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1 Introduction

Throughout this paper S will denote a monoid. We refer the reader to [I]
and [2] for basic definitions and terminology relating to semigroups and acts over
monoids and to [3], [4], [5] and [6] for definitions and results on flatness which are
used here. A monoid S is called left(right) collapsible if for any s,s’ € S there
exists z € S such that zs = zs' (sz = §’2). A submonoid P of S is called weakly
left collapsible if for any s,s' € P, z € S, sz = s’z implies the existence of u € P
such that us = us’. It is obvious that every left collapsible submonoid is weakly
left collapsible, but the converse is not true. A monoid S is called right (left)
reversible, if for any s,s’ € S, there exist u,v € S such that us = vs’ (su = s'v).
A submonoid P of S is called weakly right reversible, if for any s,s’ € P, z € S,
sz = s’z implies the existence of u,v € P such that us = vs’. A right ideal Kg of a
monoid S is called left stabilizing, if for any k € Kg, there exists [ € Kg such that
lk = k. Kg is called left annihilating, if for any t € S, z,y € S\ Kg, at,yt € Kg
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implies that xt = yt. Kg is called strongly left annihilating, if for all s,t € S\ Kg
and for all homomorphisms f :g (St U Ss) —g S, f(s), f(t) € Kg implies that
f(s) = f(t). Kg is called completely left annihilating, if for all x,y, z,t,t' € S,

[(xt # yt') A (tz = t'2)] = [(at & Ks) v (yt' € Ks) V (z € Ks) V (y € Ks)]
Kg is called Pg-left annihilating, if for all z,y,t,t’' € S,
(at#£yt') = [(r € Ks)V(ye Ks)V (zt ¢ Ks)V (yt' ¢ Ks)V

(Fu,v € S,e, f € E(S),et =t, ft' =t ut = vt'
xe # ue = ze,ue € Kg,yf Zvf = yf,vf € Kg)]
Ky is called E-left annihilating, if for all x,y,t € S,

(xt#yt)=[(r e Ks)V(ye Kg)V (at ¢ Kg)V (yt ¢ Kg)V

(Fu,v € S,e, f € E(S),et =t = ft,ut = vt,
xe # ue = ze,ue € Kg,yf Zvf = yf,vf € Kg)]

A right S-act A satisfies Condition (P), if for all a,a’ € A, 5,8’ € S, as = d's’
implies that there exist b € A, u,v € S such that a = bu, a’ = bv and us = vs’. A
monoid S is called right PCP, if all principal right ideals of S satisfy Condition
(P). A right S-act A satisfies Condition (P’), if for all a,a’ € A, 5,8,z € S,
as = a's’, sz = s’z imply that there exist b € A, u,v € S such that a = bu,
a’' = bv and us = vs’. A right S-act A satisfies Condition (Pg), if for all a,a’ € A,
s,8' € S, as = a's’ implies that there exist b € A, u,v,e? = e, f2 = f € S such
that ae = bue, a'f = bvf, es = s, fs' = s’ and us = vs’. It is obvious that
Condition (P) implies Condition (Pg), but not the converse. A satisfies Condition
(E),if for alla € A, s,s' € S, as = as’ implies that there exist b € A, u € S such
that ¢ = bu and us = us’. A satisfies Condition (E’), if for all a € A, 5,8,z € S,
as = as’ and sz = s’z implies that there exist b € A, u € S such that a = bu and
us = us’. A satisfies Condition (EP), if for all a € A, 5,8’ € S, as = as’ implies
that there exist b € A, u,v € S such that a = bu = bv and us = vs’. A satisfies
Condition (E'P), if for all a € A, 5,8,z € S, as = as’ and sz = s’z imply that
there exist b € A, u,v € S such that a = bu = bv and us = vs’. It is obvious
that Condition (E) = Condition (EP) = Condition (E'P) and Condition (E) =
Condition (E’) = Condition (E’'P). In [7] and [8] we gave a characterization of
monoids by Conditions (EP) and (E’P) of their acts. A right S-act A satisfies
Condition (PWP), if for all a,a’ € A, s € S, as = a's implies that there exist
be Aandu,v € Ssuch that a = bu, a’ = bv and us = vs. A right S-act A satisfies
Condition (PW Pg), if for all a,a’ € A, s € S, as = a’s implies that there exist
be Aandu,v,e? =e, f2=f € S such that ae = bue, a'f = bvf, es = fs = s
and us = vs. In [9] we gave a characterization of monoids by Conditions (PW Pg)
of their acts. A right S-act A satisfies Condition (W), if as = d't, for a,a’ € Ag,
s,t € S, implies that there exist b € Ag and u € SsN St, such that as = a’t = bu.
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Ag is called regular, if all cyclic subacts of A are projective. Ag is called faithful,
if for s,t € S the equality as = at for all a € A implies s = t. Ag is called
strongly faithful, if for s, t € S the equality as = at for some a € A implies s = ¢.
Ag is called P-regular, if all cyclic subacts of A satisfy Condition (P). In [I0]
we gave a characterization of monoids by P-regularity of their acts. A is called
strongly (P)-cyclic if for any a € A there exists z € S such that ker\, = kerA,
and 2S5 satisfies Condition (P). In [I1I] we gave a characterization of monoids S
by strong (P)-cyclic of right S-acts. Ag is called locally cyclic, if every finitely
generated subact of A is contained within a cyclic subact of A. An act Ag is
called to be connected, if for all a,a’ € A there exist elements s1,%1,...,8,,tn €S
and as,...,a, € A such that

as] = astq

a8z = asty

UnSp = a'ty,.
For torsionless of acts we refer the reader to [12].

2 General Properties

An element s € S acts injectively on Ag if as = bs, for a,b € Ag, implies
a =1b. If every s € S acts injectively on Ag, then we say that S acts injectively
on As.

