of .

The plan of the paper is as follows: In Section 2 we give some preliminaries and
basic assumptions. In Section 3 we give the definition of a renormalized solution
of , and we establish (Theorem 3.1) the existence of such a solution.

2 Assumptions on data and Preliminaries

2.1 Preliminaries

Let Q be a bounded open set of RY (N > 2), T is a positive real number, and
Qr =Q x (0,T). We need the Sobolev embeddings result

Theorem 2.1. (Gagliardo-Nirenberg) Let v be a function in Wy 9 (Q)NLP(Q) with
q>1 and p > 1. Then there exists a positive constant C, depending on N, q and
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p, such that
10 1S C Vo [y 0 1250,

for every 0 and ~y satisfying

0<0<1, 1<y<+o0, —=0(-—<)+—.

2.2 Assumptions
Throughout this paper, we assume that the following assumptions hold true:

b:Q xR — Ris a Carathéodory function such that for every x € Q,  (2.1)

b(z,.) is a strictly increasing C!(R)-function with b(x,0) = 0, for any k > 0, there
exists a constant A\;, > 0 and functions A, € L*°(2) and By € LP(2) such that:
for almost every z in 2

0b(x, s) < A(z) and ‘vx(ﬁb(m,s)

Ak os Os

IN

) =B VIsl<k (22

Let a: Q7 xR xRN — RY be a Carathéodory function such that, for any k > 0,
there exist v, and a function hy € LP (Qr) with

alw,t5,6)] < v (bl ) + 6771) VI8l <k, (2.3)
a(z,t,s,8)€ > alglP with a > 0, (2.4)
(a(z,t,5,8) —alz,t,5,m)(—n) >0 with £ #n. (2.5)

Let ¢ : Q7 x R — RY be a Carathéodory function such that

(6ot 5)| < el O] (26)

c(z,t) € LT(Qr) with 7= %, (2.7)
N

1=y (23

for almost every (z,t) € Qr, for every s € R and every &, n € RV,

feLY(Qr) and F e (L”(Qr)V. (2.9)

ug € L'() such that b(z,uo) € L*(Q). (2.10)
Throughout the paper, Tj denotes the truncation function at height & > 0:

Ty (r) = maz(—k,min(k,r)) VreR.
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3 Main Results

In this section, we study the existence of renormalized solutions to problem

D).

Definition 3.1. A measurable function u is a renormalized solution to problem

). if
b(xz,u) € L>(0,T; L*(2)), (3.1)

Ti(u) € LP(0,T; WP () for any k > 0, (3.2)

lim — a(z,t,u, Vu)Vudzdt = 0, (3.3)

noteen /{(wnt)EQT: lu(z,t)|<n}

and if for every function S in W2°°(R) which is piecewise C* and such that S’
has a compact support

0Bgs(x,u)

5 — div (a(glc7 t,u, Vu)S’(u)) + Su(u)a(x, t,u, Vu)Vu (3.4)

+ div (d)(z,t,u)S’(u)) — S"(u)g(z, t, u)Vu

= [8'(u) — div(S'(u)F) + S (u) FVu in D' (Qr),

and
Bs(l‘,u)(t = O) = Bs(ﬂf, UO) in Qa (35)
where Bg(z, z) :/ MS'(s)ds.
0 0s

Equation (3.4) is formally obtained through pointwise multiplication of equa-
tion (L.1) by S’(u). However while a(z,t,u, Vu) and ¢(x,t, u) does not in general
make sense in (|1.1). Recall that for a renormalized solution, due to (3.2)), each
term in (3.4) has a meaning in L' (Q) + L? (0, T; W~ 17" (Q)) (see e.g. [5], 2], [12],
[13], [14)).

