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1 Introduction

Throughout this paper S will denote a monoid. We refer the reader to [1]
and [2] for basic definitions and terminology relating to semigroups and acts over
monoids and to [3], [4], [5] and [6] for definitions and results on flatness which are
used here. A monoid S is called left(right) collapsible if for any s, s′ ∈ S there
exists z ∈ S such that zs = zs′ (sz = s′z). A submonoid P of S is called weakly
left collapsible if for any s, s′ ∈ P , z ∈ S, sz = s′z implies the existence of u ∈ P
such that us = us′. It is obvious that every left collapsible submonoid is weakly
left collapsible, but the converse is not true. A monoid S is called right (left)
reversible, if for any s, s′ ∈ S, there exist u, v ∈ S such that us = vs′ (su = s′v).
A submonoid P of S is called weakly right reversible, if for any s, s′ ∈ P , z ∈ S,
sz = s′z implies the existence of u, v ∈ P such that us = vs′. A right ideal KS of a
monoid S is called left stabilizing, if for any k ∈ KS , there exists l ∈ KS such that
lk = k. KS is called left annihilating, if for any t ∈ S, x, y ∈ S \KS , xt, yt ∈ KS
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implies that xt = yt. KS is called strongly left annihilating, if for all s, t ∈ S \KS

and for all homomorphisms f :S (St ∪ Ss) →S S, f(s), f(t) ∈ KS implies that
f(s) = f(t). KS is called completely left annihilating, if for all x, y, z, t, t′ ∈ S,

[(xt 6= yt′) ∧ (tz = t′z)]⇒ [(xt /∈ KS) ∨ (yt′ /∈ KS) ∨ (x ∈ KS) ∨ (y ∈ KS)]

KS is called PE-left annihilating, if for all x, y, t, t′ ∈ S,

(xt 6= yt′)⇒ [(x ∈ KS) ∨ (y ∈ KS) ∨ (xt /∈ KS) ∨ (yt′ /∈ KS)∨

(∃u, v ∈ S, e, f ∈ E(S), et = t, ft′ = t′, ut = vt′

xe 6= ue⇒ xe, ue ∈ KS , yf 6= vf ⇒ yf, vf ∈ KS)]

KS is called E-left annihilating, if for all x, y, t ∈ S,

(xt 6= yt)⇒ [(x ∈ KS) ∨ (y ∈ KS) ∨ (xt /∈ KS) ∨ (yt /∈ KS)∨

(∃u, v ∈ S, e, f ∈ E(S), et = t = ft, ut = vt,

xe 6= ue⇒ xe, ue ∈ KS , yf 6= vf ⇒ yf, vf ∈ KS)]

A right S-act A satisfies Condition (P ), if for all a, a′ ∈ A, s, s′ ∈ S, as = a′s′

implies that there exist b ∈ A, u, v ∈ S such that a = bu, a′ = bv and us = vs′. A
monoid S is called right PCP , if all principal right ideals of S satisfy Condition
(P ). A right S-act A satisfies Condition (P ′), if for all a, a′ ∈ A, s, s′, z ∈ S,
as = a′s′, sz = s′z imply that there exist b ∈ A, u, v ∈ S such that a = bu,
a′ = bv and us = vs′. A right S-act A satisfies Condition (PE), if for all a, a′ ∈ A,
s, s′ ∈ S, as = a′s′ implies that there exist b ∈ A, u, v, e2 = e, f2 = f ∈ S such
that ae = bue, a′f = bvf , es = s, fs′ = s′ and us = vs′. It is obvious that
Condition (P ) implies Condition (PE), but not the converse. A satisfies Condition
(E), if for all a ∈ A, s, s′ ∈ S, as = as′ implies that there exist b ∈ A, u ∈ S such
that a = bu and us = us′. A satisfies Condition (E′), if for all a ∈ A, s, s′, z ∈ S,
as = as′ and sz = s′z implies that there exist b ∈ A, u ∈ S such that a = bu and
us = us′. A satisfies Condition (EP ), if for all a ∈ A, s, s′ ∈ S, as = as′ implies
that there exist b ∈ A, u, v ∈ S such that a = bu = bv and us = vs′. A satisfies
Condition (E′P ), if for all a ∈ A, s, s′, z ∈ S, as = as′ and sz = s′z imply that
there exist b ∈ A, u, v ∈ S such that a = bu = bv and us = vs′. It is obvious
that Condition (E)⇒ Condition (EP )⇒ Condition (E′P ) and Condition (E)⇒
Condition (E′) ⇒ Condition (E′P ). In [7] and [8] we gave a characterization of
monoids by Conditions (EP ) and (E′P ) of their acts. A right S-act A satisfies
Condition (PWP ), if for all a, a′ ∈ A, s ∈ S, as = a′s implies that there exist
b ∈ A and u, v ∈ S such that a = bu, a′ = bv and us = vs. A right S-act A satisfies
Condition (PWPE), if for all a, a′ ∈ A, s ∈ S, as = a′s implies that there exist
b ∈ A and u, v, e2 = e, f2 = f ∈ S such that ae = bue, a′f = bvf , es = fs = s
and us = vs. In [9] we gave a characterization of monoids by Conditions (PWPE)
of their acts. A right S-act A satisfies Condition (W ), if as = a′t, for a, a′ ∈ AS ,
s, t ∈ S, implies that there exist b ∈ AS and u ∈ Ss∩ St, such that as = a′t = bu.
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AS is called regular, if all cyclic subacts of A are projective. AS is called faithful,
if for s, t ∈ S the equality as = at for all a ∈ A implies s = t. AS is called
strongly faithful, if for s, t ∈ S the equality as = at for some a ∈ A implies s = t.
AS is called P -regular, if all cyclic subacts of A satisfy Condition (P ). In [10]
we gave a characterization of monoids by P -regularity of their acts. A is called
strongly (P )-cyclic if for any a ∈ A there exists z ∈ S such that kerλa = kerλz
and zS satisfies Condition (P ). In [11] we gave a characterization of monoids S
by strong (P )-cyclic of right S-acts. AS is called locally cyclic, if every finitely
generated subact of A is contained within a cyclic subact of A. An act AS is
called to be connected, if for all a, a′ ∈ A there exist elements s1, t1, . . . , sn, tn ∈ S
and a2, . . . , an ∈ A such that

as1 = a2t1
a2s2 = a3t2

.

.

.

ansn = a′tn.

For torsionless of acts we refer the reader to [12].

2 General Properties

An element s ∈ S acts injectively on AS if as = bs, for a, b ∈ AS , implies
a = b. If every s ∈ S acts injectively on AS , then we say that S acts injectively
on AS .

