Thai Journal of Mathematics Volume 14 (2016) Number 1 : 93–114

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

E-Torsion Free Acts Over Monoids

Akbar Golchin, Abbas Zare¹ and Hossein Mohammadzadeh

Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran e-mail: agdm@math.usb.ac.ir (A. Golchin) e-mail: zareh.abbas@gmail.com (A. Zare) e-mail: hmsdm@math.usb.ac.ir (H. Mohammadzadeh)

Abstract : In this paper we introduce *E*-torsion freeness of acts over monoids, and will give a characterization of monoids by this property of their (cyclic, monocyclic, Rees factor) acts.

Keywords : S-act; E-torsion freeness; flatness. 2010 Mathematics Subject Classification : 20M30.

1 Introduction

Throughout this paper S will denote a monoid. We refer the reader to [1] and [2] for basic definitions and terminology relating to semigroups and acts over monoids and to [3], [4], [5] and [6] for definitions and results on flatness which are used here. A monoid S is called left(right) collapsible if for any $s, s' \in S$ there exists $z \in S$ such that zs = zs' (sz = s'z). A submonoid P of S is called weakly left collapsible if for any $s, s' \in P$, $z \in S$, sz = s'z implies the existence of $u \in P$ such that us = us'. It is obvious that every left collapsible submonoid is weakly left collapsible, but the converse is not true. A monoid S is called right (left) reversible, if for any $s, s' \in S$, there exist $u, v \in S$ such that us = vs' (su = s'v). A submonoid P of S is called weakly right reversible, if for any $s, s' \in P$, $z \in S$, sz = s'z implies the existence of $u, v \in S$ such that us = vs' (su = s'v). A submonoid P of S is called weakly right reversible, if for any $s, s' \in S$, sz = s'z implies the existence of $u, v \in P$ such that us = vs'. A right ideal K_S of a monoid S is called left stabilizing, if for any $k \in K_S$, there exists $l \in K_S$ such that lk = k. K_S is called left annihilating, if for any $t \in S$, $x, y \in S \setminus K_S$, $xt, yt \in K_S$

¹Corresponding author.

Copyright 2016 by the Mathematical Association of Thailand. All rights reserved.

implies that xt = yt. K_S is called strongly left annihilating, if for all $s, t \in S \setminus K_S$ and for all homomorphisms $f :_S (St \cup Ss) \to_S S$, $f(s), f(t) \in K_S$ implies that f(s) = f(t). K_S is called completely left annihilating, if for all $x, y, z, t, t' \in S$,

$$[(xt \neq yt') \land (tz = t'z)] \Rightarrow [(xt \notin K_S) \lor (yt' \notin K_S) \lor (x \in K_S) \lor (y \in K_S)]$$

 K_S is called P_E -left annihilating, if for all $x, y, t, t' \in S$,

$$(xt \neq yt') \Rightarrow [(x \in K_S) \lor (y \in K_S) \lor (xt \notin K_S) \lor (yt' \notin K_S) \lor (\exists u, v \in S, e, f \in E(S), et = t, ft' = t', ut = vt'$$
$$xe \neq ue \Rightarrow xe, ue \in K_S, yf \neq vf \Rightarrow yf, vf \in K_S)]$$

 K_S is called *E*-left annihilating, if for all $x, y, t \in S$,

$$\begin{aligned} (xt \neq yt) \Rightarrow [(x \in K_S) \lor (y \in K_S) \lor (xt \notin K_S) \lor (yt \notin K_S) \lor \\ (\exists u, v \in S, e, f \in E(S), et = t = ft, ut = vt, \\ xe \neq ue \Rightarrow xe, ue \in K_S, yf \neq vf \Rightarrow yf, vf \in K_S)] \end{aligned}$$

A right S-act A satisfies Condition (P), if for all $a, a' \in A, s, s' \in S, as = a's'$ implies that there exist $b \in A$, $u, v \in S$ such that a = bu, a' = bv and us = vs'. A monoid S is called *right PCP*, if all principal right ideals of S satisfy Condition (P). A right S-act A satisfies Condition (P'), if for all $a, a' \in A, s, s', z \in S$, as = a's', sz = s'z imply that there exist $b \in A, u, v \in S$ such that a = bu, a' = bv and us = vs'. A right S-act A satisfies Condition (P_E) , if for all $a, a' \in A$, $s, s' \in S$, as = a's' implies that there exist $b \in A$, $u, v, e^2 = e, f^2 = f \in S$ such that ae = bue, a'f = bvf, es = s, fs' = s' and us = vs'. It is obvious that Condition (P) implies Condition (P_E) , but not the converse. A satisfies Condition (E), if for all $a \in A$, $s, s' \in S$, as = as' implies that there exist $b \in A$, $u \in S$ such that a = bu and us = us'. A satisfies Condition (E'), if for all $a \in A$, $s, s', z \in S$, as = as' and sz = s'z implies that there exist $b \in A$, $u \in S$ such that a = bu and us = us'. A satisfies Condition (*EP*), if for all $a \in A$, $s, s' \in S$, as = as' implies that there exist $b \in A$, $u, v \in S$ such that a = bu = bv and us = vs'. A satisfies Condition (E'P), if for all $a \in A$, $s, s', z \in S$, as = as' and sz = s'z imply that there exist $b \in A$, $u, v \in S$ such that a = bu = bv and us = vs'. It is obvious that Condition $(E) \Rightarrow$ Condition $(EP) \Rightarrow$ Condition (E'P) and Condition $(E) \Rightarrow$ Condition $(E') \Rightarrow$ Condition (E'P). In [7] and [8] we gave a characterization of monoids by Conditions (EP) and (E'P) of their acts. A right S-act A satisfies Condition (PWP), if for all $a, a' \in A$, $s \in S$, as = a's implies that there exist $b \in A$ and $u, v \in S$ such that a = bu, a' = bv and us = vs. A right S-act A satisfies Condition (PWP_E) , if for all $a, a' \in A, s \in S, as = a's$ implies that there exist $b \in A$ and $u, v, e^2 = e, f^2 = f \in S$ such that ae = bue, a'f = bvf, es = fs = sand us = vs. In [9] we gave a characterization of monoids by Conditions (PWP_E) of their acts. A right S-act A satisfies Condition (W), if as = a't, for $a, a' \in A_S$, $s, t \in S$, implies that there exist $b \in A_S$ and $u \in Ss \cap St$, such that as = a't = bu.

 A_S is called *regular*, if all cyclic subacts of A are projective. A_S is called *faithful*, if for $s, t \in S$ the equality as = at for all $a \in A$ implies s = t. A_S is called *strongly faithful*, if for $s, t \in S$ the equality as = at for some $a \in A$ implies s = t. A_S is called *P*-regular, if all cyclic subacts of A satisfy Condition (P). In [10] we gave a characterization of monoids by *P*-regularity of their acts. A is called *strongly* (P)-*cyclic* if for any $a \in A$ there exists $z \in S$ such that $ker\lambda_a = ker\lambda_z$ and zS satisfies Condition (P). In [11] we gave a characterization of monoids Sby strong (P)-cyclic of right S-acts. A_S is called *locally cyclic*, if every finitely generated subact of A is contained within a cyclic subact of A. An act A_S is called to be connected, if for all $a, a' \in A$ there exist elements $s_1, t_1, \ldots, s_n, t_n \in S$ and $a_2, \ldots, a_n \in A$ such that

$$as_1 = a_2t_1$$
$$a_2s_2 = a_3t_2$$
$$\vdots$$
$$a_ns_n = a't_n$$
$$to [12]$$

For torsionless of acts we refer the reader to [12].

2 General Properties

An element $s \in S$ acts injectively on A_S if as = bs, for $a, b \in A_S$, implies a = b. If every $s \in S$ acts injectively on A_S , then we say that S acts injectively on A_S .