Definition 2.1. An act Ag is called E-torsion free (ETF ), if E(S) acts injectively
on Ag, that is;

(Va,a’ € Ag)(Ve € E(S))(ae =d'e = a =d').

Proposition 2.2. Let S be a monoid. Then:
(1) The one-element act Og is ETF.
(2) If E(S) = {1}, then all (left) right S-acts are ETF .
(3) Ss is ETF if and only if E(S) = {1}.

(4) If S is a regular monoid, then Ag is ETF if and only if S acts injectively
on Ag.

(5) If A;, i € I, are right S-acts, then A;, i € I, are ETF if and only if
As =]l,c; Ai is ETF.

(6) If A;, i € I, are right S-acts, then A;, i € I, are ETF if and only if
Ag =T1,e; A; is ETF.
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(7) If an act is ETF, then all its subacts are ETF.
(8) Ag is an ETF right S-act if and only if ae = a, for alla € Ag and e € E(S).

(9) If S =T*, where T is a semigroup, then the right S-act Ts is ETF if and
only if E(T) =0 orte=t, forallt € T and e € E(T).

(10) If S is an idempotent monoid, then the right S-act Ag is ETF if and only
if Ag is a coproduct of one element acts.

(11) If S contains a left zero, then the right S-act Ag is ETF if and only if Ag
is a coproduct of one element acts.

Proof. The statements (1) to (8) are clear from definition.

(9). It follows from (8).

(10). It follows from (5) and (8).

(11). Necessity. Let z be a left zero element of S. By (8), az = a, for all a € Ag.
Thus as = (az)s = a(zs) = az = a, for all s € S and a € Ag. Hence Ag is a
coproduct of one element acts.

Sufficiency. It follows from (1) and (5). O

3 Characterization by F-Torsion Freeness of Right
Acts

In this section we characterize monoids by E-torsion freeness of right acts.

Theorem 3.1. Let S be a monoid and (U) be a property of S-acts which Sg has
property (U). Then the following statements are equivalent:

(1) All right S-acts with property (U) are ETF.

(2) All finitely generated right S-acts with property (U) are ETF.
(8) All cyclic right S-acts with property (U) are ETF.

(4) E(S) ={1}.

Proof. Implications (1) = (2) and (2) = (3) are obvious.

(3) = (4). Since Sg is a cyclic right S-act, by assumption it is ET'F, and so by
Proposition ), E(S) ={1}.

(4) = (1). It follows from Proposition ). O

Now we have the following corollary.

Corollary 3.2. Let S be a monoid. Then the following statements are equivalent:
(1) All right S-acts are ETF.
(2) All torsion free right S-acts are ETF.
(3) All principally weakly flat right S-acts are ETF.
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(4) All GP-flat right S-acts are ETF.
(5) All weakly flat right S-acts are ETF.
(6) All right S-acts satisfying Condition (W) are ETF.
(7) All flat right S-acts are ETF.
(8) All right S-acts satisfying Condition (WP) are ETF.
(9) All right S-acts satisfying Condition (PW P) are ETF.
(10) All translation kernel flat right S-acts are ETF.
(11) All principally weakly kernel flat right S-acts are ETF .
(12) All weakly kernel flat right S-acts are ETF.
(13) All right S-acts satisfying Condition (P) are ETF.
(14) All right S-acts satisfying Condition (Pg) are ETF.
(15) All right S-acts satisfying Condition (P') are ETF.
(16) All right S-acts satisfying Condition (PW Pg) are ETF.
(17) All equalizer flat right S-acts are ETF .
(18) All strongly flat right S-acts are ETF.
(19) All weakly pullback flat right S-acts are ETF .
(20) All projective right S-acts are ETF.
(21) All projective generators right S-acts are ETF.
(22) All generators right S-acts are ETF.
(23) All free right S-acts are ETF.
(24) All right S-acts satisfying Condition (E) are ETF .
(25) All right S-acts satisfying Condition (EP) are ETF.
(26) All right S-acts satisfying Condition (E') are ETF.
(27) All right S-acts satisfying Condition (E'P) are ETF .
(28) All faithful right S-acts are ETF.
(29) All torsionless right S-acts are ETF.
(50) E(S) ={1}.

Notice that all statements in Corollary above, are also true for cyclic and
finitely generated right S-acts.

Lemma 3.3. Let S be a monoid. Then the following statements are equivalent:

(1) S is left cancellative.
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(2) There exists a strongly faithful right S-act.

Proof. (1) = (2). It is obvious, because in this case Sg is a strongly faithful right
S-act.

(2) = (1). Suppose that Ag is a strongly faithful right S-act and let us = ut,
for u,s,t € S. Let a € A. Then (au)s = (au)t, and so s = t. Thus S is left
cancellative, as required. O

Theorem 3.4. Let S be a monoid and suppose there exists a strongly faithful right
S-act. Then the following statements are equivalent:

(1) All strongly faithful right S-acts are ETF.
(2) All strongly faithful finitely generated right S-acts are ETF.
(8) All strongly faithful cyclic right S-acts are ETF.
(4) E(S) = {1}.
Proof. By Lemma [3.3 and Proposition [2.2)2) it is obvious. O

Theorem 3.5. Let S be a monoid. Then the following statements are equivalent:
(1) All divisible right S-acts are ETF.
(2) All principally weakly injective right S-acts are ETF .
(3) All fg-weakly injective right S-acts are ETF.
(4) All weakly injective right S-acts are ETF.
(5) All injective right S-acts are ETF.
(6) All cofree right S-acts are ETF.
(7) All indecomposable right S-acts are ETF.
(8) All locally cyclic right S-acts are ETF.

(9) E(S) = {1}.

Proof. Since cofreeness = injectivity = weak injectivity = fg-weak injectivity
= principal weak injectivity = divisibility, then implications (1) = (2) = (3) =
(4) = (5) = (6) are obvious.

Implications (9) = (1) and (9) = (7) follow from Proposition ).