Definition 2.1. An act AS is called E-torsion free (ETF ), if E(S) acts injectively
on AS , that is;

(∀a, a′ ∈ AS)(∀e ∈ E(S))(ae = a′e⇒ a = a′).

Proposition 2.2. Let S be a monoid. Then:

(1) The one-element act ΘS is ETF .

(2) If E(S) = {1}, then all (left) right S-acts are ETF .

(3) SS is ETF if and only if E(S) = {1}.

(4) If S is a regular monoid, then AS is ETF if and only if S acts injectively
on AS.

(5) If Ai, i ∈ I, are right S-acts, then Ai, i ∈ I, are ETF if and only if
AS =

∐
i∈I Ai is ETF .

(6) If Ai, i ∈ I, are right S-acts, then Ai, i ∈ I, are ETF if and only if
AS =

∏
i∈I Ai is ETF .
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(7) If an act is ETF , then all its subacts are ETF .

(8) AS is an ETF right S-act if and only if ae = a, for all a ∈ AS and e ∈ E(S).

(9) If S = T 1, where T is a semigroup, then the right S-act TS is ETF if and
only if E(T ) = ∅ or te = t, for all t ∈ T and e ∈ E(T ).

(10) If S is an idempotent monoid, then the right S-act AS is ETF if and only
if AS is a coproduct of one element acts.

(11) If S contains a left zero, then the right S-act AS is ETF if and only if AS
is a coproduct of one element acts.

Proof. The statements (1) to (8) are clear from definition.
(9). It follows from (8).
(10). It follows from (5) and (8).
(11). Necessity. Let z be a left zero element of S. By (8), az = a, for all a ∈ AS .
Thus as = (az)s = a(zs) = az = a, for all s ∈ S and a ∈ AS . Hence AS is a
coproduct of one element acts.
Sufficiency. It follows from (1) and (5).

3 Characterization by E-Torsion Freeness of Right
Acts

In this section we characterize monoids by E-torsion freeness of right acts.

Theorem 3.1. Let S be a monoid and (U) be a property of S-acts which SS has
property (U). Then the following statements are equivalent:

(1) All right S-acts with property (U) are ETF .

(2) All finitely generated right S-acts with property (U) are ETF .

(3) All cyclic right S-acts with property (U) are ETF .

(4) E(S) = {1}.

Proof. Implications (1)⇒ (2) and (2)⇒ (3) are obvious.
(3) ⇒ (4). Since SS is a cyclic right S-act, by assumption it is ETF , and so by
Proposition 2.2(3), E(S) = {1}.
(4)⇒ (1). It follows from Proposition 2.2(2).

Now we have the following corollary.

Corollary 3.2. Let S be a monoid. Then the following statements are equivalent:

(1) All right S-acts are ETF .

(2) All torsion free right S-acts are ETF .

(3) All principally weakly flat right S-acts are ETF .
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(4) All GP -flat right S-acts are ETF .

(5) All weakly flat right S-acts are ETF .

(6) All right S-acts satisfying Condition (W ) are ETF .

(7) All flat right S-acts are ETF .

(8) All right S-acts satisfying Condition (WP ) are ETF .

(9) All right S-acts satisfying Condition (PWP ) are ETF .

(10) All translation kernel flat right S-acts are ETF .

(11) All principally weakly kernel flat right S-acts are ETF .

(12) All weakly kernel flat right S-acts are ETF .

(13) All right S-acts satisfying Condition (P ) are ETF .

(14) All right S-acts satisfying Condition (PE) are ETF .

(15) All right S-acts satisfying Condition (P ′) are ETF .

(16) All right S-acts satisfying Condition (PWPE) are ETF .

(17) All equalizer flat right S-acts are ETF .

(18) All strongly flat right S-acts are ETF .

(19) All weakly pullback flat right S-acts are ETF .

(20) All projective right S-acts are ETF .

(21) All projective generators right S-acts are ETF .

(22) All generators right S-acts are ETF .

(23) All free right S-acts are ETF .

(24) All right S-acts satisfying Condition (E) are ETF .

(25) All right S-acts satisfying Condition (EP ) are ETF .

(26) All right S-acts satisfying Condition (E′) are ETF .

(27) All right S-acts satisfying Condition (E′P ) are ETF .

(28) All faithful right S-acts are ETF .

(29) All torsionless right S-acts are ETF .

(30) E(S) = {1}.

Notice that all statements in Corollary above, are also true for cyclic and
finitely generated right S-acts.

Lemma 3.3. Let S be a monoid. Then the following statements are equivalent:

(1) S is left cancellative.
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(2) There exists a strongly faithful right S-act.

Proof. (1)⇒ (2). It is obvious, because in this case SS is a strongly faithful right
S-act.
(2) ⇒ (1). Suppose that AS is a strongly faithful right S-act and let us = ut,
for u, s, t ∈ S. Let a ∈ A. Then (au)s = (au)t, and so s = t. Thus S is left
cancellative, as required.

Theorem 3.4. Let S be a monoid and suppose there exists a strongly faithful right
S-act. Then the following statements are equivalent:

(1) All strongly faithful right S-acts are ETF .

(2) All strongly faithful finitely generated right S-acts are ETF .

(3) All strongly faithful cyclic right S-acts are ETF .

(4) E(S) = {1}.

Proof. By Lemma 3.3 and Proposition 2.2(2) it is obvious.

Theorem 3.5. Let S be a monoid. Then the following statements are equivalent:

(1) All divisible right S-acts are ETF .

(2) All principally weakly injective right S-acts are ETF .

(3) All fg-weakly injective right S-acts are ETF .

(4) All weakly injective right S-acts are ETF .

(5) All injective right S-acts are ETF .

(6) All cofree right S-acts are ETF .

(7) All indecomposable right S-acts are ETF .

(8) All locally cyclic right S-acts are ETF .

(9) E(S) = {1}.

Proof. Since cofreeness ⇒ injectivity ⇒ weak injectivity ⇒ fg-weak injectivity
⇒ principal weak injectivity ⇒ divisibility, then implications (1) ⇒ (2) ⇒ (3) ⇒
(4)⇒ (5)⇒ (6) are obvious.
Implications (9)⇒ (1) and (9)⇒ (7) follow from Proposition 2.2(2).
(7)⇒ (8). It follows from [13, Lemma 3.4].
(6)⇒ (9). Since every right S-act can be embedded into a cofree right S-act, thus
by Proposition 2.2(7), all right S-acts are ETF , and so E(S) = {1}, by Corollary
3.2.
(8)⇒ (9). All cyclic right S-acts are locally cyclic. Thus E(S) = {1}, by Corollary
3.2.
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Here we give a characterization of monoids for which E-torsion freeness of
their acts implies other properties.

Theorem 3.6. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF right S-acts are free.