Definition 2.1. An act A_S is called *E*-torsion free (*ETF*), if E(S) acts injectively on A_S , that is;

$$(\forall a, a' \in A_S)(\forall e \in E(S))(ae = a'e \Rightarrow a = a').$$

Proposition 2.2. Let S be a monoid. Then:

- (1) The one-element act Θ_S is ETF.
- (2) If $E(S) = \{1\}$, then all (left) right S-acts are ETF.
- (3) S_S is ETF if and only if $E(S) = \{1\}$.
- (4) If S is a regular monoid, then A_S is ETF if and only if S acts injectively on A_S .
- (5) If A_i , $i \in I$, are right S-acts, then A_i , $i \in I$, are ETF if and only if $A_S = \coprod_{i \in I} A_i$ is ETF.
- (6) If A_i , $i \in I$, are right S-acts, then A_i , $i \in I$, are ETF if and only if $A_S = \prod_{i \in I} A_i$ is ETF.

- (7) If an act is ETF, then all its subacts are ETF.
- (8) A_S is an ETF right S-act if and only if ae = a, for all $a \in A_S$ and $e \in E(S)$.
- (9) If $S = T^1$, where T is a semigroup, then the right S-act T_S is ETF if and only if $E(T) = \emptyset$ or te = t, for all $t \in T$ and $e \in E(T)$.
- (10) If S is an idempotent monoid, then the right S-act A_S is ETF if and only if A_S is a coproduct of one element acts.
- (11) If S contains a left zero, then the right S-act A_S is ETF if and only if A_S is a coproduct of one element acts.

Proof. The statements (1) to (8) are clear from definition.

- (9). It follows from (8).
- (10). It follows from (5) and (8).

(11). Necessity. Let z be a left zero element of S. By (8), az = a, for all $a \in A_S$. Thus as = (az)s = a(zs) = az = a, for all $s \in S$ and $a \in A_S$. Hence A_S is a coproduct of one element acts.

Sufficiency. It follows from (1) and (5).

3 Characterization by E-Torsion Freeness of Right Acts

In this section we characterize monoids by *E*-torsion freeness of right acts.

Theorem 3.1. Let S be a monoid and (U) be a property of S-acts which S_S has property (U). Then the following statements are equivalent:

- (1) All right S-acts with property (U) are ETF.
- (2) All finitely generated right S-acts with property (U) are ETF.
- (3) All cyclic right S-acts with property (U) are ETF.
- (4) $E(S) = \{1\}.$

Proof. Implications $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ are obvious. $(3) \Rightarrow (4)$. Since S_S is a cyclic right S-act, by assumption it is ETF, and so by Proposition 2.2(3), $E(S) = \{1\}.$ $(4) \Rightarrow (1)$. It follows from Proposition 2.2(2).

Now we have the following corollary.

Corollary 3.2. Let S be a monoid. Then the following statements are equivalent:

- (1) All right S-acts are ETF.
- (2) All torsion free right S-acts are ETF.
- (3) All principally weakly flat right S-acts are ETF.

- (4) All GP-flat right S-acts are ETF.
- (5) All weakly flat right S-acts are ETF.
- (6) All right S-acts satisfying Condition (W) are ETF.
- (7) All flat right S-acts are ETF.
- (8) All right S-acts satisfying Condition (WP) are ETF.
- (9) All right S-acts satisfying Condition (PWP) are ETF.
- (10) All translation kernel flat right S-acts are ETF.
- (11) All principally weakly kernel flat right S-acts are ETF.
- (12) All weakly kernel flat right S-acts are ETF.
- (13) All right S-acts satisfying Condition (P) are ETF.
- (14) All right S-acts satisfying Condition (P_E) are ETF.
- (15) All right S-acts satisfying Condition (P') are ETF.
- (16) All right S-acts satisfying Condition (PWP_E) are ETF.
- (17) All equalizer flat right S-acts are ETF.
- (18) All strongly flat right S-acts are ETF.
- (19) All weakly pullback flat right S-acts are ETF.
- (20) All projective right S-acts are ETF.
- (21) All projective generators right S-acts are ETF.
- (22) All generators right S-acts are ETF.
- (23) All free right S-acts are ETF.
- (24) All right S-acts satisfying Condition (E) are ETF.
- (25) All right S-acts satisfying Condition (EP) are ETF.
- (26) All right S-acts satisfying Condition (E') are ETF.
- (27) All right S-acts satisfying Condition (E'P) are ETF.
- (28) All faithful right S-acts are ETF.
- (29) All torsionless right S-acts are ETF.
- (30) $E(S) = \{1\}.$

Notice that all statements in Corollary above, are also true for cyclic and finitely generated right S-acts.

Lemma 3.3. Let S be a monoid. Then the following statements are equivalent:

(1) S is left cancellative.

(2) There exists a strongly faithful right S-act.

Proof. (1) \Rightarrow (2). It is obvious, because in this case S_S is a strongly faithful right S-act.

(2) \Rightarrow (1). Suppose that A_S is a strongly faithful right S-act and let us = ut, for $u, s, t \in S$. Let $a \in A$. Then (au)s = (au)t, and so s = t. Thus S is left cancellative, as required.

Theorem 3.4. Let S be a monoid and suppose there exists a strongly faithful right S-act. Then the following statements are equivalent:

- (1) All strongly faithful right S-acts are ETF.
- (2) All strongly faithful finitely generated right S-acts are ETF.
- (3) All strongly faithful cyclic right S-acts are ETF.
- (4) $E(S) = \{1\}.$

Proof. By Lemma 3.3 and Proposition 2.2(2) it is obvious.

Theorem 3.5. Let S be a monoid. Then the following statements are equivalent:

- (1) All divisible right S-acts are ETF.
- (2) All principally weakly injective right S-acts are ETF.
- (3) All fg-weakly injective right S-acts are ETF.
- (4) All weakly injective right S-acts are ETF.
- (5) All injective right S-acts are ETF.
- (6) All cofree right S-acts are ETF.
- (7) All indecomposable right S-acts are ETF.
- (8) All locally cyclic right S-acts are ETF.
- (9) $E(S) = \{1\}.$

Proof. Since cofreeness \Rightarrow injectivity \Rightarrow weak injectivity \Rightarrow fg-weak injectivity \Rightarrow principal weak injectivity \Rightarrow divisibility, then implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6)$ are obvious.

Implications $(9) \Rightarrow (1)$ and $(9) \Rightarrow (7)$ follow from Proposition 2.2(2).

 $(7) \Rightarrow (8)$. It follows from [13, Lemma 3.4].

(6) \Rightarrow (9). Since every right S-act can be embedded into a cofree right S-act, thus by Proposition 2.2(7), all right S-acts are ETF, and so $E(S) = \{1\}$, by Corollary 3.2.

(8) \Rightarrow (9). All cyclic right S-acts are locally cyclic. Thus $E(S) = \{1\}$, by Corollary 3.2.

Here we give a characterization of monoids for which *E*-torsion freeness of their acts implies other properties.

Theorem 3.6. Let S be a monoid. Then the following statements are equivalent:

- (1) All ETF right S-acts are free.
- (2) All ETF right S-acts are projective generators.
- (3) All ETF right S-acts are generators.
- (4) All ETF right S-acts are faithful.
- (5) All ETF right S-acts are strongly faithful.
- (6) $S = \{1\}.$

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

(3) \Rightarrow (4). It follows from [2, III, 18.1]. Since Θ_S is an *ETF* right *S*-act, and Θ_S is (strongly) faithful if and only if $S = \{1\}$, implications (4), (5) \Rightarrow (6) are obvious. (6) \Rightarrow (1), (5). If $S = \{1\}$, then all right *S*-acts are free (strongly faithful).

Theorem 3.7. Let S be a monoid with no zero element. Then the following statements are equivalent:

- (1) All ETF right S-acts are torsionless.
- (2) S contains a left zero.

Proof. (1) \Rightarrow (2). Since the right *S*-act Θ_S is *ETF*, it follows from [12, Lemma 2.2].