(7) = (8). It follows from [I3, Lemma 3.4].

(6) = (9). Since every right S-act can be embedded into a cofree right S-act, thus
by Proposition [2.2|7), all right S-acts are ETF, and so E(S) = {1}, by Corollary
0.2l

(8) = (9). All cyclic right S-acts are locally cyclic. Thus E(S) = {1}, by Corollary
3.2 U
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Here we give a characterization of monoids for which FE-torsion freeness of
their acts implies other properties.

Theorem 3.6. Let S be a monoid. Then the following statements are equivalent:
(1) All ETF right S-acts are free.
(2) All ETF right S-acts are projective generators.
(8) All ETF right S-acts are generators.
(4) All ETF right S-acts are faithful.
(5) All ETF right S-acts are strongly faithful.
(6) S ={1}.

Proof. Implications (1) = (2) = (3) are obvious.

(3) = (4). It follows from [2] ITT, 18.1].

Since Og is an ET F right S-act, and O is (strongly) faithful if and only if S = {1},
implications (4), (5) = (6) are obvious.

(6) = (1), (5). If S = {1}, then all right S-acts are free (strongly faithful). O

Theorem 3.7. Let S be a monoid with no zero element. Then the following
statements are equivalent:

(1) All ETF right S-acts are torsionless.
(2) S contains a left zero.

Proof. (1) = (2). Since the right S-act ©g is ETF, it follows from [12, Lemma
2.9.
(2) = (1). It follows from Proposition 11) and [12], Proposition 2.10]. O

Notice that all statements in Theorems [3.6] and [3.7] are also true for cyclic,
finitely generated and right Rees factor S-acts.

Theorem 3.8. Let S be an idempotent monoid. Then the following statements
are equivalent:

(1) All ETF right S-acts are strongly flat.

(2) All ETF right S-acts are equalizer flat.

(8) All ETF right S-acts are weakly pullback flat.
(4) All ETF right S-acts satisfy Condition (P).
(5) All ETF right S-acts satisfy Condition (Pg).
(6) All ETF right S-acts are weakly kernel flat.
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(7) All ETF right S-acts are (W P).

(8) All ETF right S-acts are flat.

(9) All ETF right S-acts are weakly flat.

(10) All ETF right S-acts satisfy Condition (W).
(11) S is right reversible.

(12) S is left collapsible.

Proof. (1) & (3) < (4). It follows from [4, Page 79].

Implications (4) = (5) = (9), 3) = (6) = (7) = (9), (4) = (8) = (9) and
(1) = (2) = (9) are obvious.

(5) & (9). It follows from [14, Theorem 2.5].

(9) & (10). Since S is regular, all right S-acts are principally weakly flat, and so
the result follows from [2] IIT, 11.4].

(9) = (11). It follows from Proposition 2.2(1), and [2, III, 11.2].

(11) = (12). Suppose e, f € S. Since S is right reversible, there exist g,¢’ € S
such that ge = ¢'f. If u = ge = ¢g'f, then ue = (ge)e = ge? =ge =g'f = g'f? =
(¢'f)f =uf. Thus S is left collapsible.

(12) = (4). Suppose Ag is ETF and let as = bt, for a,b € Ag and s,t € S. Since
by Proposition 2.2(8), aS = {a}, for any a € Ag, we have a = b. Since S is left
collapsible, there exists u € S such that us = ut. But, a = b = au, and so Ag
satisfies Condition (P), as required. O

Notice that all statements in theorem above are also true for finitely generated
and cyclic right S-acts.

4 Characterization by E-Torsion Freeness of Cyclic
Right Acts

In this section we characterize monoids by FE-torsion freeness of their cyclic
right acts.

Proposition 4.1. Let S be a monoid and p be a right congruence on S. Then the
following statements are equivalent:

(1) S/p is ETF.
(2) (Vs,t € S)(Ve € E(S))((se, te) € p=(s,t) € p).
(8) (Vs € S)(Ve € E(S))(se, s) € p.

Proof. 1t is straightforward. O
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Theorem 4.2. Let p be a right congruence on S. If S/p is ETF, then T = [1],
is a submonoid of S with E(S) = E(T). The converse is also true when p is a
congruence or every idempotent of S is central.

Proof. Tt is obvious that T is a submonoid of S and also E(T) C E(S). Let
e € E(S). Then (ee,le) = (e,e) € p, and so (e, 1) € p, by Proposition [£.1} Thus
e € T, and hence e € E(T).

Suppose (se,te) € p, for s,t € S, and e € E(S). Since E(S) = E(T), we have
(e,1) € p. If p is a congruence, then (se,s), (te,t) € p, and so (s,t) € p. If every
idempotent of S is central, then (s,se) = (s,es) € p and (¢,te) = (t,et) € p, and
o0 (s,t) € p. Thus in both cases S/p is ETF. O

Corollary 4.3. Let S be an idempotent monoid and p be a right congruence on
S. Then S/p is ETF if and only if S = [1],,.

Proof. Necessity. By Theorem we have S = E(S) = E(T) =T = [1],.
Sufficiency. It is obvious. O

Theorem 4.4. Let S be a monoid. Then the following statements are equivalent:
(1) All cyclic right S-acts are ETF.
(2) All monocyclic right S-acts are ETF.
(8) p(x,y) C p(ze,ye), for allxz,y € S, e € E(S).
(4) p(z,1) C p(ze,e), for allz € S, e € E(S).
C p(xe,e), forallx € S, e € E(S).
Cplef, f), foralle, f € E(S).
Cplef, f), foralle, f € E(S).
(8) ple, f) C plfe, ), for all e, f € E(S).