We have
0Bg(z,u)
ot

The properties of S, assumptions (2.2) and (3.2) imply that if K is such that
supp S C [-K, K]

belongs to L (0,T; W5 () + L*(Q). (3.6)

|V Bs (@, )| < Ak @) DTi @)l ey + KIS e Bi (@) (3.7)
and
Bgs(z,u) belongs to LP(0, T; W, P(Q)). (3.8)

Then (3.6) and (3.8)) imply that Bs(z,u) belongs to C°([0,T]; L'(2)) (for a proof
of this trace result see [15]), so that the initial condition (3.5 makes sense.



Existence Results for a Nonlinear Parabolic Problems... 119

Remark 3.1. For every S € WH>(R), nondecreasing function such that suppS’ C
[ K, K], in view we have

AilS(r) = S(7)| < |Bs(@,r) = Bs(a,1')| < Akl p~@|S() =S¢ (3.9)

for almost every x € Q and for every r, ' € R.

Theorem 3.2. Under assumptions — , then problem admits a

renormalized solution u in the sense of Definition [3.1]

Step 1: Approximate problem and a priori estimates. For each ¢ > 0, we
define the following approximations

be(z,r) =T1(b(z,7)) +er VreR, (3.10)

ae(x,t,s8,&) = a(m,t,T%(s),f) ae (r,t)€Qr, VseR, VECRY,  (3.11)
¢e(w,t,r) = (2,8, T1(r)) ae (z,t) €Qr, VreR, (3.12)
Let f. € L” (Qr) such that

Ifellzr@r) < Ifllzr @) and fe — f strongly in L'(Qr). (3.13)

Let upe € C5°(£2) such that

lbe (2, u0e) || 1 () < 162, u0)l| 21 (@) and be(z, upe) — b(x, up) strongly in L(Q).
(3.14)
In view of (3.10), b is a Carathéodory function and satisfies (2.2, there exists
Ae > 0 and a function A, € L*°(Q2) and B, € LP(2) such that:

a0 ) amd P < B aeacn iR

Consider the approximate problem:

Obelz,ue) _ div(ac(z,t,ue, Vu,)) + div(pe(z,t,u.)) = fe — div(F) in Qr
Ue(z,t) =0 on 902 x(0,T)
be(z,ue)(t = 0) = be(x,upe) in €.
(3.15)
As a consequence, proving existence of a weak solution u. € LP(0,T; I/VO1 P(Q)) is
an easy task (see [16]).
Step 2: The estimates derived in this step rely on standard techniques for prob-
lems of type Let 71 € (0,T) and ¢ fixed in (0,71). Using Ty (uc)X(0,4) a8
test function in ([3.15)), we integrate between (0, 71), and by the condition we
have
/ B,i(a:,ue(t))da:—k/ ae(x,t, ue, Vue ) VT (ue) da ds (3.16)
Q

t
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S/ c(x, t)|ue| | VT (ue)| de ds+ | feTr(ue) dacds—l—/ B (x,upe)dx+ | FVTi(u)dxds
t Q

Q1 Q

" Ob.(z, .
where B (z,r) = / Tk(s)$d5. Due to definition of Bj, we have:
0 S
og/Qﬁ@W%mxgk/uu%wgmxzmw@w%mﬁm)Vk>o (3.17)
Q Q
Using (3.16]) and (2.4]) we obtain:

/QB,i(m,uE(t))dx—i—a/ |VT(ue)|P de ds

t

S/‘daM%PWﬂﬁ@MﬁW+MM@w%mUmﬁﬂﬂy@ﬂH/’FVH@Mﬂ&
Q¢ t

(3.18)
Let M = <||f|\L1(QT) + Hb(x,uoe)HLl(Q))7 remark that
* b (, Ae
B9 = [ 1) 2D o = imo)P
we deduce from (3.16)) and (3.17)) that
A
51/|TMuJde+wy/j|VTM@JPdmds (3.19)
Q t

§Mk—|—/ c(x,t)|u5|7\VTk(u€)|dxds+/ FV T (u)dzds.

t

By Gagliardo-Nirenberg and Young inequalities we have:

~
N 42

/ c(x, t)|ue| | VT (ue)| dr ds < C

t

e, Dl - @,y SuPre0m) /Q T ()| de

N N+42
)(%Jrﬁ)ﬁb

N+2-
+c”kmmny@0(é VT (ue)|? da ds . (3.20)

N+2 .
Since v = (xii) (p — 1) and by using 1) and 1} we obtain

%/ |Tk(ue)|2dx+a/ VT (ue)|P dz ds
Q

t

v
N +2

N+4+2—1vy / o\ _(p 1 Q
—————||e(x, V)|~ VT (u)|P de ds+(=)~ P~ V|| F / +— VT (u)P drds
v @ dlr@y . VT (ue)| (p) IF Il o (@)~ » Qtl o (we) |

T1

<Mk+C

e, Dl - @,y StPre(om) /Q Ty (ue)? de

+C
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Which is equivalent to

Ae v 9 o
- Ty (we)|? de+— VT (ue)lP dxd
(2 N+2 c@ )l <Q*l))5u’”e(°’ﬁ)/g| (el d P’ /Qﬂl gl deds

N4+2-~ )
_ +2-7 . <
(e et )l (Qﬂ))/Q 9Ty (u)P d ds < Mk

T1

If we choose 7 such that

by ~
Ae _ ) - |
(2 N o@Dl (Qq)) >0, (3.21)
and

(a N+2-+

v CwHC(’IJ)HLT(QH)) >0, (3.22)

then, let us denote by C the minimum between and -, we obtain

SUpreon) / T () |2 o + / VTe(u)lP dedt < CME  (3.23)
Q Q

71

Then, by (3.23) and lemma 3.1, we conclude that T} (u,) is bounded in L?(0, T, W, *(Q))
independently of € and for any k > 0, so there exists a subsequence still denoted
by u. such that

Ti(u) = Hy  weakly in  LP(0,T, Wy (Q)) (3.24)

We turn now to prove the almost every convergence of u. and b, (ue).
Let k > 0 be large enough and and Bpg be a ball of (2, we have:

k meas{{|u5| >k} N Bg x [0, T / / | T (ue)|ddt
{|ue|>k}NBRr

/ / | Tk (ue)|dadt
Br

T
/ (T (o) Pddt)  ( / dedt)?
0 Br
< TCR(CMk)

1
I

Which implies that: meas{{|u€| > k}NBg x [0, T]} < 101 - Vk > 1, so we have
k

lim meas{{|u€| >k} N Bg x [O,T]} =0.

k—+oo

Consider now a function non decreasing gr € C?(R) such that gy (s) = s for |s| < &
and gx(s) = k for |s| > k. Multiplying the approximate equation by gj,(u.), we
get

OB, (z, ue)

5 —div (ae(a:, t,ue, V) gy (u6)> +ae(z, t,ue, Vue) gy (ue) Vue+div (qﬁe(a:, t,Ue) gy (ue)>
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- gg(ue)ée(l‘, t,ue)Vue = feg/k(ue) - diU(Fg/k(ue)) + Fgg(ug)Vue in D/((QT))
3.25

where Bj(z, z) = / L ( )g’ (s)ds.

u
In view of (2.3} , , ) and since T} (u,) is bounded in L?(0,T, W, ?(Q)),

1 OB (z,ue)
we deduce that gy (ue) is bounded in LP(0, T, W, (£2)) and —
in LY(Qr) + LY (0,7, W~ (Q)). Indeed, since supp(g},) and supp(g)) are both

included in [-k,k] by (3.12) it follows that for: 0 < e < %

is bounded

[ biatud? Ghwdy” et < [ el 1T )Pl (w) d
Qr T

- e(, )P | T (we) [PV gl (o) P do dt
{lue|<k}

Furthermore, by Hélder and Gagliardo-Niremberg inequality, it results

/ () | T ()P | gy (be (we)P dz dit
{lue|<k}

< okl e DI o [sumietor( | Tl P+ [ VTP dadt] <

Qr

where ¢ is a constant independently of € which will vary from line to line.
In the same by (2.6) we have :

| (e, toud)? gy (u) Vu ) dodt] < / (g1 (ue) P [e(a, )P | T (ue) | [Vue P da dt
QT T ¢
(3.26)