 $(2) \Rightarrow (1)$. It follows from Proposition 2.2(11) and [12, Proposition 2.10].

Notice that all statements in Theorems 3.6 and 3.7 are also true for cyclic, finitely generated and right Rees factor S-acts.

Theorem 3.8. Let S be an idempotent monoid. Then the following statements are equivalent:

- (1) All ETF right S-acts are strongly flat.
- (2) All ETF right S-acts are equalizer flat.
- (3) All ETF right S-acts are weakly pullback flat.
- (4) All ETF right S-acts satisfy Condition (P).
- (5) All ETF right S-acts satisfy Condition (P_E) .
- (6) All ETF right S-acts are weakly kernel flat.

- (7) All ETF right S-acts are (WP).
- (8) All ETF right S-acts are flat.
- (9) All ETF right S-acts are weakly flat.
- (10) All ETF right S-acts satisfy Condition (W).
- (11) S is right reversible.
- (12) S is left collapsible.

Proof. (1) \Leftrightarrow (3) \Leftrightarrow (4). It follows from [4, Page 79]. Implications (4) \Rightarrow (5) \Rightarrow (9), (3) \Rightarrow (6) \Rightarrow (7) \Rightarrow (9), (4) \Rightarrow (8) \Rightarrow (9) and (1) \Rightarrow (2) \Rightarrow (9) are obvious. (5) \Leftrightarrow (9). It follows from [14, Theorem 2.5]. (9) \Leftrightarrow (10). Since *S* is regular, all right *S*-acts are principally weakly flat, and so the result follows from [2, III, 11.4]. (9) \Rightarrow (11). It follows from Proposition 2.2(1), and [2, III, 11.2]. (11) \Rightarrow (12). Suppose $e, f \in S$. Since *S* is right reversible, there exist $g, g' \in S$ such that ge = g'f. If u = ge = g'f, then $ue = (ge)e = ge^2 = ge = g'f = g'f^2 = (g'f)f = uf$. Thus *S* is left collapsible.

 $(12) \Rightarrow (4)$. Suppose A_S is ETF and let as = bt, for $a, b \in A_S$ and $s, t \in S$. Since by Proposition 2.2(8), $aS = \{a\}$, for any $a \in A_S$, we have a = b. Since S is left collapsible, there exists $u \in S$ such that us = ut. But, a = b = au, and so A_S satisfies Condition (P), as required.

Notice that all statements in theorem above are also true for finitely generated and cyclic right S-acts.

4 Characterization by *E*-Torsion Freeness of Cyclic Right Acts

In this section we characterize monoids by E-torsion freeness of their cyclic right acts.

Proposition 4.1. Let S be a monoid and ρ be a right congruence on S. Then the following statements are equivalent:

- (1) S/ρ is ETF.
- (2) $(\forall s, t \in S)(\forall e \in E(S))((se, te) \in \rho \Rightarrow (s, t) \in \rho).$
- (3) $(\forall s \in S)(\forall e \in E(S))(se, s) \in \rho.$

Proof. It is straightforward.

100

Theorem 4.2. Let ρ be a right congruence on S. If S/ρ is ETF, then $T = [1]_{\rho}$ is a submonoid of S with E(S) = E(T). The converse is also true when ρ is a congruence or every idempotent of S is central.

Proof. It is obvious that T is a submonoid of S and also $E(T) \subseteq E(S)$. Let $e \in E(S)$. Then $(ee, 1e) = (e, e) \in \rho$, and so $(e, 1) \in \rho$, by Proposition 4.1. Thus $e \in T$, and hence $e \in E(T)$.

Suppose $(se, te) \in \rho$, for $s, t \in S$, and $e \in E(S)$. Since E(S) = E(T), we have $(e, 1) \in \rho$. If ρ is a congruence, then $(se, s), (te, t) \in \rho$, and so $(s, t) \in \rho$. If every idempotent of S is central, then $(s, se) = (s, es) \in \rho$ and $(t, te) = (t, et) \in \rho$, and so $(s, t) \in \rho$. Thus in both cases S/ρ is ETF.

Corollary 4.3. Let S be an idempotent monoid and ρ be a right congruence on S. Then S/ρ is ETF if and only if $S = [1]_{\rho}$.

Proof. Necessity. By Theorem 4.2, we have $S = E(S) = E(T) = T = [1]_{\rho}$. Sufficiency. It is obvious.

Theorem 4.4. Let S be a monoid. Then the following statements are equivalent:

- (1) All cyclic right S-acts are ETF.
- (2) All monocyclic right S-acts are ETF.
- (3) $\rho(x,y) \subseteq \rho(xe,ye)$, for all $x, y \in S$, $e \in E(S)$.
- (4) $\rho(x, 1) \subseteq \rho(xe, e)$, for all $x \in S$, $e \in E(S)$.
- (5) $\rho(x,e) \subseteq \rho(xe,e)$, for all $x \in S$, $e \in E(S)$.
- (6) $\rho(e, f) \subseteq \rho(ef, f)$, for all $e, f \in E(S)$.
- (7) $\rho(e,1) \subseteq \rho(ef,f)$, for all $e, f \in E(S)$.
- (8) $\rho(e, f) \subseteq \rho(fe, f)$, for all $e, f \in E(S)$.
- (9) $\rho(xe, y) \subseteq \rho(x, y)$, for all $x, y \in S$, $e \in E(S)$.
- (10) $\rho(xe, 1) \subseteq \rho(x, 1)$, for all $x \in S$, $e \in E(S)$.
- (11) $\rho(ex, 1) \subseteq \rho(x, 1)$, for all $x \in S$, $e \in E(S)$.
- (12) $\rho(xe, f) \subseteq \rho(x, f)$, for all $x \in S$, $e, f \in E(S)$.
- (13) $\rho(ex, f) \subseteq \rho(x, f)$, for all $x \in S$, $e, f \in E(S)$.
- (14) $\rho(xe, f) \subseteq \rho(x, e)$, for all $x \in S$, $e, f \in E(S)$.
- (15) $\rho(ex, f) \subseteq \rho(x, e)$, for all $x \in S$, $e, f \in E(S)$.
- (16) $E(S) = \{1\}.$

Proof. It is straightforward.

Notice that Theorem 4.4, is also true when inclusions from 3 to 15 be replaced by equality.

Let S be a monoid and $s, t \in S$. Set $F_1 = \{(x, y) \in S \times S \mid \exists e \in E(S), (xe, ye) \in \rho(s, t)\}, F_{i+1} = \{(x, y) \in S \times S \mid \exists e \in E(S), (xe, ye) \in \rho(F_i)\}, \text{ for } i \in \mathbb{N}.$ It can easily be seen that F_i is reflexive and symmetric, for every $i \in \mathbb{N}$. Also,

$$\rho(s,t) \subseteq F_1 \subseteq \rho(F_1) \subseteq F_2 \subseteq \rho(F_2) \subseteq \ldots \subseteq \rho(F_i) \subseteq F_{i+1} \ldots$$

It is clear that $\rho_{ETF}(s,t) = \bigcup_{i \in \mathbb{N}} \rho(F_i)$ is a right congruence on S containing (s,t).

Theorem 4.5. Let S be a monoid and $s,t \in S$. Then $\rho_{ETF}(s,t)$ is the smallest right congruence containing (s,t), such that $S/\rho_{ETF}(s,t)$ is ETF.

Proof. If $(xe, ye) \in \rho_{ETF}(s, t)$, for $x, y \in S$ and $e \in E(S)$, then there exists $i \in \mathbb{N}$ such that $(xe, ye) \in \rho(F_i)$, and so $(x, y) \in F_{i+1}$. Thus $(x, y) \in \rho(F_{i+1}) \subseteq \rho_{ETF}(s, t)$, and so $S/\rho_{ETF}(s, t)$ is ETF by Proposition 4.1.