) C p(x,y), for allxz,y € S, e € E(S).
(10) p(ze,1) C p(x,1), for allz € S, e € E(S).
(11) plex,1) C p(x,1), for allx € S, e € E(S).
(12) p(ze, ) C p(z, f), forallz € S, e, f € E(S).
(13) plex, ) C p(z, f), forallz € S, e, f € E(S).
(14) p(ze, ) C p(z,e), forallz € S, e, f € E(S).
(15) plex, ) C p(x,e), for allx € S, e, f € E(S).

(16) E(S) ={1}.
Proof. 1t is straightforward. O
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Notice that Theorem [4.4] is also true when inclusions from 3 to 15 be replaced
by equality.

Let S be amonoid and s,t € S. Set Fy = {(z,y) € SxS | Je € E(S), (ze, ye) €
p(s, )}, Fip1 = {(z,y) € S x S| Je € E(S), (ze,ye) € p(F;)}, for i € N. It can
easily be seen that Fj is reflexive and symmetric, for every ¢ € N. Also,

p(s,t) CFy Cp(F1) CF, Cp(Fo) C...Cp(F;) CFigr....
It is clear that pprr(s,t) = U;cy p(F3) is a right congruence on S containing (s, t).

Theorem 4.5. Let S be a monoid and s,t € S. Then pgrr(s,t) is the smallest
right congruence containing (s,t), such that S/pgrr(s,t) is ETF.

Proof. It (ze,ye) € pprr(s,t), for z,y € S and e € E(S), then there exists
i € N such that (ze,ye) € p(F;), and so (z,y) € Fiy1. Thus (z,y) € p(Fit1) C
pETF(8,t), and so S/prrr(s,t) is ETF by Proposition

Let 7 be a right congruence on S containing (s,t), such that S/7 is ETF. We
show that pprr(s,t) C 7. Since (s,t) € 7, we have p(s,t) C 7. If (x,y) € i,
then there exists e € E(S) such that (xe,ye) € p(s,t), and so (ze,ye) € 7. Since
S/t is ETF, we have (x,y) € 7. Thus Iy C 7, and so p(Fy) C 7. Suppose then
that p(F;) C 7,4 € N. If (z,y) € F;41, then there exists e € E(S) such that
(ze,ye) € p(F;) C 7. Since S/7 is ETF, (z,y) € 7. Hence F;1; C 7, and so
p(Fi11) € 7. Thus p(F;) C 7, for all i € N, and so pprr(s,t) C 7. O

Theorem 4.6. Let S be a monoid. Then the following statements are equivalent:
(1) All ETF cyclic right S-acts satisfy Condition (P).
(2) All ETF cyclic right S-acts satisfy Condition (Pg).

(3) Foranyx,y,s,t €S, there existu,v € S such that (u,x), (v,y) € prrr(xs, yt)
and us = vt.

(4) For any s,t € S, there exist u,v € S such that (u,1), (v,1) € pprr(s,t) and
us = vt.

Proof. (1) = (2). It is obvious.

(2) = (3). The cyclic right S-act S/pgrr(zs,yt) is ETF, and so it satisfies
Condition (Pg). Thus by [15, Theorem 2.5], there exist u,v € S and e, f € E(S)
such that us = vt, es = s, ft = t, (ue,ze), (yf,vf) € perr(zs,yt). Thus by
Proposition [4.1] (u, ), (v,y) € perr(zs,yt), as required.

(3) = (4). Tt is sufficient to take x =y = 1.

(4) = (1). Suppose 7 is a right congruence on S, such that S/7 is ETF and
let (s,t) € 7. Then by assumption, there exist u,v € S such that us = vt and
(u,1), (v,1) € pprr(s,t). By Theorem[d.5] pprp(s,t) C 7, and so (u, 1), (v,1) € 7.
Thus S/7 satisfies Condition (P), by [2}, III, 13.4]. O
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Theorem 4.7. Let S be a monoid. Then the following statements are equivalent:
(1) All ETF cyclic right S-acts satisfy Condition (P').
(2) Forany x,y,z,t,t' €S, the equality tz = t'z implies that there exist u,v € S
such that ut = vt' and (u,z), (v,y) € prrr(zt,yt').
Proof. Using [16, Theorem 3.1] and Theorem it is similar to that of Theorem
O
Theorem 4.8. Let S be a monoid. Then the following statements are equivalent:
(1) All ETF cyclic right S-acts satisfy Condition (E).
(2) For any s,t € S, there exists u € S such that us = ut, and (u,1) €
pETF(S,1).

Proof. Using [2, 111, 14.8] and Theorem[4.5] it is similar to that of Theorem[d.6] O

Theorem 4.9. Let S be a monoid. Then the following statements are equivalent:
(1) All ETF cyclic right S-acts satisfy Condition (E').

(2) For any s,t,z € S, the equality sz = tz implies that there exists u € S such
that us = ut and (u,1) € pprr(s,t).

Proof. Tt follows from Theorem and a similar argument as in the proof of
Theorem O

Theorem 4.10. Let S be a monoid. Then the following statements are equivalent:
(1) All ETF cyclic right S-acts satisfy Condition (E'P).

(2) For any xz,y,z € S, the equality xz = yz implies that there exist u,v € S
such that ux = vy and (u,1),(v,1) € pprr(z,y).

(8) For any z,t,t',z € S, the equality tz = t'z implies that there exist u,v € S
such that ut = vt’ and (u,x), (v,z) € pprr(xt, zt’).

Proof. Tt follows from [7, Theorem 2.10], Theorem and a similar argument as
in the proof of Theorem [£.6] O

Theorem 4.11. Let S be a monoid. Then the following statements are equivalent:
(1) All ETF cyclic right S-acts are principally weakly flat.
(2) For any u,v,s € S, (u,v) € (perr(us,vs)V kerps).

Proof. (1) = (2). Suppose u,v, s € S. Then the cyclic right S-act S/pprr(us,vs)
is ETF, and so it is principally weakly flat. Since (us,vs) € pprr(us,vs) by [2]
ITI, 10.7], we have (u,v) € (pprr(us,vs) V kerps).