(2) All ETF right S-acts are projective generators.

(3) All ETF right S-acts are generators.

(4) All ETF right S-acts are faithful.

(5) All ETF right S-acts are strongly faithful.

(6) S = {1}.

Proof. Implications (1)⇒ (2)⇒ (3) are obvious.
(3)⇒ (4). It follows from [2, III, 18.1].
Since ΘS is an ETF right S-act, and ΘS is (strongly) faithful if and only if S = {1},
implications (4), (5)⇒ (6) are obvious.
(6)⇒ (1), (5). If S = {1}, then all right S-acts are free (strongly faithful).

Theorem 3.7. Let S be a monoid with no zero element. Then the following
statements are equivalent:

(1) All ETF right S-acts are torsionless.

(2) S contains a left zero.

Proof. (1) ⇒ (2). Since the right S-act ΘS is ETF , it follows from [12, Lemma
2.2].
(2)⇒ (1). It follows from Proposition 2.2(11) and [12, Proposition 2.10].

Notice that all statements in Theorems 3.6 and 3.7 are also true for cyclic,
finitely generated and right Rees factor S-acts.

Theorem 3.8. Let S be an idempotent monoid. Then the following statements
are equivalent:

(1) All ETF right S-acts are strongly flat.

(2) All ETF right S-acts are equalizer flat.

(3) All ETF right S-acts are weakly pullback flat.

(4) All ETF right S-acts satisfy Condition (P ).

(5) All ETF right S-acts satisfy Condition (PE).

(6) All ETF right S-acts are weakly kernel flat.
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(7) All ETF right S-acts are (WP ).

(8) All ETF right S-acts are flat.

(9) All ETF right S-acts are weakly flat.

(10) All ETF right S-acts satisfy Condition (W ).

(11) S is right reversible.

(12) S is left collapsible.

Proof. (1)⇔ (3)⇔ (4). It follows from [4, Page 79].
Implications (4) ⇒ (5) ⇒ (9), (3) ⇒ (6) ⇒ (7) ⇒ (9), (4) ⇒ (8) ⇒ (9) and
(1)⇒ (2)⇒ (9) are obvious.
(5)⇔ (9). It follows from [14, Theorem 2.5].
(9)⇔ (10). Since S is regular, all right S-acts are principally weakly flat, and so
the result follows from [2, III, 11.4].
(9)⇒ (11). It follows from Proposition 2.2(1), and [2, III, 11.2].
(11) ⇒ (12). Suppose e, f ∈ S. Since S is right reversible, there exist g, g′ ∈ S
such that ge = g′f . If u = ge = g′f , then ue = (ge)e = ge2 = ge = g′f = g′f2 =
(g′f)f = uf . Thus S is left collapsible.
(12)⇒ (4). Suppose AS is ETF and let as = bt, for a, b ∈ AS and s, t ∈ S. Since
by Proposition 2.2(8), aS = {a}, for any a ∈ AS , we have a = b. Since S is left
collapsible, there exists u ∈ S such that us = ut. But, a = b = au, and so AS
satisfies Condition (P ), as required.

Notice that all statements in theorem above are also true for finitely generated
and cyclic right S-acts.

4 Characterization by E-Torsion Freeness of Cyclic
Right Acts

In this section we characterize monoids by E-torsion freeness of their cyclic
right acts.

Proposition 4.1. Let S be a monoid and ρ be a right congruence on S. Then the
following statements are equivalent:

(1) S/ρ is ETF .

(2) (∀s, t ∈ S)(∀e ∈ E(S))((se, te) ∈ ρ⇒ (s, t) ∈ ρ).

(3) (∀s ∈ S)(∀e ∈ E(S))(se, s) ∈ ρ.

Proof. It is straightforward.
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Theorem 4.2. Let ρ be a right congruence on S. If S/ρ is ETF , then T = [1]ρ
is a submonoid of S with E(S) = E(T ). The converse is also true when ρ is a
congruence or every idempotent of S is central.

Proof. It is obvious that T is a submonoid of S and also E(T ) ⊆ E(S). Let
e ∈ E(S). Then (ee, 1e) = (e, e) ∈ ρ, and so (e, 1) ∈ ρ, by Proposition 4.1. Thus
e ∈ T , and hence e ∈ E(T ).
Suppose (se, te) ∈ ρ, for s, t ∈ S, and e ∈ E(S). Since E(S) = E(T ), we have
(e, 1) ∈ ρ. If ρ is a congruence, then (se, s), (te, t) ∈ ρ, and so (s, t) ∈ ρ. If every
idempotent of S is central, then (s, se) = (s, es) ∈ ρ and (t, te) = (t, et) ∈ ρ, and
so (s, t) ∈ ρ. Thus in both cases S/ρ is ETF .

Corollary 4.3. Let S be an idempotent monoid and ρ be a right congruence on
S. Then S/ρ is ETF if and only if S = [1]ρ.

Proof. Necessity. By Theorem 4.2, we have S = E(S) = E(T ) = T = [1]ρ.
Sufficiency. It is obvious.

Theorem 4.4. Let S be a monoid. Then the following statements are equivalent:

(1) All cyclic right S-acts are ETF .

(2) All monocyclic right S-acts are ETF .

(3) ρ(x, y) ⊆ ρ(xe, ye), for all x, y ∈ S, e ∈ E(S).

(4) ρ(x, 1) ⊆ ρ(xe, e), for all x ∈ S, e ∈ E(S).

(5) ρ(x, e) ⊆ ρ(xe, e), for all x ∈ S, e ∈ E(S).

(6) ρ(e, f) ⊆ ρ(ef, f), for all e, f ∈ E(S).

(7) ρ(e, 1) ⊆ ρ(ef, f), for all e, f ∈ E(S).

(8) ρ(e, f) ⊆ ρ(fe, f), for all e, f ∈ E(S).

(9) ρ(xe, y) ⊆ ρ(x, y), for all x, y ∈ S, e ∈ E(S).

(10) ρ(xe, 1) ⊆ ρ(x, 1), for all x ∈ S, e ∈ E(S).

(11) ρ(ex, 1) ⊆ ρ(x, 1), for all x ∈ S, e ∈ E(S).

(12) ρ(xe, f) ⊆ ρ(x, f), for all x ∈ S, e, f ∈ E(S).

(13) ρ(ex, f) ⊆ ρ(x, f), for all x ∈ S, e, f ∈ E(S).

(14) ρ(xe, f) ⊆ ρ(x, e), for all x ∈ S, e, f ∈ E(S).

(15) ρ(ex, f) ⊆ ρ(x, e), for all x ∈ S, e, f ∈ E(S).

(16) E(S) = {1}.