Let τ be a right congruence on S containing (s,t), such that S/τ is ETF. We show that $\rho_{ETF}(s,t) \subseteq \tau$. Since $(s,t) \in \tau$, we have $\rho(s,t) \subseteq \tau$. If $(x,y) \in F_1$, then there exists $e \in E(S)$ such that $(xe, ye) \in \rho(s, t)$, and so $(xe, ye) \in \tau$. Since S/τ is ETF, we have $(x,y) \in \tau$. Thus $F_1 \subseteq \tau$, and so $\rho(F_1) \subseteq \tau$. Suppose then that $\rho(F_i) \subseteq \tau$, $i \in \mathbb{N}$. If $(x,y) \in F_{i+1}$, then there exists $e \in E(S)$ such that $(xe, ye) \in \rho(F_i) \subseteq \tau$. Since S/τ is ETF, $(x,y) \in \tau$. Hence $F_{i+1} \subseteq \tau$, and so $\rho(F_{i+1}) \subseteq \tau$. Thus $\rho(F_i) \subseteq \tau$, for all $i \in \mathbb{N}$, and so $\rho_{ETF}(s,t) \subseteq \tau$.

Theorem 4.6. Let S be a monoid. Then the following statements are equivalent:

- (1) All ETF cyclic right S-acts satisfy Condition (P).
- (2) All ETF cyclic right S-acts satisfy Condition (P_E) .
- (3) For any $x, y, s, t \in S$, there exist $u, v \in S$ such that $(u, x), (v, y) \in \rho_{ETF}(xs, yt)$ and us = vt.
- (4) For any $s, t \in S$, there exist $u, v \in S$ such that $(u, 1), (v, 1) \in \rho_{ETF}(s, t)$ and us = vt.

Proof. $(1) \Rightarrow (2)$. It is obvious.

(2) \Rightarrow (3). The cyclic right S-act $S/\rho_{ETF}(xs, yt)$ is ETF, and so it satisfies Condition (P_E) . Thus by [15, Theorem 2.5], there exist $u, v \in S$ and $e, f \in E(S)$ such that us = vt, es = s, ft = t, $(ue, xe), (yf, vf) \in \rho_{ETF}(xs, yt)$. Thus by Proposition 4.1, $(u, x), (v, y) \in \rho_{ETF}(xs, yt)$, as required.

 $(3) \Rightarrow (4)$. It is sufficient to take x = y = 1.

(4) \Rightarrow (1). Suppose τ is a right congruence on S, such that S/τ is ETF and let $(s,t) \in \tau$. Then by assumption, there exist $u, v \in S$ such that us = vt and $(u,1), (v,1) \in \rho_{ETF}(s,t)$. By Theorem 4.5, $\rho_{ETF}(s,t) \subseteq \tau$, and so $(u,1), (v,1) \in \tau$. Thus S/τ satisfies Condition (P), by [2, III, 13.4].

Theorem 4.7. Let S be a monoid. Then the following statements are equivalent:

- (1) All ETF cyclic right S-acts satisfy Condition (P').
- (2) For any $x, y, z, t, t' \in S$, the equality tz = t'z implies that there exist $u, v \in S$ such that ut = vt' and $(u, x), (v, y) \in \rho_{ETF}(xt, yt')$.

Proof. Using [16, Theorem 3.1] and Theorem 4.5, it is similar to that of Theorem 4.6. \Box

Theorem 4.8. Let S be a monoid. Then the following statements are equivalent:

- (1) All ETF cyclic right S-acts satisfy Condition (E).
- (2) For any $s,t \in S$, there exists $u \in S$ such that us = ut, and $(u,1) \in \rho_{ETF}(s,t)$.

Proof. Using [2, III, 14.8] and Theorem 4.5, it is similar to that of Theorem 4.6. \Box

Theorem 4.9. Let S be a monoid. Then the following statements are equivalent:

- (1) All ETF cyclic right S-acts satisfy Condition (E').
- (2) For any $s, t, z \in S$, the equality sz = tz implies that there exists $u \in S$ such that us = ut and $(u, 1) \in \rho_{ETF}(s, t)$.

Proof. It follows from Theorem 4.5, and a similar argument as in the proof of Theorem 4.6. $\hfill \Box$

Theorem 4.10. Let S be a monoid. Then the following statements are equivalent:

- (1) All ETF cyclic right S-acts satisfy Condition (E'P).
- (2) For any $x, y, z \in S$, the equality xz = yz implies that there exist $u, v \in S$ such that ux = vy and $(u, 1), (v, 1) \in \rho_{ETF}(x, y)$.
- (3) For any $x, t, t', z \in S$, the equality tz = t'z implies that there exist $u, v \in S$ such that ut = vt' and $(u, x), (v, x) \in \rho_{ETF}(xt, xt')$.

Proof. It follows from [7, Theorem 2.10], Theorem 4.5, and a similar argument as in the proof of Theorem 4.6. $\hfill \Box$

Theorem 4.11. Let S be a monoid. Then the following statements are equivalent:

- (1) All ETF cyclic right S-acts are principally weakly flat.
- (2) For any $u, v, s \in S$, $(u, v) \in (\rho_{ETF}(us, vs) \lor ker\rho_s)$.

Proof. (1) \Rightarrow (2). Suppose $u, v, s \in S$. Then the cyclic right S-act $S/\rho_{ETF}(us, vs)$ is ETF, and so it is principally weakly flat. Since $(us, vs) \in \rho_{ETF}(us, vs)$ by [2, III, 10.7], we have $(u, v) \in (\rho_{ETF}(us, vs) \lor ker\rho_s)$.

(2) \Rightarrow (1). Suppose τ is a right congruence on S, such that S/τ is ETF and let $(us, vs) \in \tau$. By Theorem 4.5, $\rho_{ETF}(us, vs) \subseteq \tau$. By assumption, $(u, v) \in (\rho_{ETF}(us, vs) \lor ker\rho_s)$, and so $(u, v) \in (\tau \lor ker\rho_s)$. Thus S/τ is principally weakly flat, by [2, III, 10.7].

Theorem 4.12. Let S be a monoid. Then the following statements are equivalent:

- (1) All ETF cyclic right S-acts are weakly flat.
- (2) For any $s, t \in S$, there exist $u, v \in S$ such that us = vt, $(u, 1) \in (\rho_{ETF}(s, t) \lor ker\rho_s)$ and $(v, 1) \in (\rho_{ETF}(s, t) \lor ker\rho_t)$.

Proof. (1) \Rightarrow (2). The cyclic right S-act $S/\rho_{ETF}(s,t)$ is ETF, and so it is weakly flat. Thus by [2, III, 11.5], there exist $u, v \in S$ such that us = vt, $(u, 1) \in (\rho_{ETF}(s,t) \lor ker\rho_s)$ and $(v, 1) \in (\rho_{ETF}(s,t) \lor ker\rho_t)$.

(2) \Rightarrow (1). Suppose τ is a right congruence on S, such that S/τ is ETF and let $(s,t) \in \tau$. By Theorem 4.5, $\rho_{ETF}(s,t) \subseteq \tau$ and by assumption, there exist $u, v \in S$ such that us = vt, $(u, 1) \in (\rho_{ETF}(s,t) \lor ker\rho_s)$ and $(v, 1) \in (\rho_{ETF}(s,t) \lor ker\rho_t)$. Thus $(u, 1) \in (\tau \lor ker\rho_s)$ and $(v, 1) \in (\tau \lor ker\rho_t)$, and so S/τ is weakly flat, by [2, III, 11.5].

Theorem 4.13. Let S be a monoid. Then the following statements are equivalent:

- (1) All ETF cyclic right S-acts satisfy Condition (PWP).
- (2) All ETF cyclic right S-acts satisfy Condition (PWP_E) .
- (3) For any $x, y, t \in S$, there exist $u, v \in S$ such that ut = vt and $(u, x), (v, y) \in \rho_{ETF}(xt, yt)$.