(2) = (1). Suppose 7 is a right congruence on S, such that S/7 is ETF and let
(us,vs) € 7. By Theorem [L.5] pprr(us,vs) C 7. By assumption, (u,v) € (pprr
(us,vs) V kerps), and so (u,v) € (7 V kerps). Thus S/ is principally weakly flat,
by [2, TIT, 10.7]. 0
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Theorem 4.12. Let S be a monoid. Then the following statements are equivalent:
(1) All ETF cyclic right S-acts are weakly flat.

(2) Forany s,t € S, there exist u,v € S such that us = vt, (u,1) € (pprr(s,t)V
kerps) and (v,1) € (perr(s,t)V kerpt).

Proof. (1) = (2). The cyclic right S-act S/prrr(s,t) is ETF, and so it is weakly
flat. Thus by [2, III, 11.5], there exist u,v € S such that us = vt, (u,1) €
(peTF(s;t) V kerps) and (v, 1) € (pprr(s,t) V kerpy).

(2) = (1). Suppose 7 is a right congruence on S, such that S/7 is ETF and let
(s,t) € 7. By Theorem .5\ pprr(s,t) C 7 and by assumption, there exist u,v € S
such that us = vt, (u,1) € (perr(s,t) V kerps) and (v,1) € (pprr(s,t) V kerp).
Thus (u,1) € (7V kerp,) and (v,1) € (7V kerp,), and so S/7 is weakly flat, by [2]
111, 11.5]. 0

Theorem 4.13. Let S be a monoid. Then the following statements are equivalent:
(1) All ETF cyclic right S-acts satisfy Condition (PW P).
(2) All ETF cyclic right S-acts satisfy Condition (PW Pg).
(8) For any x,y,t € S, there exist u,v € S such that ut = vt and (u,x), (v,y) €
PETF (Jit, yt).
Proof. Using [9, Theorem 3.7], [5, Proposition 7] and Theorem [4.5} it is similar to
that of Theorem [4.61 O

Lemma 4.14. Let S be a left PP monoid. Then the following statements are
equivalent:

(1) For any x,y,t € S, (x,y) € (perr(at,yt) V kerp).

(2) For any x,y,t € S, there exist u,v € S such that ut = vt and (u,x), (v,y) €
pETF (Tt Yt).

(8) For any x,y,t € S, (x,y) € pprr(at,yt).

Proof. (1) < (2). It follows from [9 Theorem 2.5], Theorem and Theorem
4. 1]

(2) = (3). Let z,y,t € S. By assumption there exist u,v € S such that ut = vt
and (u, ), (v,y) € pprr(zt,yt). Sine S is left PP, there exists e € E(S) such
that kerps = kerp.. Thus ue = ve, and so (ze, ye) € pprr(zt,yt). Hence (x,y) €
peTF(xt, yt), by Proposition and Theorem [4.5

(3) = (1). It is obvious. O

Theorem 4.15. Let S be a left PP monoid. Then the following statements are
equivalent:

(1) All ETF cyclic right S-acts satisfy Condition (PW P).
(2) All ETF cyclic right S-acts satisfy Condition (PW Pg).
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(8) All ETF cyclic right S-acts are principally weakly flat.
(4) S acts injectively on every ETF cyclic right S-acts.
(5) For any z,y,t € S, (x,y) € pprr(zt, yt).

Proof. (1) < (2). It follows from Theorem

(2) < (3). It follows from [9, Theorem 2.5].

(3) < (5). It follows from Theorem and Lemma [4.14]

(4) = (5). Suppose z,y,t € S. Then the cyclic right S-act S/pgrr(xt,yt) is
ETF, and so S acts injectively on S/pprr(zt, yt). (zt,yt) € pprr(at, yt) implies
that [x}PETF(wt,yt)t = [y]PETF(CUtJ}t)t’ and so [x]PETF(CUt7yt) = [y]pETF(It,yt)' Thus
(,y) € pprr(at,yt).

(5) = (4). Suppose 7 is a right congruence on S, such that S/7 is ETF. Let
[z]-t = [y]+t, z,y,t € S. By Theorem [4.5| and by the assumption we have (z,y) €
prrr(zt,yt) C 7. Thus [x]; = [y], as required. O

Theorem 4.16. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF cyclic right S-acts are torsion free.
(2) For any s,t € S, prr(s,t) C perr(s,t).
(3) For any s,t € S and c € S right cancellable, (s,t) € prrr(sc,tc).

Proof. (1) = (2). Suppose s,t € S. Then the cyclic right S-act S/pgprr(s,t)
is ETF, and so it is torsion free. Thus prp(s,t) C perr(s,t), by the proof of
Lemma 3.31 of [4].

(2) = (3). Suppose s,t € S and ¢ € S right cancellable. Then (s,t) € prr(sc,tc) C
prTF(s¢,tc), by [, Lemma 3.31] and [2] III, 8.4].

(3) = (1). Suppose 7 is a right congruence on S, such that S/7 is ETF and let
(sc,te) € T, s,t € S and ¢ € S right cancellable. Then by Theorem and by the
assumption we have (s,t) € pprr(sc,tc) C 7. Thus S/7 is torsion free, by [2] III,
8.4]. O

Theorem 4.17. Let S be a monoid. Then the following statements are equivalent:
(1) All ETF cyclic right S-acts are weakly pullback flat.

(2) S satisfies the following Conditions:
(a) For any s,t,z € S, the equality sz = tz implies that there exists u € S
such that us = ut and (u,1) € pprr(s,t).
(b) For any s,t € S, there exist u,v € S such that us = vt and (u,1), (v,1) €

pETF(S,1).

Proof. Tt follows from [5, Theorem 21], Theorem and Theorem O

Theorem 4.18. Let S be a monoid. Then the following statements are equivalent:

(1) All torsion free cyclic right S-acts are ETF.
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(2) For any s,t €S, pprr(s,t) C prr(s,t).
(3) For any s,t € S and e € E(S), (s,t) € perr(se,te).