Furthermore, by Holder and Gagliardo-Niremberg inequality,we obtain for 0 < € <
1

k
/ (gl ()P (e, O [T (ue) [P Ve de dt

T

= [ (G et O [T PV T o

T

<ol [ 1ot 0F [Tuu)l VTP dode < o
Qr
We conclude by (3.25]) that

agk (ue)
ot

Arguing again as in [12], estimates (3.24)) and (3.27)) imply that, for a subsequence,
still indexed by e,

is bounded in L'(Q) + L (0, T, W17 (Q)). (3.27)

Ue = u a.e. Qr, (3.28)
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where u is a measurable function defined on Q7. Let us prove that b(z,u) belongs
to L*°((0,T), L (Q)). Using (3.18)), (3.19)), (3.20) and (3.23)) we deduce that

/ Bj(z,ue)dx < MkC + C1. (3.29)
Q

In view of (3.28]) and passing to the limit-inf in (3.29) as € tends to zero, we obtain
" ob
that with Bg(z,r) = / (z,5) Tk (s)ds. On the other hand, we have
0

1

. /Q Bi(w, u(r))dz < Co, (3.30)

for almost any 7 in (0,7"). Due to the definition of By (z,s) and the fact that

1 “ b
—Bg(z,u) converges pointwise to sg(s)% ds = |b(x,u)|, as k tends to
s

k 0
+00, shows that b(x,u) € L>(0,T; L' (2)).

Lemma 3.3. The subsequence of u. defined in Step 1 satisfies

1
lim limsup — / a(x,t, ue, Vue)Vue de dt = 0. (3.31)
{luel<n}

n—+o00 50 N

T (ue)

Proof. Using the test function ¢, (u) = in (3.15), and by (3.12)we get

T
/ < %71#7&116) > dt+/ aE(Ivtauevvq‘LE)vdjn(ue) dx dt (332)
0

t

§/ c(x,t)|T%(uE)|7|an(ue)\dmdt—i—/ fel/)n(ue)dxdt—&—/ FVi, (ue) d dt,

Qr T

hence

/Bn(x,ue)(T)dm—i—/ ac(z,t,ue, Vue) Vb, (ue) da dt
Q t

< / o, )T (u)| [Vom ()| da it + / Bu(zuo)drt | fobn(u) dedt+ [ FVun(u)
T € Q Qr Qr

where B, (x,r) = / %1%(5) ds. Since Bp(z,uc)(T) > 0, then for every
0

€< %, we have

l/ a(x,t, ue, Viue) Vue do dt < l/ c(z, )| Tn (ue) |V VT, (ue)| dx dt
T J{juc|<n nJQr
(3.33)

1 1
—|—/ B, (x,upe)dx + — feTn(ue) dxdt—kf/ FVT,(u)dzdt.
Q " JQr nJQr
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Proceeding as in ([5], [I7]), using Young inequality and Galgliardo-Niremberg in-
equality, we obtain for all R < n:
1

7/ a(z, t,ue, Vue)Vu, dz dt (3.34)
" J{Juc|<n}

1
C1 ra N+
< Letatixquzmlion (s [ TawdPde) ([ Tawlr) ™
n Q Qr
1
+f/ (e, )T (ue) | |V Tr(u)| der dt
" J{juc|<R}
+/B (@ uo)dit~ [ £ Tu(u) dedir 2~ [ VT, (u)|P+M|\F\|p’
0 n\4, Ye n Or etn(We 2pn Or n\We np’ Lr Q)"
Recalling that wu, is bounded in L*°(0,T; L'(Q2)), we obtain
1
7/ a(x,t, ue, Vue)Vue dx dt (3.35)
n {|u6|<n}