Proof. Using [9, Theorem 3.7], [5, Proposition 7] and Theorem 4.5, it is similar to that of Theorem 4.6. \Box

Lemma 4.14. Let S be a left PP monoid. Then the following statements are equivalent:

- (1) For any $x, y, t \in S$, $(x, y) \in (\rho_{ETF}(xt, yt) \lor ker\rho_t)$.
- (2) For any $x, y, t \in S$, there exist $u, v \in S$ such that ut = vt and $(u, x), (v, y) \in \rho_{ETF}(xt, yt)$.
- (3) For any $x, y, t \in S$, $(x, y) \in \rho_{ETF}(xt, yt)$.

Proof. (1) \Leftrightarrow (2). It follows from [9, Theorem 2.5], Theorem 4.11 and Theorem 4.13.

(2) \Rightarrow (3). Let $x, y, t \in S$. By assumption there exist $u, v \in S$ such that ut = vtand $(u, x), (v, y) \in \rho_{ETF}(xt, yt)$. Sine S is left PP, there exists $e \in E(S)$ such that $ker\rho_t = ker\rho_e$. Thus ue = ve, and so $(xe, ye) \in \rho_{ETF}(xt, yt)$. Hence $(x, y) \in \rho_{ETF}(xt, yt)$, by Proposition 4.1 and Theorem 4.5. (3) \Rightarrow (1). It is obvious.

Theorem 4.15. Let S be a left PP monoid. Then the following statements are equivalent:

- (1) All ETF cyclic right S-acts satisfy Condition (PWP).
- (2) All ETF cyclic right S-acts satisfy Condition (PWP_E) .

- (3) All ETF cyclic right S-acts are principally weakly flat.
- (4) S acts injectively on every ETF cyclic right S-acts.
- (5) For any $x, y, t \in S$, $(x, y) \in \rho_{ETF}(xt, yt)$.

Proof. (1) \Leftrightarrow (2). It follows from Theorem 4.13.

 $(2) \Leftrightarrow (3)$. It follows from [9, Theorem 2.5].

(3) \Leftrightarrow (5). It follows from Theorem 4.11 and Lemma 4.14.

(4) \Rightarrow (5). Suppose $x, y, t \in S$. Then the cyclic right *S*-act $S/\rho_{ETF}(xt, yt)$ is ETF, and so *S* acts injectively on $S/\rho_{ETF}(xt, yt)$. $(xt, yt) \in \rho_{ETF}(xt, yt)$ implies that $[x]_{\rho_{ETF}(xt, yt)}t = [y]_{\rho_{ETF}(xt, yt)}t$, and so $[x]_{\rho_{ETF}(xt, yt)} = [y]_{\rho_{ETF}(xt, yt)}$. Thus $(x, y) \in \rho_{ETF}(xt, yt)$.

(5) \Rightarrow (4). Suppose τ is a right congruence on S, such that S/τ is ETF. Let $[x]_{\tau}t = [y]_{\tau}t, x, y, t \in S$. By Theorem 4.5 and by the assumption we have $(x, y) \in \rho_{ETF}(xt, yt) \subseteq \tau$. Thus $[x]_{\tau} = [y]_{\tau}$ as required.

Theorem 4.16. Let S be a monoid. Then the following statements are equivalent:

- (1) All ETF cyclic right S-acts are torsion free.
- (2) For any $s, t \in S$, $\rho_{TF}(s, t) \subseteq \rho_{ETF}(s, t)$.
- (3) For any $s, t \in S$ and $c \in S$ right cancellable, $(s, t) \in \rho_{ETF}(sc, tc)$.

Proof. (1) \Rightarrow (2). Suppose $s, t \in S$. Then the cyclic right S-act $S/\rho_{ETF}(s,t)$ is *ETF*, and so it is torsion free. Thus $\rho_{TF}(s,t) \subseteq \rho_{ETF}(s,t)$, by the proof of Lemma 3.31 of [4].

(2) \Rightarrow (3). Suppose $s, t \in S$ and $c \in S$ right cancellable. Then $(s, t) \in \rho_{TF}(sc, tc) \subseteq \rho_{ETF}(sc, tc)$, by [4, Lemma 3.31] and [2, III, 8.4].

(3) \Rightarrow (1). Suppose τ is a right congruence on S, such that S/τ is ETF and let $(sc, tc) \in \tau$, $s, t \in S$ and $c \in S$ right cancellable. Then by Theorem 4.5 and by the assumption we have $(s, t) \in \rho_{ETF}(sc, tc) \subseteq \tau$. Thus S/τ is torsion free, by [2, III, 8.4].

Theorem 4.17. Let S be a monoid. Then the following statements are equivalent:

- (1) All ETF cyclic right S-acts are weakly pullback flat.
- (2) S satisfies the following Conditions:
 (a) For any s, t, z ∈ S, the equality sz = tz implies that there exists u ∈ S such that us = ut and (u, 1) ∈ ρ_{ETF}(s, t).
 (b) For any s, t ∈ S, there exist u, v ∈ S such that us = vt and (u, 1), (v, 1) ∈ ρ_{ETF}(s, t).

Proof. It follows from [5, Theorem 21], Theorem 4.6 and Theorem 4.9. \Box

Theorem 4.18. Let S be a monoid. Then the following statements are equivalent:

(1) All torsion free cyclic right S-acts are ETF.

- (2) For any $s, t \in S$, $\rho_{ETF}(s, t) \subseteq \rho_{TF}(s, t)$.
- (3) For any $s, t \in S$ and $e \in E(S)$, $(s, t) \in \rho_{ETF}(se, te)$.
- (4) $E(S) = \{1\}.$

Proof. It is similar to the proof of Theorem 4.16.

5 Characterization by *E*-torsion freeness of monocyclic right acts

In this section we characterize monoids by *E*-torsion freeness of their monocyclic right acts.

Lemma 5.1. Let S be a monoid, $w, t \in S$ and $wt \neq t$. Then $\rho(wt, t) = \rho(w, 1)$ if and only if t is right invertible.

Proof. Suppose $\rho(wt,t) = \rho(w,1)$. Then by [2, III, 8.5], there exist $m, n \in \mathbb{N} \cup \{0\}$ such that $w^m w = w^n 1 = w^n$ and $w^i w \in tS$, whenever $0 \le i < m$, and $w^j \in tS$, whenever $0 \le j < n$. If $n \ge 1$, then $1 = w^0 \in tS$, and so t is right invertible. If n = 0, then $m \ge 1$, since $w \ne 1$. Thus $w \in tS$, and so $1 = w^{m+1} \in tS$, that is, t is right invertible. The converse is obvious.

Theorem 5.2. Let S be a monoid and $w, e^2 = e \in S$. Then $S/\rho(we, e)$ is ETF if and only if e = 1 and $w^m x f = w^n y f$, for $x, y, f^2 = f \in S$, $m, n \in \mathbb{N} \cup \{0\}$, implies that $w^p x = w^q y$, for some $p, q \in \mathbb{N} \cup \{0\}$.

Necessity. If we = e, then $S/\rho = S/\Delta_S \cong S_S$, and so we are done by Proposition 2.2(3). Thus we suppose $we \neq e$. Since $(we, 1e) \in \rho$, we have by Proposition 4.1, that $(w, 1) \in \rho$. Since $(we, e) \in \rho(w, 1)$, we have $\rho = \rho(w, 1)$. Thus e = 1, by Lemma 5.1. Suppose now that $w^m xf = w^n yf$, for $x, y, f^2 = f \in S$ and $m, n \in \mathbb{N} \cup \{0\}$. Then $(xf, yf) \in \rho$, by [2, III, 8.7], and so $(x, y) \in \rho$, by Proposition 4.1. Since $\rho = \rho(w, 1)$, we have by [2, III, 8.7], that $w^p x = w^q y$, for some $p, q \in \mathbb{N} \cup \{0\}$. Sufficiency. Suppose $(sf, tf) \in \rho$. Then by [2, III, 8.7], $w^m sf = w^n tf$, for some $m, n \in \mathbb{N} \cup \{0\}$. Thus by assumption, $w^p s = w^q t$, for some $p, q \in \mathbb{N} \cup \{0\}$. Again by [2, III, 8.7], $(s, t) \in \rho$, and so the result follows from Proposition 4.1.