(4) E(S)={1}.
Proof. It is similar to the proof of Theorem O

5 Characterization by E-torsion freeness of mono-
cyclic right acts

In this section we characterize monoids by FE-torsion freeness of their mono-
cyclic right acts.

Lemma 5.1. Let S be a monoid, w,t € S and wt #t. Then p(wt,t) = p(w, 1) if
and only if t is right invertible.

Proof. Suppose p(wt,t) = p(w,1). Then by [2] III, 8.5], there exist m,n € NU{0}
such that w™w = w"1 = w" and w'w € tS, whenever 0 < i < m, and w’ € tS,
whenever 0 < j < n. If n > 1, then 1 = w® € S, and so t is right invertible. If
n =0, then m > 1, since w # 1. Thus w € tS, and so 1 = w™t! € 5, that is, ¢ is
right invertible. The converse is obvious. O

Theorem 5.2. Let S be a monoid and w,e? = e € S. Then S/p(we,e) is ETF if
and only if e = 1 and w™z f = wyf, for z,y, f> = f € S, m,n € NU{0}, implies
that wPx = wy, for some p,q € NU{0}.

Proof. Let p = p(we,e).

Necessity. If we = e, then S/p = S/Ag = Sg, and so we are done by Proposition
3) Thus we suppose we # e. Since (we, le) € p, we have by Proposition
that (w,1) € p. Since (we,e) € p(w,1), we have p = p(w,1). Thus e = 1, by
Lemma Suppose now that w™zf = w™yf, for z,y, f> = f € S and m,n €
NU{0}. Then (zf,yf) € p, by [2, III, 8.7], and so (z,y) € p, by Proposition
Since p = p(w, 1), we have by [2] III, 8.7], that wPz = wly, for some p,q € NU{0}.
Sufficiency. Suppose (sf,tf) € p. Then by [2, III, 8.7], w™sf = w™tf, for some
m,n € NU{0}. Thus by assumption, wPs = w?t, for some p,q € NU {0}. Again
by [2, II1, 8.7], (s,t) € p, and so the result follows from Proposition O

Theorem 5.3. Let S be a monoid. Then all ETF right S-acts of the form
S/p(we, e) satisfy Condition (P).

Proof. Tt follows from Theorem [5.2] [2, I1I, 13.8] and [2, III, 13.5]. O

Theorem 5.4. Let S be a monoid. Then the following statements are equivalent:

(1) All monocyclic right S-acts of the form S/p(we,e), w,e* = e € S, we # e,
satisfying Condition (P) are ETF .



E-Torsion Free Acts Over Monoids 107

(2) For every 1 # w € S, if there exist x,y, f> = f € S and m,n € NU{0} such
that w™x f = w™yf, then there exist p,q € NU {0} such that wPz = wly.

Proof. (1) = (2). Let w € S, with w # 1. Then S/p(w, 1) satisfies Condition (P),
by [2, III, 13.8]. Thus S/p(w, 1) is ETF, and the result follows from Theorem [5.2]
(2) = (1). Suppose the right S-act S/p(we,e), we # e, satisfies Condition (P).
Then by [2, III, 13.8], there exists a € S such that p(we,e) = p(a,1). Since
(we, e) € p(a,1), by [2 III, 8.7], there exist m,n € NU{0} such that a™we = a"e.
Since we # e, we have a # 1. Thus by assumption there exist p,q € NU {0}
such that aPw = a? Again (w,1) € p(a,1) = p(we,e) by [2, III, 8.7], and so
p(we,e) = p(w,1). Now the result follows from Lemma [5.1] and Theorem O

Theorem 5.5. Let S be a monoid. Then the following statements are equivalent:

(1) All projective monocyclic right S-acts of the form S/p(w,1), 1 #w € S, are
ETF.

(2) All monocyclic right S-acts of the form S/p(w,1), 1 # w € S, satisfying
Condition (E) are ETF.

(3) If 1 # w is aperiodic, then the equality w"xf = w"yf, for v,y, f> =f € S
and n € N, implies w"x = w™y.

Proof. (1) < (2). It follows from [2] III, 17.14].

(2) = (3). Suppose for 1 # w € S, there exists n € N such that w" ™ = w™. Then
S/p(w, 1) satisfies Condition (E), by [2, III, 17.14], and so it is ETF. Now the
result follows from Theorem [5.2]

(3) = (2). Suppose the right S-act S/p(w,1), w # 1, satisfies Condition (E).
Then by [2} I11, 17.14], there exists n € N such that w"*! = w". If w*zf = wiyf,
for x,y, f2 = f € S and k, j € NU{0}, then w"xf = w"yf, and so by assumption,
w"xr = w™y. Now the result follows from Theorem O

Now we consider monoids over which E-torsion freeness implies projectivity
and Condition (F).

Theorem 5.6. Let S be a monoid. Then the following statements are equivalent:
(1) All ETF monocyclic right S-acts of the form S/p(w, 1), are projective.

(2) All ETF monocyclic right S-acts of the form S/p(w,1), satisfy Condition
(E).

(3) Every w € S is either aperiodic or there exist x,y, f> = f € S and m,n €
NU {0} such that w™zf = w™yf and wPz # wly, for all p,q € NU {0}.

Proof. (1) < (2). It follows from [2] III, 17.14].

(2) = (3). If w = 1, then we are done. Suppose that 1 # w € S. If for all
2y, f2 = f € S and m,n € NU {0}, wmzf = w"yf implies the existence of
p,q € NU {0} such that wPx = wy, then by Theorem S/p(w,1) is ETF.
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Thus S/p(w, 1) satisfies Condition (E), and so w is aperiodic, by [2] III, 14.9].