Proof. It is straightforward.
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Notice that Theorem 4.4, is also true when inclusions from 3 to 15 be replaced
by equality.

Let S be a monoid and s, t ∈ S. Set F1 = {(x, y) ∈ S×S | ∃e ∈ E(S), (xe, ye) ∈
ρ(s, t)}, Fi+1 = {(x, y) ∈ S × S | ∃e ∈ E(S), (xe, ye) ∈ ρ(Fi)}, for i ∈ N. It can
easily be seen that Fi is reflexive and symmetric, for every i ∈ N. Also,

ρ(s, t) ⊆ F1 ⊆ ρ(F1) ⊆ F2 ⊆ ρ(F2) ⊆ . . . ⊆ ρ(Fi) ⊆ Fi+1 . . . .

It is clear that ρETF (s, t) =
⋃
i∈N ρ(Fi) is a right congruence on S containing (s, t).

Theorem 4.5. Let S be a monoid and s, t ∈ S. Then ρETF (s, t) is the smallest
right congruence containing (s, t), such that S/ρETF (s, t) is ETF .

Proof. If (xe, ye) ∈ ρETF (s, t), for x, y ∈ S and e ∈ E(S), then there exists
i ∈ N such that (xe, ye) ∈ ρ(Fi), and so (x, y) ∈ Fi+1. Thus (x, y) ∈ ρ(Fi+1) ⊆
ρETF (s, t), and so S/ρETF (s, t) is ETF by Proposition 4.1.
Let τ be a right congruence on S containing (s, t), such that S/τ is ETF . We
show that ρETF (s, t) ⊆ τ . Since (s, t) ∈ τ , we have ρ(s, t) ⊆ τ . If (x, y) ∈ F1,
then there exists e ∈ E(S) such that (xe, ye) ∈ ρ(s, t), and so (xe, ye) ∈ τ . Since
S/τ is ETF , we have (x, y) ∈ τ . Thus F1 ⊆ τ , and so ρ(F1) ⊆ τ . Suppose then
that ρ(Fi) ⊆ τ , i ∈ N. If (x, y) ∈ Fi+1, then there exists e ∈ E(S) such that
(xe, ye) ∈ ρ(Fi) ⊆ τ . Since S/τ is ETF , (x, y) ∈ τ . Hence Fi+1 ⊆ τ , and so
ρ(Fi+1) ⊆ τ . Thus ρ(Fi) ⊆ τ , for all i ∈ N, and so ρETF (s, t) ⊆ τ .

Theorem 4.6. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF cyclic right S-acts satisfy Condition (P ).

(2) All ETF cyclic right S-acts satisfy Condition (PE).

(3) For any x, y, s, t ∈ S, there exist u, v ∈ S such that (u, x), (v, y) ∈ ρETF (xs, yt)
and us = vt.

(4) For any s, t ∈ S, there exist u, v ∈ S such that (u, 1), (v, 1) ∈ ρETF (s, t) and
us = vt.

Proof. (1)⇒ (2). It is obvious.
(2) ⇒ (3). The cyclic right S-act S/ρETF (xs, yt) is ETF , and so it satisfies
Condition (PE). Thus by [15, Theorem 2.5], there exist u, v ∈ S and e, f ∈ E(S)
such that us = vt, es = s, ft = t, (ue, xe), (yf, vf) ∈ ρETF (xs, yt). Thus by
Proposition 4.1, (u, x), (v, y) ∈ ρETF (xs, yt), as required.
(3)⇒ (4). It is sufficient to take x = y = 1.
(4) ⇒ (1). Suppose τ is a right congruence on S, such that S/τ is ETF and
let (s, t) ∈ τ . Then by assumption, there exist u, v ∈ S such that us = vt and
(u, 1), (v, 1) ∈ ρETF (s, t). By Theorem 4.5, ρETF (s, t) ⊆ τ , and so (u, 1), (v, 1) ∈ τ .
Thus S/τ satisfies Condition (P ), by [2, III, 13.4].
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Theorem 4.7. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF cyclic right S-acts satisfy Condition (P ′).

(2) For any x, y, z, t, t′ ∈ S, the equality tz = t′z implies that there exist u, v ∈ S
such that ut = vt′ and (u, x), (v, y) ∈ ρETF (xt, yt′).

Proof. Using [16, Theorem 3.1] and Theorem 4.5, it is similar to that of Theorem
4.6.

Theorem 4.8. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF cyclic right S-acts satisfy Condition (E).

(2) For any s, t ∈ S, there exists u ∈ S such that us = ut, and (u, 1) ∈
ρETF (s, t).

Proof. Using [2, III, 14.8] and Theorem 4.5, it is similar to that of Theorem 4.6.

Theorem 4.9. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF cyclic right S-acts satisfy Condition (E′).

(2) For any s, t, z ∈ S, the equality sz = tz implies that there exists u ∈ S such
that us = ut and (u, 1) ∈ ρETF (s, t).

Proof. It follows from Theorem 4.5, and a similar argument as in the proof of
Theorem 4.6.

Theorem 4.10. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF cyclic right S-acts satisfy Condition (E′P ).

(2) For any x, y, z ∈ S, the equality xz = yz implies that there exist u, v ∈ S
such that ux = vy and (u, 1), (v, 1) ∈ ρETF (x, y).

(3) For any x, t, t′, z ∈ S, the equality tz = t′z implies that there exist u, v ∈ S
such that ut = vt′ and (u, x), (v, x) ∈ ρETF (xt, xt′).

Proof. It follows from [7, Theorem 2.10], Theorem 4.5, and a similar argument as
in the proof of Theorem 4.6.

Theorem 4.11. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF cyclic right S-acts are principally weakly flat.

(2) For any u, v, s ∈ S, (u, v) ∈ (ρETF (us, vs) ∨ kerρs).

Proof. (1)⇒ (2). Suppose u, v, s ∈ S. Then the cyclic right S-act S/ρETF (us, vs)
is ETF , and so it is principally weakly flat. Since (us, vs) ∈ ρETF (us, vs) by [2,
III, 10.7], we have (u, v) ∈ (ρETF (us, vs) ∨ kerρs).
(2) ⇒ (1). Suppose τ is a right congruence on S, such that S/τ is ETF and let
(us, vs) ∈ τ . By Theorem 4.5, ρETF (us, vs) ⊆ τ . By assumption, (u, v) ∈ (ρETF
(us, vs) ∨ kerρs), and so (u, v) ∈ (τ ∨ kerρs). Thus S/τ is principally weakly flat,
by [2, III, 10.7].
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Theorem 4.12. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF cyclic right S-acts are weakly flat.