Theorem 5.3. Let S be a monoid. Then all ETF right S-acts of the form $S/\rho(we, e)$ satisfy Condition (P).

Proof. It follows from Theorem 5.2, [2, III, 13.8] and [2, III, 13.5].

Theorem 5.4. Let S be a monoid. Then the following statements are equivalent:

(1) All monocyclic right S-acts of the form $S/\rho(we, e)$, $w, e^2 = e \in S$, $we \neq e$, satisfying Condition (P) are ETF.

Proof. Let $\rho = \rho(we, e)$.

(2) For every $1 \neq w \in S$, if there exist $x, y, f^2 = f \in S$ and $m, n \in \mathbb{N} \cup \{0\}$ such that $w^m x f = w^n y f$, then there exist $p, q \in \mathbb{N} \cup \{0\}$ such that $w^p x = w^q y$.

Proof. (1) ⇒ (2). Let $w \in S$, with $w \neq 1$. Then $S/\rho(w, 1)$ satisfies Condition (P), by [2, III, 13.8]. Thus $S/\rho(w, 1)$ is ETF, and the result follows from Theorem 5.2. (2) ⇒ (1). Suppose the right S-act $S/\rho(we, e)$, $we \neq e$, satisfies Condition (P). Then by [2, III, 13.8], there exists $a \in S$ such that $\rho(we, e) = \rho(a, 1)$. Since $(we, e) \in \rho(a, 1)$, by [2, III, 8.7], there exist $m, n \in \mathbb{N} \cup \{0\}$ such that $a^m we = a^n e$. Since $we \neq e$, we have $a \neq 1$. Thus by assumption there exist $p, q \in \mathbb{N} \cup \{0\}$ such that $a^p w = a^q$. Again $(w, 1) \in \rho(a, 1) = \rho(we, e)$ by [2, III, 8.7], and so $\rho(we, e) = \rho(w, 1)$. Now the result follows from Lemma 5.1 and Theorem 5.2. □

Theorem 5.5. Let S be a monoid. Then the following statements are equivalent:

- (1) All projective monocyclic right S-acts of the form $S/\rho(w, 1), 1 \neq w \in S$, are ETF.
- (2) All monocyclic right S-acts of the form $S/\rho(w,1)$, $1 \neq w \in S$, satisfying Condition (E) are ETF.
- (3) If $1 \neq w$ is aperiodic, then the equality $w^n x f = w^n y f$, for $x, y, f^2 = f \in S$ and $n \in \mathbb{N}$, implies $w^n x = w^n y$.

Proof. (1) \Leftrightarrow (2). It follows from [2, III, 17.14].

(2) \Rightarrow (3). Suppose for $1 \neq w \in S$, there exists $n \in \mathbb{N}$ such that $w^{n+1} = w^n$. Then $S/\rho(w, 1)$ satisfies Condition (E), by [2, III, 17.14], and so it is ETF. Now the result follows from Theorem 5.2.

(3) \Rightarrow (2). Suppose the right S-act $S/\rho(w, 1)$, $w \neq 1$, satisfies Condition (E). Then by [2, III, 17.14], there exists $n \in \mathbb{N}$ such that $w^{n+1} = w^n$. If $w^k x f = w^j y f$, for $x, y, f^2 = f \in S$ and $k, j \in \mathbb{N} \cup \{0\}$, then $w^n x f = w^n y f$, and so by assumption, $w^n x = w^n y$. Now the result follows from Theorem 5.2.

Now we consider monoids over which E-torsion freeness implies projectivity and Condition (E).

Theorem 5.6. Let S be a monoid. Then the following statements are equivalent:

- (1) All ETF monocyclic right S-acts of the form $S/\rho(w, 1)$, are projective.
- (2) All ETF monocyclic right S-acts of the form S/ρ(w, 1), satisfy Condition (E).
- (3) Every $w \in S$ is either aperiodic or there exist $x, y, f^2 = f \in S$ and $m, n \in \mathbb{N} \cup \{0\}$ such that $w^m x f = w^n y f$ and $w^p x \neq w^q y$, for all $p, q \in \mathbb{N} \cup \{0\}$.

Proof. (1) \Leftrightarrow (2). It follows from [2, III, 17.14].

 $(2) \Rightarrow (3)$. If w = 1, then we are done. Suppose that $1 \neq w \in S$. If for all $x, y, f^2 = f \in S$ and $m, n \in \mathbb{N} \cup \{0\}$, $w^m x f = w^n y f$ implies the existence of $p, q \in \mathbb{N} \cup \{0\}$ such that $w^p x = w^q y$, then by Theorem 5.2, $S/\rho(w, 1)$ is *ETF*.

Thus $S/\rho(w, 1)$ satisfies Condition (E), and so w is aperiodic, by [2, III, 14.9]. (3) \Rightarrow (2). Suppose the right S-act $S/\rho(w, 1)$, $w \in S$ is ETF. If w = 1, then $S/\rho(w, 1) = S/\Delta_S \cong S_S$ satisfies Condition (E). Thus we suppose $w \neq 1$. By Theorem 5.2, the equality $w^m xf = w^n yf$, for all $x, y, f^2 = f \in S$ and $m, n \in \mathbb{N} \cup \{0\}$, implies the existence of $p, q \in \mathbb{N} \cup \{0\}$ such that $w^p x = w^q y$. Thus w is aperiodic and the result follows from [2, III, 14.9].

6 Characterization by *E*-Torsion Freeness of Right Rees Factor Acts

In this section we characterize monoids by *E*-torsion freeness of their right Rees factor acts. First of all we give a characterization of monoids over which all right Rees factor acts are *ETF* and also monoids over which all *ETF* right Rees factor acts have some other properties. Then we give a characterization of monoids for which right Rees factor acts with other properties are *ETF*. We recall that for a right ideal K_S of S, the Rees congruence ρ_K is defined by $(a, b) \in \rho_K$ if $a, b \in K_S$ or a = b and the resulting factor act is called the Rees factor act and is denoted by S/K_S .

Theorem 6.1. Let S be a monoid and K_S be a right ideal of S. Then S/K_S is ETF if and only if $K_S = S$ or $E(S) = \{1\}$.

Proof. Necessity. Suppose S/K_S is ETF, $K_S \neq S$ and let $e \in E(S)$. Then $[1]_{\rho_K}e = [e]_{\rho_K}e$, and so $[1]_{\rho_K} = [e]_{\rho_K}$. Thus e = 1, and so $E(S) = \{1\}$ as required. Sufficiency. It follows from Proposition 2.2(1),(2).

Theorem 6.2. Let S be a monoid. Then the following statements are equivalent:

- (1) All right Rees factor S-acts are ETF.
- (2) All right Rees factor S-acts of the form S/sS, $s \in S$ are ETF.
- (3) All right Rees factor S-acts of the form S/sS, $s \in S$ is regular, are ETF.
- (4) All right Rees factor S-acts of the form S/eS, $e \in E(S)$, are ETF.
- (5) $E(S) = \{1\}.$

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious. (4) \Rightarrow (5). Let $e \in E(S)$. Then by assumption S/eS is ETF, and so by Theorem 6.1, eS = S or $E(S) = \{1\}$. these imply that $E(S) = \{1\}$. (5) \Rightarrow (1). It follows from Proposition 2.2(2).

Theorem 6.3. Let S be a monoid and (U) be a property of acts. Then the following statements are equivalent:

(1) All ETF right Rees factor S-acts satisfy (U).

(2) Θ_S satisfies (U) and $E(S) = \{1\}$ implies that all right Rees factor S-acts satisfy (U).