(3) = (2). Suppose the right S-act S/p(w,1), w € S is ETF. If w = 1, then
S/p(w,1) = S/Ag = Sg satisfies Condition (F). Thus we suppose w # 1. By
Theorem the equality w™zf = w™yf, for all z,y,f> = f € S and m,n €
N U {0}, implies the existence of p,q € NU {0} such that wPx = w?y. Thus w is
aperiodic and the result follows from [2), IIT, 14.9]. O

6 Characterization by E-Torsion Freeness of Right
Rees Factor Acts

In this section we characterize monoids by E-torsion freeness of their right
Rees factor acts. First of all we give a characterization of monoids over which
all right Rees factor acts are ETF and also monoids over which all ETF right
Rees factor acts have some other properties. Then we give a characterization of
monoids for which right Rees factor acts with other properties are ETF. We recall
that for a right ideal Kg of S, the Rees congruence pg is defined by (a,b) € pk if
a,b € Kg or a = b and the resulting factor act is called the Rees factor act and is
denoted by S/Kg.

Theorem 6.1. Let S be a monoid and Kg be a right ideal of S. Then S/Kg is
ETF if and only if Ks = S or E(S) = {1}.

Proof. Necessity. Suppose S/Kg is ETF, Kg # S and let e € E(S). Then
1],c€e = [e]lpxe, and so [1],, =[], Thus e = 1, and so E(S) = {1} as required.
Sufficiency. It follows from Proposition ),(2). O

Theorem 6.2. Let S be a monoid. Then the following statements are equivalent:
(1) All right Rees factor S-acts are ETF.
(2) All right Rees factor S-acts of the form S/sS, s € S are ETF.
(3) All right Rees factor S-acts of the form S/sS, s € S is regular, are ETF.
(4) All right Rees factor S-acts of the form S/eS, e € E(S), are ETF.
(5) B(S) = {1}.

Proof. Implications (1) = (2) = (3) = (4) are obvious.

(4) = (5). Let e € E(S). Then by assumption S/eS is ETF, and so by Theorem
eS =S or E(S) = {1}. these imply that E(S) = {1}.

(5) = (1). It follows from Proposition ). O

Theorem 6.3. Let S be a monoid and (U) be a property of acts. Then the
following statements are equivalent:

(1) All ETF right Rees factor S-acts satisfy (U).
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(2) Og satisfies (U) and E(S) = {1} implies that all right Rees factor S-acts
satisfy (U).

Proof. (1) = (2). By Proposition|2.2[1), Og = S/Sg satisfies (U). If E(S) = {1},
then by Theorem and assumption all right Rees factor S-acts satisfy (U).
(2) = (1). Suppose the right Rees factor S-act S/Kg is ETF. Then either Kg = S
or E(S) = {1}, by Theorem If Kg = S, then S/Kg = 5/Sg = Og satisfies
Condition (U). If E(S) = {1}, then by assumption, all right Rees factor S-acts
satisfy (U), and so all ETF right Rees factor S-acts satisfy (U). O
Theorem 6.4. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF right Rees factor S-acts are torsion free.

(2) E(S) # {1} or else, every right cancellable element of S is right invertible.

Proof. Tt follows from Theorem [6.3] [2, III, 8.2] and [2, IV, 6.1]. O

Theorem 6.5. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF right Rees factor S-acts are principally weakly flat.

(2) All ETF right Rees factor S-acts satisfy Condition (PW P).

(3) All ETF right Rees factor S-acts satisfy Condition (PW Pg).

(4) E(S) # {1} or else, S is a group.
Proof. (1) < (4). It follows from Theorem [6.3] [2, III, 10.2], [2, IV, 6.6], and [I]
I1, Exercise 11].
(2) & (4). It follows from Theorem 6.3 [5l Corollary 11] and [3], Proposition 9.
(3) & (4). Tt follows from Theorem and [9, Theorem 3.1]. O
Theorem 6.6. Let S be a monoid. Then the following statements are equivalent:

(1) All ETF right Rees factor S-acts are flat.

(2) All ETF right Rees factor S-acts are weakly flat.

(3) All ETF right Rees factor S-acts satisfy Condition (W P).

(4) All ETF right Rees factor S-acts satisfy Condition (P).

(5) All ETF right Rees factor S-acts satisfy Condition (Pg).

(6) All ETF right Rees factor S-acts are P-regular.

(7) S is right reversible and E(S) = {1} implies that S is a group.

( 2] 111, 11.2] and 2 IV, 7.3].

(7). It follows from Theorem [5, Corollary 18] and [3] Proposition 14].
(7). It follows from Theorem [Bl Corollary 18] and [2} IV, 9.9].

(7). and [15, Theorem 3.1].

(7). Tt follows from Theorem [10, Theorem 2.1(1)] and [10, Theorem
2.3). 0
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Theorem 6.7. Let S be a monoid. Then the following statements are equivalent:
(1) All ETF right Rees factor S-acts satisfy Condition (E).
(2) All ETF right Rees factor S-acts are pullback flat.
(8) All ETF right Rees factor S-acts are equalizer flat.
(4) All ETF right Rees factor S-acts are strongly flat.
(5) S is left collapsible and E(S) = {1} implies that S = {1}.

Proof. Implications (1) < (2), (2) < (3) and (3) < (4) are obvious, by [2} III,
16.7].

(4) & (5). By Theorem all ETF right Rees factor S-acts are strongly flat if
and only if Og is strongly flat and E(S) = {1} implies that all right Rees factor
S-acts are strongly flat. By [2 III, 14.3] and [2, IV, 11.13], all ETF right Rees
factor S-acts are strongly flat if and only if S is left collapsible and E(S) = {1}
implies that S = {1}.

Theorem 6.8. Let S be a monoid. Then the following statements are equivalent:
(1) All ETF right Rees factor S-acts are regular.
(2) All ETF right Rees factor S-acts are strongly (P)-cyclic.
(3) All ETF right Rees factor S-acts are projective.
(4) S contains a left zero.