(2) For any s, t ∈ S, there exist u, v ∈ S such that us = vt, (u, 1) ∈ (ρETF (s, t)∨
kerρs) and (v, 1) ∈ (ρETF (s, t) ∨ kerρt).

Proof. (1)⇒ (2). The cyclic right S-act S/ρETF (s, t) is ETF , and so it is weakly
flat. Thus by [2, III, 11.5], there exist u, v ∈ S such that us = vt, (u, 1) ∈
(ρETF (s, t) ∨ kerρs) and (v, 1) ∈ (ρETF (s, t) ∨ kerρt).
(2) ⇒ (1). Suppose τ is a right congruence on S, such that S/τ is ETF and let
(s, t) ∈ τ . By Theorem 4.5, ρETF (s, t) ⊆ τ and by assumption, there exist u, v ∈ S
such that us = vt, (u, 1) ∈ (ρETF (s, t) ∨ kerρs) and (v, 1) ∈ (ρETF (s, t) ∨ kerρt).
Thus (u, 1) ∈ (τ ∨ kerρs) and (v, 1) ∈ (τ ∨ kerρt), and so S/τ is weakly flat, by [2,
III, 11.5].

Theorem 4.13. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF cyclic right S-acts satisfy Condition (PWP ).

(2) All ETF cyclic right S-acts satisfy Condition (PWPE).

(3) For any x, y, t ∈ S, there exist u, v ∈ S such that ut = vt and (u, x), (v, y) ∈
ρETF (xt, yt).

Proof. Using [9, Theorem 3.7], [5, Proposition 7] and Theorem 4.5, it is similar to
that of Theorem 4.6.

Lemma 4.14. Let S be a left PP monoid. Then the following statements are
equivalent:

(1) For any x, y, t ∈ S, (x, y) ∈ (ρETF (xt, yt) ∨ kerρt).

(2) For any x, y, t ∈ S, there exist u, v ∈ S such that ut = vt and (u, x), (v, y) ∈
ρETF (xt, yt).

(3) For any x, y, t ∈ S, (x, y) ∈ ρETF (xt, yt).

Proof. (1) ⇔ (2). It follows from [9, Theorem 2.5], Theorem 4.11 and Theorem
4.13.
(2) ⇒ (3). Let x, y, t ∈ S. By assumption there exist u, v ∈ S such that ut = vt
and (u, x), (v, y) ∈ ρETF (xt, yt). Sine S is left PP , there exists e ∈ E(S) such
that kerρt = kerρe. Thus ue = ve, and so (xe, ye) ∈ ρETF (xt, yt). Hence (x, y) ∈
ρETF (xt, yt), by Proposition 4.1 and Theorem 4.5.
(3)⇒ (1). It is obvious.

Theorem 4.15. Let S be a left PP monoid. Then the following statements are
equivalent:

(1) All ETF cyclic right S-acts satisfy Condition (PWP ).

(2) All ETF cyclic right S-acts satisfy Condition (PWPE).
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(3) All ETF cyclic right S-acts are principally weakly flat.

(4) S acts injectively on every ETF cyclic right S-acts.

(5) For any x, y, t ∈ S, (x, y) ∈ ρETF (xt, yt).

Proof. (1)⇔ (2). It follows from Theorem 4.13.
(2)⇔ (3). It follows from [9, Theorem 2.5].
(3)⇔ (5). It follows from Theorem 4.11 and Lemma 4.14.
(4) ⇒ (5). Suppose x, y, t ∈ S. Then the cyclic right S-act S/ρETF (xt, yt) is
ETF , and so S acts injectively on S/ρETF (xt, yt). (xt, yt) ∈ ρETF (xt, yt) implies
that [x]ρETF (xt,yt)t = [y]ρETF (xt,yt)t, and so [x]ρETF (xt,yt) = [y]ρETF (xt,yt). Thus
(x, y) ∈ ρETF (xt, yt).
(5) ⇒ (4). Suppose τ is a right congruence on S, such that S/τ is ETF . Let
[x]τ t = [y]τ t, x, y, t ∈ S. By Theorem 4.5 and by the assumption we have (x, y) ∈
ρETF (xt, yt) ⊆ τ . Thus [x]τ = [y]τ as required.

Theorem 4.16. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF cyclic right S-acts are torsion free.

(2) For any s, t ∈ S, ρTF (s, t) ⊆ ρETF (s, t).

(3) For any s, t ∈ S and c ∈ S right cancellable, (s, t) ∈ ρETF (sc, tc).

Proof. (1) ⇒ (2). Suppose s, t ∈ S. Then the cyclic right S-act S/ρETF (s, t)
is ETF , and so it is torsion free. Thus ρTF (s, t) ⊆ ρETF (s, t), by the proof of
Lemma 3.31 of [4].
(2)⇒ (3). Suppose s, t ∈ S and c ∈ S right cancellable. Then (s, t) ∈ ρTF (sc, tc) ⊆
ρETF (sc, tc), by [4, Lemma 3.31] and [2, III, 8.4].
(3) ⇒ (1). Suppose τ is a right congruence on S, such that S/τ is ETF and let
(sc, tc) ∈ τ , s, t ∈ S and c ∈ S right cancellable. Then by Theorem 4.5 and by the
assumption we have (s, t) ∈ ρETF (sc, tc) ⊆ τ . Thus S/τ is torsion free, by [2, III,
8.4].

Theorem 4.17. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF cyclic right S-acts are weakly pullback flat.

(2) S satisfies the following Conditions:
(a) For any s, t, z ∈ S, the equality sz = tz implies that there exists u ∈ S
such that us = ut and (u, 1) ∈ ρETF (s, t).
(b) For any s, t ∈ S, there exist u, v ∈ S such that us = vt and (u, 1), (v, 1) ∈
ρETF (s, t).

Proof. It follows from [5, Theorem 21], Theorem 4.6 and Theorem 4.9.

Theorem 4.18. Let S be a monoid. Then the following statements are equivalent:

(1) All torsion free cyclic right S-acts are ETF .
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(2) For any s, t ∈ S, ρETF (s, t) ⊆ ρTF (s, t).

(3) For any s, t ∈ S and e ∈ E(S), (s, t) ∈ ρETF (se, te).

(4) E(S) = {1}.

Proof. It is similar to the proof of Theorem 4.16.

5 Characterization by E-torsion freeness of mono-
cyclic right acts

In this section we characterize monoids by E-torsion freeness of their mono-
cyclic right acts.

Lemma 5.1. Let S be a monoid, w, t ∈ S and wt 6= t. Then ρ(wt, t) = ρ(w, 1) if
and only if t is right invertible.