o
< colle(@, )X {jue|>rylLr(@r) T 2—/ | Ty (ue)|P da dit
PN JQr

1
+7/ c(x, )| Tr(ue) || VTR (ue)| dx dt
I {juc|<R}

’
—p

1 8] 2%0[ P p/
+ [ Bu(z,uge)dz+— feTn(ue) do dt+— |VTn(ue)|p—|—7/HFHLP,(Q).
Q nJor 2np Jor np
Note that T),(u.) converges to T),(u) in L>®(Qr) weak-+, and w is finite almost
everywhere in @7, then %Tn(u) converges to zero almost everywhere in Q7. Since

a satisfies (2.4]) and in view of (3.35)), we deduce that

(E)l/ alz, t, ue, Vi) Vue da dt (3.36)
p n {|lue|<n}

1
< CQ”C(ﬁC,t)X{lue‘ZR}HLT(QT) + n/Q c(x, )| Tr(ue) ||V TR (ue)| da dt

T

/
" —p

P
1 2?0[ P p/
+ /Q Bn($>U06)d$ + E o feTn(ue) dx dt + TZ)’HFHLPI(QT).

In view of (2.7)), (2.9), (3.13), (3.14), (3.24), (3.28)), using Lebesgue’s convergence

theorem, and and passing to limit in (3.36)) as € tends to zero, then n tends to +oo
and then R tends to +oo, is an easy task and we conclude that u. satisfies lemma

(3-3)- )
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Step 4: In this step we prove that the weak limit oy, of a(z, t, Tk (u.), VT (uc))
can be identified with a(z, ¢, Ty (u), VT, (u)). In order to prove this result we recall
the following lemma.;

Lemma 3.4. The subsequence of u. satisfies for any k > 0:

e—0

¢ t

limsup / /a(x,s,ug,VTk(uE))VTk(ue)dsdxdtS/ /UkVTk.(u)dxdsdt,
T J0 T J0O

(3.37

)
lim / /0 t (a(x,t,Tk(ue),VTk(ue))—a(x,t,Tk(uE),VTk(u))) (VTk u)—VTi( u))

e—0 Q

(3.38)
o = a(x,t, Ty (u), VT (u))) a.e. in Qr, (3.39)

and as € tends to 0
a(x,t, Ty (ue), VI (ue)) VT (ue) = alx, t, T (u), VI (u)) VT (u) (3.40)

weakly in L*(Q7).

Proof. We introduce a time regularization of the Tj(u) for k& > 0 in order to
perform the monotonicity method. This kind regularization has been introduced
at the first time by R. Landes in [I8]. Let v be a soquencc of function in L>®(£2)N
W, P (Q) such that [|v}|| (o) < k for all > 0 and vf converges to Tx(uo) a.e. in
Q and %”'USHL;D(Q) converges to 0. For k£ > 0 and g > 0, let us consider the unique

solution (Tk(u)), € L=(Qz) N LP(0,T; W, *(R)) of the monotone problem:

LD 4 (Tiw) — Tolw) = 0 in D6,
(Ti(w)u(t = 0) = vf' in O

Remark that (Ty(u)), converges to Tjx(u) a.e. in Qp, weakly-* in L (Qr) and
strongly in LP(0,T; W{'()) as pp — +o0, and we have

(T (@) ull o (@r) < maz(|[(Te(w))llLo @) V6| (@) <k, ¥ >0, V k> 0.