Proof. (1) \Rightarrow (2). By Proposition 2.2(1), $\Theta_S \cong S/S_S$ satisfies (U). If $E(S) = \{1\}$, then by Theorem 6.2, and assumption all right Rees factor S-acts satisfy (U). (2) \Rightarrow (1). Suppose the right Rees factor S-act S/K_S is ETF. Then either $K_S = S$ or $E(S) = \{1\}$, by Theorem 6.1. If $K_S = S$, then $S/K_S = S/S_S \cong \Theta_S$ satisfies Condition (U). If $E(S) = \{1\}$, then by assumption, all right Rees factor S-acts satisfy (U).

Theorem 6.4. Let S be a monoid. Then the following statements are equivalent:

- (1) All ETF right Rees factor S-acts are torsion free.
- (2) $E(S) \neq \{1\}$ or else, every right cancellable element of S is right invertible.

Proof. It follows from Theorem 6.3, [2, III, 8.2] and [2, IV, 6.1].

Theorem 6.5. Let S be a monoid. Then the following statements are equivalent:

- (1) All ETF right Rees factor S-acts are principally weakly flat.
- (2) All ETF right Rees factor S-acts satisfy Condition (PWP).
- (3) All ETF right Rees factor S-acts satisfy Condition (PWP_E) .
- (4) $E(S) \neq \{1\}$ or else, S is a group.

Proof. $(1) \Leftrightarrow (4)$. It follows from Theorem 6.3, [2, III, 10.2], [2, IV, 6.6], and [1, II, Exercise 11].

(2) \Leftrightarrow (4). It follows from Theorem 6.3, [5, Corollary 11] and [3, Proposition 9]. (3) \Leftrightarrow (4). It follows from Theorem 6.3, and [9, Theorem 3.1].

Theorem 6.6. Let S be a monoid. Then the following statements are equivalent:

- (1) All ETF right Rees factor S-acts are flat.
- (2) All ETF right Rees factor S-acts are weakly flat.
- (3) All ETF right Rees factor S-acts satisfy Condition (WP).
- (4) All ETF right Rees factor S-acts satisfy Condition (P).
- (5) All ETF right Rees factor S-acts satisfy Condition (P_E) .
- (6) All ETF right Rees factor S-acts are P-regular.

(7) S is right reversible and $E(S) = \{1\}$ implies that S is a group.

Proof. (1) \Leftrightarrow (2). It follows from [2, III, 12.17].

 $(2) \Leftrightarrow (7)$. It follows from Theorem 6.3, [2, III, 11.2] and [2, IV, 7.3].

- $(3) \Leftrightarrow (7)$. It follows from Theorem 6.3, [5, Corollary 18] and [3, Proposition 14].
- (4) \Leftrightarrow (7). It follows from Theorem 6.3, [5, Corollary 18] and [2, IV, 9.9].
- (5) \Leftrightarrow (7). It follows from Theorem 6.3 and [15, Theorem 3.1].
- (6) \Leftrightarrow (7). It follows from Theorem 6.3, [10, Theorem 2.1(1)] and [10, Theorem 2.3].

Theorem 6.7. Let S be a monoid. Then the following statements are equivalent:

- (1) All ETF right Rees factor S-acts satisfy Condition (E).
- (2) All ETF right Rees factor S-acts are pullback flat.
- (3) All ETF right Rees factor S-acts are equalizer flat.
- (4) All ETF right Rees factor S-acts are strongly flat.
- (5) S is left collapsible and $E(S) = \{1\}$ implies that $S = \{1\}$.

Proof. Implications (1) \Leftrightarrow (2), (2) \Leftrightarrow (3) and (3) \Leftrightarrow (4) are obvious, by [2, III, 16.7].

(4) \Leftrightarrow (5). By Theorem 6.3, all *ETF* right Rees factor *S*-acts are strongly flat if and only if Θ_S is strongly flat and $E(S) = \{1\}$ implies that all right Rees factor *S*-acts are strongly flat. By [2, III, 14.3] and [2, IV, 11.13], all *ETF* right Rees factor *S*-acts are strongly flat if and only if *S* is left collapsible and $E(S) = \{1\}$ implies that $S = \{1\}$.

Theorem 6.8. Let S be a monoid. Then the following statements are equivalent:

- (1) All ETF right Rees factor S-acts are regular.
- (2) All ETF right Rees factor S-acts are strongly (P)-cyclic.
- (3) All ETF right Rees factor S-acts are projective.
- (4) S contains a left zero.

Proof. $(1) \Rightarrow (2)$. It follows from [11, Thorem 2.1].

 $(2) \Rightarrow (3)$. It follows from [11, Corollary 3.10].

(3) \Rightarrow (4). By Proposition 2.2(1), the right Rees factor S-act $S/S_S \cong \Theta_S$ is ETF, and so it is projective. Thus by [2, III, 17.2], S contains a left zero element. (4) \Rightarrow (1). Suppose the right Rees factor S-act S/K_S is ETF. By Theorem 6.1, $K_S = S$ or $E(S) = \{1\}$. If $K_S = S$, then $S/K_S = S/S_S \cong \Theta_S$ is regular, by [2, III, 19.4(4)]. If $E(S) = \{1\}$, then $S = \{1\}$, and so all right Rees factor S-acts are regular.

Notice that all statements in Theorem 6.8 are also true for (cyclic) right S-acts.

Theorem 6.9. Let S be a monoid. Then the following statements are equivalent:

- (1) All ETF right Rees factor S-acts are weakly pullback flat.
- (2) All ETF right Rees factor S-acts are weakly kernel flat.
- (3) S is right reversible, weakly left collapsible and $E(S) = \{1\}$ implies that S is a group.

Proof. It follows from Theorem 6.3, [10, Corollary 3.10] and [3, Theorem 20]. \Box

Theorem 6.10. Let S be a monoid. Then the following statements are equivalent:

- (1) All ETF right Rees factor S-acts are principally weakly kernel flat.
- (2) All ETF right Rees factor S-acts are translation kernel flat.
- (3) $ker\rho_z$ is connected as a left S-act, for every $z \in S$ and $E(S) = \{1\}$ implies that S is a group.

Proof. It follows from Theorem 6.3, [3, Proposition 7] and [3, Theorem 20]. \Box

Theorem 6.11. Let S be a monoid. Then the following statements are equivalent:

- (1) All ETF right Rees factor S-acts satisfy Condition (P').
- (2) S is weakly right reversible and $E(S) = \{1\}$ implies that S is a group.

Proof. It follows from Theorem 6.3, [16, Corollary 4.4] and [16, Thorem 4.18]. \Box

Now we give a characterization of monoids for which right Rees factor acts with other properties are ETF.

Theorem 6.12. Let S be a monoid. Then the following statements are equivalent:

- (1) All right Rees factor S-acts satisfying Condition (P) are ETF.
- (2) All right Rees factor S-acts satisfying Condition (E) are ETF.
- (3) All pullback flat right Rees factor S-acts are ETF.
- (4) All equalizer flat right Rees factor S-acts are ETF.
- (5) All strongly flat right Rees factor S-acts are ETF.
- (6) All projective right Rees factor S-acts are ETF.
- (7) All free right Rees factor S-acts are ETF.
- (8) S contains no left zero element or $S = \{1\}$.

Proof. (1) \Rightarrow (2). It follows from [2, III, 14.7]. Implications (2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5) follow from [2, III, 16.7]. Implications (5) \Rightarrow (6) \Rightarrow (7) are obvious. (7) \Rightarrow (8). Let $s \in S$ be a left zero. Then the right Rees factor S-act $S/sS \cong S_S$ is free, and so it is ETF, by assumption. Thus by Proposition 2.2(3), $E(S) = \{1\}$, and so s = 1, that is, $S = \{1\}$.

(8) \Rightarrow (1). Suppose the right Rees factor *S*-act *S*/*K*_{*S*} satisfies Condition (*P*). If $K_S = S$, then by Proposition 2.2(1) we are done. Thus we suppose that $K_S \neq S$. Then by [2, III, 13.9], $|K_S| = 1$, and so *S* contains a left zero element. Thus, $S = \{1\}$, and so $K_S = S$, which is a contradiction.