Proof. Suppose ρ(wt, t) = ρ(w, 1). Then by [2, III, 8.5], there exist m,n ∈ N∪{0}
such that wmw = wn1 = wn and wiw ∈ tS, whenever 0 ≤ i < m, and wj ∈ tS,
whenever 0 ≤ j < n. If n ≥ 1, then 1 = w0 ∈ tS, and so t is right invertible. If
n = 0, then m ≥ 1, since w 6= 1. Thus w ∈ tS, and so 1 = wm+1 ∈ tS, that is, t is
right invertible. The converse is obvious.

Theorem 5.2. Let S be a monoid and w, e2 = e ∈ S. Then S/ρ(we, e) is ETF if
and only if e = 1 and wmxf = wnyf , for x, y, f2 = f ∈ S, m,n ∈ N∪{0}, implies
that wpx = wqy, for some p, q ∈ N ∪ {0}.

Proof. Let ρ = ρ(we, e).
Necessity. If we = e, then S/ρ = S/∆S

∼= SS , and so we are done by Proposition
2.2(3). Thus we suppose we 6= e. Since (we, 1e) ∈ ρ, we have by Proposition 4.1,
that (w, 1) ∈ ρ. Since (we, e) ∈ ρ(w, 1), we have ρ = ρ(w, 1). Thus e = 1, by
Lemma 5.1. Suppose now that wmxf = wnyf , for x, y, f2 = f ∈ S and m,n ∈
N ∪ {0}. Then (xf, yf) ∈ ρ, by [2, III, 8.7], and so (x, y) ∈ ρ, by Proposition 4.1.
Since ρ = ρ(w, 1), we have by [2, III, 8.7], that wpx = wqy, for some p, q ∈ N∪{0}.
Sufficiency. Suppose (sf, tf) ∈ ρ. Then by [2, III, 8.7], wmsf = wntf , for some
m,n ∈ N ∪ {0}. Thus by assumption, wps = wqt, for some p, q ∈ N ∪ {0}. Again
by [2, III, 8.7], (s, t) ∈ ρ, and so the result follows from Proposition 4.1.

Theorem 5.3. Let S be a monoid. Then all ETF right S-acts of the form
S/ρ(we, e) satisfy Condition (P ).

Proof. It follows from Theorem 5.2, [2, III, 13.8] and [2, III, 13.5].

Theorem 5.4. Let S be a monoid. Then the following statements are equivalent:

(1) All monocyclic right S-acts of the form S/ρ(we, e), w, e2 = e ∈ S, we 6= e,
satisfying Condition (P ) are ETF .
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(2) For every 1 6= w ∈ S, if there exist x, y, f2 = f ∈ S and m,n ∈ N∪{0} such
that wmxf = wnyf , then there exist p, q ∈ N ∪ {0} such that wpx = wqy.

Proof. (1)⇒ (2). Let w ∈ S, with w 6= 1. Then S/ρ(w, 1) satisfies Condition (P ),
by [2, III, 13.8]. Thus S/ρ(w, 1) is ETF , and the result follows from Theorem 5.2.
(2) ⇒ (1). Suppose the right S-act S/ρ(we, e), we 6= e, satisfies Condition (P ).
Then by [2, III, 13.8], there exists a ∈ S such that ρ(we, e) = ρ(a, 1). Since
(we, e) ∈ ρ(a, 1), by [2, III, 8.7], there exist m,n ∈ N∪{0} such that amwe = ane.
Since we 6= e, we have a 6= 1. Thus by assumption there exist p, q ∈ N ∪ {0}
such that apw = aq. Again (w, 1) ∈ ρ(a, 1) = ρ(we, e) by [2, III, 8.7], and so
ρ(we, e) = ρ(w, 1). Now the result follows from Lemma 5.1 and Theorem 5.2.

Theorem 5.5. Let S be a monoid. Then the following statements are equivalent:

(1) All projective monocyclic right S-acts of the form S/ρ(w, 1), 1 6= w ∈ S, are
ETF .

(2) All monocyclic right S-acts of the form S/ρ(w, 1), 1 6= w ∈ S, satisfying
Condition (E) are ETF .

(3) If 1 6= w is aperiodic, then the equality wnxf = wnyf , for x, y, f2 = f ∈ S
and n ∈ N, implies wnx = wny.

Proof. (1)⇔ (2). It follows from [2, III, 17.14].
(2)⇒ (3). Suppose for 1 6= w ∈ S, there exists n ∈ N such that wn+1 = wn. Then
S/ρ(w, 1) satisfies Condition (E), by [2, III, 17.14], and so it is ETF . Now the
result follows from Theorem 5.2.
(3) ⇒ (2). Suppose the right S-act S/ρ(w, 1), w 6= 1, satisfies Condition (E).
Then by [2, III, 17.14], there exists n ∈ N such that wn+1 = wn. If wkxf = wjyf ,
for x, y, f2 = f ∈ S and k, j ∈ N∪{0}, then wnxf = wnyf , and so by assumption,
wnx = wny. Now the result follows from Theorem 5.2.

Now we consider monoids over which E-torsion freeness implies projectivity
and Condition (E).

Theorem 5.6. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF monocyclic right S-acts of the form S/ρ(w, 1), are projective.

(2) All ETF monocyclic right S-acts of the form S/ρ(w, 1), satisfy Condition
(E).

(3) Every w ∈ S is either aperiodic or there exist x, y, f2 = f ∈ S and m,n ∈
N ∪ {0} such that wmxf = wnyf and wpx 6= wqy, for all p, q ∈ N ∪ {0}.

Proof. (1)⇔ (2). It follows from [2, III, 17.14].
(2) ⇒ (3). If w = 1, then we are done. Suppose that 1 6= w ∈ S. If for all
x, y, f2 = f ∈ S and m,n ∈ N ∪ {0}, wmxf = wnyf implies the existence of
p, q ∈ N ∪ {0} such that wpx = wqy, then by Theorem 5.2, S/ρ(w, 1) is ETF .
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Thus S/ρ(w, 1) satisfies Condition (E), and so w is aperiodic, by [2, III, 14.9].
(3) ⇒ (2). Suppose the right S-act S/ρ(w, 1), w ∈ S is ETF . If w = 1, then
S/ρ(w, 1) = S/∆S

∼= SS satisfies Condition (E). Thus we suppose w 6= 1. By
Theorem 5.2, the equality wmxf = wnyf , for all x, y, f2 = f ∈ S and m,n ∈
N ∪ {0}, implies the existence of p, q ∈ N ∪ {0} such that wpx = wqy. Thus w is
aperiodic and the result follows from [2, III, 14.9].