Lemma 3.5. (see H. Redwane [19]) Let k > 0 be fivzed. Let S be an increasing
C*(R)—function such that S(r) =r for |r| <k, and suppS’ is compact. Then

T t
limn inf lim/ /O - W,s’(ue)m(ue)—(Tk(w)u) >> 0.

p——+00 e—0 0

where < .,. > denotes the duality pairing between L' (Q)+W =1 (Q) and L= (Q)N
Wie(q).
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Let S, be a sequence of increasing C'°°-function such that:
Sp(r) = rfor|r| <n, supp(S,) C [=(n+1), (n+1)] and ||S,/|| Lo ®) < 1 for anyn > 1.
We use the sequence (T} (u)),, of approximation of T (u), and plug the test function

Sy (ue)(Ti(ue) — (T (w)),) for n > 0 and p > 0. For fixed k > 0, let WS =
Ty (ue) — (T (u)),, we obtain upon integration over (0,t) and then over (0,T) :

T t

b( ) €

/ / < %75;(1%)]/]/; > dsdt+/ / ae(Ls,ue,Vue)S;L(ue)VW; dsdtdz
T J0

t
+ / / G’E(xvSaueavue)SZ(Ue)VUEVW; ds dt dx (341)
t
_/ / ¢€($787ue)5é(ue)vw;i dsdtdx
Qr JO

¢ ¢
—/ / S;{(ue)@(aﬁ,s,ue)VUGVW;dsdtdx:/ / feSh (ue) W da ds dt
Qr JO

t
/ / FS! (u ) VW detdx+/ / FS, (uc)Vu VW ds dt da.
Qr 0

We pass to the limit in as € > 0, p — 400 and then n — +oo for k real
number fixed. We use lemma and proceeding as in ([5], [19]), then it possible
to conclude that

t
bE bl €
lim inf 1im/ / < M, WE > dsdt >0 for any n > k, (3.42)
p—~+00 e—0 0 8t H

t
lim limsup limsup/ / ae(z,t,us,Vue)Sg(ue)VUEVVV; dsdtdx =0,
T

n—=+00 5400 €0

(3.43)
t
. . / € —
HETwl%/C?T/() feSh(ue)W;  dsdtdr =0, (3.44)
¢
lim / / FS) (uc)VWS  dsdtdx =0, (3.45)
p——+00 +Jo
t
lim / / FS)(uc)Vu W dsdtds = 0. (3.46)
p——+o00 Q 0
Now we prove that for any n > 1:
t
. . ! € _
“EIEOO lg% /QT/O Ge(,t,ue) S, (u) VW, ds dt dx = 0, (3.47)

and
lim lim/ S" (ue)pe(x,t, ue) Vu VW ds dt do = 0. (3.48)
0

p——+o00 e—=0



Existence Results for a Nonlinear Parabolic Problems... 127

Proof of (3.47): Let us recall the main properties of W. For fixed pp > 0: W
converges to Tj,(u) — (Ti(u)), weakly in LP(0, T, W, *(Q2)) as € — 0. Remark that

IWillLe @) < 2k for any € > 0, pu >0, (3.49)
then we deduce that
Wi — Ti(u) — (Tk(u)), aein Q7 and in L>=(Qr) weak,, when e — 0. (3.50)

One had suppS’ C [-(n+1),n+ 1] for any fixed n > 1 and 0 < € < n%rl, we have

Pe(,t,ue) Sy, (u) VWS = ¢e(x,t, Tig1(ue)) Sy, (u) VW ae. in Q7. On the other
hand ¢, (z,t, Tnt1(ue))Sh (ue) = éd(z, t, Tt (w))S) (u) a.e. in Qr and
|be(m,t, Ty (ue)) S, (ue)| < e(x,t)(n+1)7 forn > 1.

By 1) and strongly convergence of Tj(u.), in L?(0,T, Wol’p(ﬂ)) we obtain
B1.
Proof of l) For any fixedn > 1 and 0 < e < %H:

be(,t,ue) Sy (ue) VuWy = de(,t, Tny1(ue)) Sy (ue) Vg1 (uc) WS ae. in Qr,
By (3.49) and (3.50)) it is possible to pass to the limit for € — 0, and we obtain

be(@,t, Tng1 (ue)) Sy (ue) WS = d(x,t, T (w) Sy, (W)W, ae. in Q.