Theorem 6.13. Let S be a monoid. Then the following statements are equivalent:

- (1) All weakly flat right Rees factor S-acts are ETF.
- (2) All flat right Rees factor S-acts are ETF.
- (3) $E(S) = \{1\}$ or S is not right reversible.

Proof. (1) \Leftrightarrow (2). It is obvious.

 $(2) \Rightarrow (3)$. Suppose $E(S) \neq \{1\}$, S is right reversible and let $e \in E(S) \setminus \{1\}$. By [2, III, 12.17, the right Rees factor S-act $S/(eS)_S$ is flat. Thus eS = S, by Theorem 6.1, which is a contradiction.

 $(3) \Rightarrow (1)$. It follows from [2, III, 12.17] and Proposition 2.2(2).

Theorem 6.14. Let S be a monoid. Then the following statements are equivalent:

- (1) All torsion free right Rees factor S-acts are ETF.
- (2) All principally weakly flat right Rees factor S-acts are ETF.
- (3) $E(S) = \{1\}.$

Proof. $(1) \Rightarrow (2)$. It is obvious.

 $(2) \Rightarrow (3)$. Suppose $e \in E(S)$. The right Rees factor S-act $S/(eS)_S$ is principally weakly flat, and so $E(S) = \{1\}$ or eS = S, by Theorem 6.1. In each case, $E(S) = \{1\}.$

 $(3) \Rightarrow (1)$. It follows from Proposition 2.2(2).

Theorem 6.15. Let S be a monoid. Then the following statements are equivalent:

- (1) All regular right Rees factor S-acts are ETF.
- (2) $S = \{1\}$ or S contains no left zero element or there exists $z \in S$ such that $ker\lambda_z \neq ker\lambda_e$, for every $e \in E(S)$.

Proof. $(1) \Rightarrow (2)$. It follows from [2, III, 19.6], [2, III, 17.16] and Theorem 6.1. $(2) \Rightarrow (1)$. It follows from [2, III, 19.6], [2, III, 17.16] and Proposition 2.2(2).

Theorem 6.16. Let S be a monoid. Then the following statements are equivalent:

- (1) All P-regular right Rees factor S-acts are ETF.
- (2) All strongly (P)-cyclic right Rees factor S-acts are ETF.
- (3) $S = \{1\}$ or S contains no left zero element or S is not right PCP.

Proof. Since strong (P)-cyclic implies P-regularity, $(1) \Rightarrow (2)$ is obvious. $(2) \Rightarrow (3)$. It follows from [11, Theorem 3.1] and Theorem 6.1.

 $(3) \Rightarrow (1)$. It follows from [10, Theorem 3.1] and Theorem 6.2.

Theorem 6.17. Let S be a monoid. Then the following statements are equivalent:

- (1) All right Rees factor S-acts satisfying Condition (P') are ETF.
- (2) $E(S) = \{1\}$ or S has no left stabilizing and completely left annihilating proper right ideal.

Proof. $(1) \Rightarrow (2)$. It follows from [16, Theorem 4.3] and Theorem 6.1. $(2) \Rightarrow (1)$. It follows from [16, Theorem 4.3] and Theorem 6.2.

Theorem 6.18. Let S be a monoid. Then the following statements are equivalent:

- (1) All right Rees factor S-acts satisfying Condition (PWP) are ETF.
- (2) $E(S) = \{1\}$ or S has no left stabilizing and left annihilating proper right ideal.

Proof. $(1) \Rightarrow (2)$. It follows from [5, Theorem 10] and Theorem 6.1. $(2) \Rightarrow (1)$. It follows from [5, Theorem 10] and Theorem 6.2.

Theorem 6.19. Let S be a monoid. Then the following statements are equivalent:

- (1) All right Rees factor S-acts satisfying Condition (WP) are ETF.
- (2) $E(S) = \{1\}$ or S is not right reversible or S has no left stabilizing and strongly left annihilating proper right ideal.

Proof. $(1) \Rightarrow (2)$. It follows from [5, Theorem 17] and Theorem 6.1. $(2) \Rightarrow (1)$. It follows from [5, Theorem 17] and Theorem 6.2.

Theorem 6.20. Let S be a monoid. Then the following statements are equivalent:

- (1) All right Rees factor S-acts satisfying Condition (P_E) are ETF.
- (2) $E(S) = \{1\}$ or S is not right reversible or S has no proper P_E -left annihilating right ideal.

Proof. $(1) \Rightarrow (2)$. It follows from [15, Theorem 3.5] and Theorem 6.1. $(2) \Rightarrow (1)$. It follows from [15, Theorem 3.5] and Theorem 6.2.

Theorem 6.21. Let S be a monoid. Then the following statements are equivalent:

- (1) All right Rees factor S-acts satisfying Condition (PWP_E) are ETF.
- (2) $E(S) = \{1\}$ or S has no left stabilizing and E-left annihilating proper right ideal.

Proof. $(1) \Rightarrow (2)$. It follows from [9, Theorem 4.2] and Theorem 6.1. $(2) \Rightarrow (1)$. It follows from [9, Theorem 4.2] and Theorem 6.2.

References

- J. M. Howie, Fundamentals of Semigroup Theory, London Mathematical Society Monographs, Oxford University Press, London (1995).
- [2] M. Kilp, U. Knauer, A. Mikhalev, Monoids, Acts and Categories, Walter de Gruyter, Berlin, New York (2000).

- [3] S. Bulman-Fleming, M. Kilp, V. Laan, Pullbacks and Flatness Properties of Acts II, Comm. Algebra. 29 (2) (2001) 851–878.
- [4] V. Laan, Pullback and Flatness Properties of Acts, Ph.D Thesis, Tartu (1999).
- [5] V. Laan, Pullbacks and Flatness Properties of Acts I, Comm. Algebra. 29 (2) (2001) 829–850.
- [6] H. Qiao, Ch. Wei, On a generalization of principal weak flatness property, Semigroup Forum. 85 (2012) 147–159.
- [7] A. Golchin, H. Mohammadzadeh, On Condition (E'P), J. Sci. Islam. Repub. Iran. 17 (4) (2006) 343–349.
- [8] A. Golchin, H. Mohammadzadeh, On Condition (EP), Int. Math. Forum. 2 (19) (2007) 911–918.
- [9] A. Golchin, H. Mohammadzadeh, On Condition (PWP_E) , Southeast Asian Bulletin of Mathematics. 33 (2009) 245–256.
- [10] A. Golchin, H. Mohammadzadeh, P. Rezaei, On P-regularity of Acts, Advances in Pure Mathematics. 2 (2012) 104–108.
- [11] A. Golchin, P. Rezaei, H. Mohammadzadeh, On Strongly (P)-cyclic Acts, Czechoslovak Mathematical Journal. 59 (134) (2009) 595–611.
- [12] M. Kilp, U. Knauer, On Torsionless and Dense Acts, Semigroup Forum. 63 (2001) 396–414.
- [13] J. Renshaw, Monoids for which Condition (P) acts are projective, Semigroup Forum. 61 (1) (2000) 46–56.
- [14] A. Golchin, J. Renshaw, A flatness property of acts over monoids, in Conference on Semigroups, University of St. Andrews. July 1997 (1998) 72–77.
- [15] A. Golchin, H. Mohammadzadeh, On Homological Classification of Monoids by Condition (P_E) of Right Acts, Italian Journal of Pure and Applied Mathematics. 25 (2009) 175–186.
- [16] A. Golchin, H. Mohammadzadeh, On Condition (P'), Semigroup Forum. 86 (2013) 413–430.

(Received 18 July 2013) (Accepted 8 April 2014)

 $\mathbf{T}\mathrm{HAI}\ \mathbf{J.}\ \mathbf{M}\mathrm{ATH}.$ Online @ http://thaijmath.in.cmu.ac.th