6 Characterization by E-Torsion Freeness of Right
Rees Factor Acts

In this section we characterize monoids by E-torsion freeness of their right
Rees factor acts. First of all we give a characterization of monoids over which
all right Rees factor acts are ETF and also monoids over which all ETF right
Rees factor acts have some other properties. Then we give a characterization of
monoids for which right Rees factor acts with other properties are ETF . We recall
that for a right ideal KS of S, the Rees congruence ρK is defined by (a, b) ∈ ρK if
a, b ∈ KS or a = b and the resulting factor act is called the Rees factor act and is
denoted by S/KS .

Theorem 6.1. Let S be a monoid and KS be a right ideal of S. Then S/KS is
ETF if and only if KS = S or E(S) = {1}.

Proof. Necessity. Suppose S/KS is ETF , KS 6= S and let e ∈ E(S). Then
[1]ρKe = [e]ρKe, and so [1]ρK = [e]ρK . Thus e = 1, and so E(S) = {1} as required.
Sufficiency. It follows from Proposition 2.2(1),(2).

Theorem 6.2. Let S be a monoid. Then the following statements are equivalent:

(1) All right Rees factor S-acts are ETF .

(2) All right Rees factor S-acts of the form S/sS, s ∈ S are ETF .

(3) All right Rees factor S-acts of the form S/sS, s ∈ S is regular, are ETF .

(4) All right Rees factor S-acts of the form S/eS, e ∈ E(S), are ETF .

(5) E(S) = {1}.

Proof. Implications (1)⇒ (2)⇒ (3)⇒ (4) are obvious.
(4)⇒ (5). Let e ∈ E(S). Then by assumption S/eS is ETF , and so by Theorem
6.1, eS = S or E(S) = {1}. these imply that E(S) = {1}.
(5)⇒ (1). It follows from Proposition 2.2(2).

Theorem 6.3. Let S be a monoid and (U) be a property of acts. Then the
following statements are equivalent:

(1) All ETF right Rees factor S-acts satisfy (U).
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(2) ΘS satisfies (U) and E(S) = {1} implies that all right Rees factor S-acts
satisfy (U).

Proof. (1)⇒ (2). By Proposition 2.2(1), ΘS
∼= S/SS satisfies (U). If E(S) = {1},

then by Theorem 6.2, and assumption all right Rees factor S-acts satisfy (U).
(2)⇒ (1). Suppose the right Rees factor S-act S/KS is ETF . Then either KS = S
or E(S) = {1}, by Theorem 6.1. If KS = S, then S/KS = S/SS ∼= ΘS satisfies
Condition (U). If E(S) = {1}, then by assumption, all right Rees factor S-acts
satisfy (U), and so all ETF right Rees factor S-acts satisfy (U).

Theorem 6.4. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF right Rees factor S-acts are torsion free.

(2) E(S) 6= {1} or else, every right cancellable element of S is right invertible.

Proof. It follows from Theorem 6.3, [2, III, 8.2] and [2, IV, 6.1].

Theorem 6.5. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF right Rees factor S-acts are principally weakly flat.

(2) All ETF right Rees factor S-acts satisfy Condition (PWP ).

(3) All ETF right Rees factor S-acts satisfy Condition (PWPE).

(4) E(S) 6= {1} or else, S is a group.

Proof. (1) ⇔ (4). It follows from Theorem 6.3, [2, III, 10.2], [2, IV, 6.6], and [1,
II, Exercise 11].
(2)⇔ (4). It follows from Theorem 6.3, [5, Corollary 11] and [3, Proposition 9].
(3)⇔ (4). It follows from Theorem 6.3, and [9, Theorem 3.1].

Theorem 6.6. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF right Rees factor S-acts are flat.

(2) All ETF right Rees factor S-acts are weakly flat.

(3) All ETF right Rees factor S-acts satisfy Condition (WP ).

(4) All ETF right Rees factor S-acts satisfy Condition (P ).

(5) All ETF right Rees factor S-acts satisfy Condition (PE).

(6) All ETF right Rees factor S-acts are P -regular.

(7) S is right reversible and E(S) = {1} implies that S is a group.

Proof. (1)⇔ (2). It follows from [2, III, 12.17].
(2)⇔ (7). It follows from Theorem 6.3, [2, III, 11.2] and [2, IV, 7.3].
(3)⇔ (7). It follows from Theorem 6.3, [5, Corollary 18] and [3, Proposition 14].
(4)⇔ (7). It follows from Theorem 6.3, [5, Corollary 18] and [2, IV, 9.9].
(5)⇔ (7). It follows from Theorem 6.3 and [15, Theorem 3.1].
(6) ⇔ (7). It follows from Theorem 6.3, [10, Theorem 2.1(1)] and [10, Theorem
2.3].
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Theorem 6.7. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF right Rees factor S-acts satisfy Condition (E).

(2) All ETF right Rees factor S-acts are pullback flat.

(3) All ETF right Rees factor S-acts are equalizer flat.

(4) All ETF right Rees factor S-acts are strongly flat.

(5) S is left collapsible and E(S) = {1} implies that S = {1}.

Proof. Implications (1) ⇔ (2), (2) ⇔ (3) and (3) ⇔ (4) are obvious, by [2, III,
16.7].
(4) ⇔ (5). By Theorem 6.3, all ETF right Rees factor S-acts are strongly flat if
and only if ΘS is strongly flat and E(S) = {1} implies that all right Rees factor
S-acts are strongly flat. By [2, III, 14.3] and [2, IV, 11.13], all ETF right Rees
factor S-acts are strongly flat if and only if S is left collapsible and E(S) = {1}
implies that S = {1}.

Theorem 6.8. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF right Rees factor S-acts are regular.

(2) All ETF right Rees factor S-acts are strongly (P )-cyclic.

(3) All ETF right Rees factor S-acts are projective.

(4) S contains a left zero.

Proof. (1)⇒ (2). It follows from [11, Thorem 2.1].
(2)⇒ (3). It follows from [11, Corollary 3.10].
(3)⇒ (4). By Proposition 2.2(1), the right Rees factor S-act S/SS ∼= ΘS is ETF ,
and so it is projective. Thus by [2, III, 17.2], S contains a left zero element.
(4) ⇒ (1). Suppose the right Rees factor S-act S/KS is ETF . By Theorem 6.1,
KS = S or E(S) = {1}. If KS = S, then S/KS = S/SS ∼= ΘS is regular, by [2,
III, 19.4(4)]. If E(S) = {1}, then S = {1}, and so all right Rees factor S-acts are
regular.

Notice that all statements in Theorem 6.8 are also true for (cyclic) right S-acts.

Theorem 6.9. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF right Rees factor S-acts are weakly pullback flat.

(2) All ETF right Rees factor S-acts are weakly kernel flat.

(3) S is right reversible, weakly left collapsible and E(S) = {1} implies that S
is a group.

Proof. It follows from Theorem 6.3, [10, Corollary 3.10] and [3, Theorem 20].
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Theorem 6.10. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF right Rees factor S-acts are principally weakly kernel flat.