Since |¢p(x,t, Tnt1(w)Sh(w)W,| < 2k|e(z,t)|(n + 1)7 ae. in Qr and (Tx(u)),
converges to 0 in L?(0,T; WP (2)), we obtain (3.48).
Recalling (3.42)), (3.47), (3.48), (3.43)), (3.44)), (3.45) and (3.46]) the proof of

(3.37)) is complete.
Proceeding as in [0, it can be deduced from (3.37) that (3.38), (3.39) and (3.40)
hold true. 2

Note that, taking the limit as € tends to 0 in and using (3.40)) show that
u satisfies . Now we want to prove that u satisfies the equation (3.4]).
Let S be a function in W2°°(R) such that suppS’ C [~k, k] where k is a real
positive number. Pointwise multiplication of the approximate equation by
S’ (ue) leads to

BE
% - div(ae(m,t, ue,Vue)S’(ue)) + 5" (ue)a(x, t, ue, Vue)Vue  (3.51)
+ div(6c(w,t,u) S () = 8" (ue) g, £, ue) Ve
=[5 (ue) — div(FS' (ue)) + S” (ue) FVue. in D'(Qr),
where Bg(z,r) = MS’(S) ds. In what follows we pass to the limit

0s
0
as € tends to O in each term of (3.51)). Since u. converges to u a.e. in Qr
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implies that Bg(x,u.) converges to Bg(z,u) a.e. in Qp and L>®(Qr) weak-

OB . 0Bgs(x,u) .
9B5(@, uc) converges to % in D'(Qr). We observe that the

term a(z,t, ue, Vue)S'(ue) can be identified with a(x,t, Tk (ue), VI (ue))S’ (ue)
for e < %, so using the pointwise convergence of u. to u in @7, the weakly conver-
gence of Ty (uc) to Ty (u) in LP(0,T; Wy P(Q)), we get

*, then

ac(z,t,ue, Vue)S (ue) — a(z,t, Ti(ue), VTk(u))S (u) in Lp/(QT)7
and
8" (ue)ae(x,t,ue, Vue ) Vue — 8" (w)a(z, t, T (ue), V(1)) VT (v) in LY(Qr).

Furthermore, since ¢e(x, ¢, ue)S (ue) = e(x, t, Ti(ue))S’ (ue) a.e. in Qr. By (3.12)
we obtain |@e(x, ¢, T (ue))S (ue)| < |e(z, t)|k7, it follows that

de(w,t, T (ue))S (ue) — de(w,t, T (u))S (u) strongly in LPI(QT).
In a similar way, it results
S" (ue)be(m,t,u)Vue = S (Ti(ue)) e (2, t, T (ue)) VT (ue)  ace. in Qr.

Using the weakly convergence of Ty (u.) in LP(0, T; W, P(Q)) it is possible to prove
that
S (ue)pe(z,t,u) Vue — S (w)p(z, t,u)Vu in LY (Qr),

and S” (u¢) FVu, converges to S” (u)FVu in L'(Q7). Since |S'(u.)| < C, it follow
that F.S” (u.) converges to F'S” (u) strongly in L? (Qr).

Finally by we deduce that f.S’(u.) converges to fS'(u) in LY(Qr).
It remains to prove that Bg(x,u) satisfies the initial condition Bg(x,u)(t =
0) = Bs(z,up) in Q. To this end, firstly remark that Bg(x,u.) is bounded in
LP(0,T; Wy P(2)) (see (3.7)). Secondly the above considerations of the behav-
ior of the terms of this equation show that % is bounded in LY(Qr) +
LY (0, T; W=7 (Q)). As a consequence, B§(uc)(t = 0) = B§(z, uge) converges to
Bg(x,u)(t = 0) strongly in L'(Q) (for a proof of this trace result see [15]). On
the other hand, the smoothness of of S implies that Bg(x,u)(t = 0) = Bg(x, up)
in Q2. The proof of Theorem 3.1 is complete.
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