(2) All ETF right Rees factor S-acts are translation kernel flat.

(3) kerρz is connected as a left S-act, for every z ∈ S and E(S) = {1} implies
that S is a group.

Proof. It follows from Theorem 6.3, [3, Proposition 7] and [3, Theorem 20].

Theorem 6.11. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF right Rees factor S-acts satisfy Condition (P ′).

(2) S is weakly right reversible and E(S) = {1} implies that S is a group.

Proof. It follows from Theorem 6.3, [16, Corollary 4.4] and [16, Thorem 4.18].

Now we give a characterization of monoids for which right Rees factor acts
with other properties are ETF .

Theorem 6.12. Let S be a monoid. Then the following statements are equivalent:

(1) All right Rees factor S-acts satisfying Condition (P ) are ETF .

(2) All right Rees factor S-acts satisfying Condition (E) are ETF .

(3) All pullback flat right Rees factor S-acts are ETF .

(4) All equalizer flat right Rees factor S-acts are ETF .

(5) All strongly flat right Rees factor S-acts are ETF .

(6) All projective right Rees factor S-acts are ETF .

(7) All free right Rees factor S-acts are ETF .

(8) S contains no left zero element or S = {1}.

Proof. (1)⇒ (2). It follows from [2, III, 14.7].
Implications (2)⇔ (3)⇔ (4)⇔ (5) follow from [2, III, 16.7].
Implications (5)⇒ (6)⇒ (7) are obvious.
(7)⇒ (8). Let s ∈ S be a left zero. Then the right Rees factor S-act S/sS ∼= SS is
free, and so it is ETF , by assumption. Thus by Proposition 2.2(3), E(S) = {1},
and so s = 1, that is, S = {1}.
(8) ⇒ (1). Suppose the right Rees factor S-act S/KS satisfies Condition (P ). If
KS = S, then by Proposition 2.2(1) we are done. Thus we suppose that KS 6= S.
Then by [2, III, 13.9], |KS | = 1, and so S contains a left zero element. Thus,
S = {1}, and so KS = S, which is a contradiction.

Theorem 6.13. Let S be a monoid. Then the following statements are equivalent:
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(1) All weakly flat right Rees factor S-acts are ETF .

(2) All flat right Rees factor S-acts are ETF .

(3) E(S) = {1} or S is not right reversible.

Proof. (1)⇔ (2). It is obvious.
(2)⇒ (3). Suppose E(S) 6= {1}, S is right reversible and let e ∈ E(S)\{1}. By [2,
III, 12.17], the right Rees factor S-act S/(eS)S is flat. Thus eS = S, by Theorem
6.1, which is a contradiction.
(3)⇒ (1). It follows from [2, III, 12.17] and Proposition 2.2(2).

Theorem 6.14. Let S be a monoid. Then the following statements are equivalent:

(1) All torsion free right Rees factor S-acts are ETF .

(2) All principally weakly flat right Rees factor S-acts are ETF .

(3) E(S) = {1}.

Proof. (1)⇒ (2). It is obvious.
(2)⇒ (3). Suppose e ∈ E(S). The right Rees factor S-act S/(eS)S is principally
weakly flat, and so E(S) = {1} or eS = S, by Theorem 6.1. In each case,
E(S) = {1}.
(3)⇒ (1). It follows from Proposition 2.2(2).

Theorem 6.15. Let S be a monoid. Then the following statements are equivalent:

(1) All regular right Rees factor S-acts are ETF .

(2) S = {1} or S contains no left zero element or there exists z ∈ S such that
kerλz 6= kerλe, for every e ∈ E(S).

Proof. (1)⇒ (2). It follows from [2, III, 19.6], [2, III, 17.16] and Theorem 6.1.
(2)⇒ (1). It follows from [2, III, 19.6], [2, III, 17.16] and Proposition 2.2(2).

Theorem 6.16. Let S be a monoid. Then the following statements are equivalent:

(1) All P -regular right Rees factor S-acts are ETF .

(2) All strongly (P )-cyclic right Rees factor S-acts are ETF .

(3) S = {1} or S contains no left zero element or S is not right PCP .

Proof. Since strong (P )-cyclic implies P -regularity, (1)⇒ (2) is obvious.
(2)⇒ (3). It follows from [11, Theorem 3.1] and Theorem 6.1.
(3)⇒ (1). It follows from [10, Theorem 3.1] and Theorem 6.2.

Theorem 6.17. Let S be a monoid. Then the following statements are equivalent:

(1) All right Rees factor S-acts satisfying Condition (P ′) are ETF .

(2) E(S) = {1} or S has no left stabilizing and completely left annihilating
proper right ideal.
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Proof. (1)⇒ (2). It follows from [16, Theorem 4.3] and Theorem 6.1.
(2)⇒ (1). It follows from [16, Theorem 4.3] and Theorem 6.2.

Theorem 6.18. Let S be a monoid. Then the following statements are equivalent:

(1) All right Rees factor S-acts satisfying Condition (PWP ) are ETF .

(2) E(S) = {1} or S has no left stabilizing and left annihilating proper right
ideal.

Proof. (1)⇒ (2). It follows from [5, Theorem 10] and Theorem 6.1.
(2)⇒ (1). It follows from [5, Theorem 10] and Theorem 6.2.

Theorem 6.19. Let S be a monoid. Then the following statements are equivalent:

(1) All right Rees factor S-acts satisfying Condition (WP ) are ETF .

(2) E(S) = {1} or S is not right reversible or S has no left stabilizing and
strongly left annihilating proper right ideal.

Proof. (1)⇒ (2). It follows from [5, Theorem 17] and Theorem 6.1.
(2)⇒ (1). It follows from [5, Theorem 17] and Theorem 6.2.

Theorem 6.20. Let S be a monoid. Then the following statements are equivalent:

(1) All right Rees factor S-acts satisfying Condition (PE) are ETF .

(2) E(S) = {1} or S is not right reversible or S has no proper PE-left annihi-
lating right ideal.

Proof. (1)⇒ (2). It follows from [15, Theorem 3.5] and Theorem 6.1.
(2)⇒ (1). It follows from [15, Theorem 3.5] and Theorem 6.2.

Theorem 6.21. Let S be a monoid. Then the following statements are equivalent:

(1) All right Rees factor S-acts satisfying Condition (PWPE) are ETF .

(2) E(S) = {1} or S has no left stabilizing and E-left annihilating proper right
ideal.

Proof. (1)⇒ (2). It follows from [9, Theorem 4.2] and Theorem 6.1.
(2)⇒ (1). It follows from [9, Theorem 4.2] and Theorem 6.2.
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