Proof. (1) = (2). It follows from [II, Thorem 2.1].

(2) = (3). It follows from [11 Corollary 3.10].

(3) = (4). By Proposition [2.21), the right Rees factor S-act S/Ss = ©g is ETF,

and so it is projective. Thus by [2) TII, 17.2], S contains a left zero element.

(4) = (1). Suppose the right Rees factor S-act S/Kg is ETF. By Theorem [6.1}
s=Sor E(S)={1}. If Kg =S, then S/Kg = 5/Ss = Og is regular, by [2]

111, 19.4(4)]. If E(S) = {1}, then S = {1}, and so all right Rees factor S-acts are

regular. O

Notice that all statements in Theorem are also true for (cyclic) right S-acts.

Theorem 6.9. Let S be a monoid. Then the following statements are equivalent:
(1) All ETF right Rees factor S-acts are weakly pullback flat.
(2) All ETF right Rees factor S-acts are weakly kernel flat.

(8) S is right reversible, weakly left collapsible and E(S) = {1} implies that S
1S @ group.

Proof. 1t follows from Theorem [10, Corollary 3.10] and [3, Theorem 20]. O
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Theorem 6.10. Let S be a monoid. Then the following statements are equivalent:
(1) All ETF right Rees factor S-acts are principally weakly kernel flat.
(2) All ETF right Rees factor S-acts are translation kernel flat.

(3) kerp, is connected as a left S-act, for every z € S and E(S) = {1} implies
that S is a group.

Proof. 1t follows from Theorem [3, Proposition 7] and [3, Theorem 20]. O

Theorem 6.11. Let S be a monoid. Then the following statements are equivalent:
(1) All ETF right Rees factor S-acts satisfy Condition (P’).
(2) S is weakly right reversible and E(S) = {1} implies that S is a group.

Proof. It follows from Theorem[6.3] [16, Corollary 4.4] and [16, Thorem 4.18]. [

Now we give a characterization of monoids for which right Rees factor acts
with other properties are ETF'.

Theorem 6.12. Let S be a monoid. Then the following statements are equivalent:
(1) All right Rees factor S-acts satisfying Condition (P) are ETF.
(2) All right Rees factor S-acts satisfying Condition (E) are ETF.
(8) All pullback flat right Rees factor S-acts are ETF.
(4) All equalizer flat right Rees factor S-acts are ETF.
(5) All strongly flat right Rees factor S-acts are ETF.
(6) All projective right Rees factor S-acts are ETF.
(7) All free right Rees factor S-acts are ETF .

(8) S contains no left zero element or S = {1}.

Proof. (1) = (2). It follows from [2] III, 14.7].

Implications (2) < (3) < (4) < (5) follow from [2] III, 16.7].

Implications (5) = (6) = (7) are obvious.

(7) = (8). Let s € S be a left zero. Then the right Rees factor S-act S/sS = Sg is
free, and so it is ETF, by assumption. Thus by Proposition (3), E(S) = {1},
and so s = 1, that is, S = {1}.

(8) = (1). Suppose the right Rees factor S-act S/Kg satisfies Condition (P). If
Kg = S, then by Proposition 1) we are done. Thus we suppose that Kg # S.
Then by [2] III, 13.9], |[Ks| = 1, and so S contains a left zero element. Thus,
S = {1}, and so Kg = S, which is a contradiction. O

Theorem 6.13. Let S be a monoid. Then the following statements are equivalent:
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(1) All weakly flat right Rees factor S-acts are ETF.

(2) All flat right Rees factor S-acts are ETF .

(3) E(S) ={1} or S is not right reversible.
Proof. (1) < (2). It is obvious.
(2) = (3). Suppose E(S) # {1}, S is right reversible and let e € E(S)\{1}. By [2]
II1, 12.17], the right Rees factor S-act S/(eS)s is flat. Thus eS = S, by Theorem

which is a contradiction.
(3) = (1). It follows from [2] 11T, 12.17] and Proposition (2) O

Theorem 6.14. Let S be a monoid. Then the following statements are equivalent:
(1) All torsion free right Rees factor S-acts are ETF.
(2) All principally weakly flat right Rees factor S-acts are ETF.
(3) B(S) = {1}.
Proof. (1) = (2). It is obvious.
(2) = (3). Suppose e € E(S). The right Rees factor S-act S/(eS)s is principally
weakly flat, and so E(S) = {1} or eS = S, by Theorem In each case,
E(S) = {1}.
(3) = (1). It follows from Proposition ). O
Theorem 6.15. Let S be a monoid. Then the following statements are equivalent:

(1) All regular right Rees factor S-acts are ETF.

(2) S = {1} or S contains no left zero element or there exists z € S such that
ker\, # ker)., for every e € E(S).

Proof. (1) = (2). It follows from [2] ITT, 19.6], [2 III, 17.16] and Theorem [6.1
(2) = (1). It follows from [2, IIL, 19.6], [2, III, 17.16] and Proposition 2.2(2). O

Theorem 6.16. Let S be a monoid. Then the following statements are equivalent:
(1) All P-regular right Rees factor S-acts are ETF.
(2) All strongly (P)-cyclic right Rees factor S-acts are ETF.
(3) S = {1} or S contains no left zero element or S is not right PC'P.

Proof. Since strong (P)-cyclic implies P-regularity, (1) = (2) is obvious.

(2) = (3). It follows from [IT, Theorem 3.1] and Theorem [6.1

(3) = (1). It follows from [I0, Theorem 3.1] and Theorem [6.2 O
Theorem 6.17. Let S be a monoid. Then the following statements are equivalent:

(1) All right Rees factor S-acts satisfying Condition (P') are ETF.

(2) E(S) = {1} or S has no left stabilizing and completely left annihilating
proper right ideal.
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Proof. (1) = (2). It follows from [I6, Theorem 4.3] and Theorem
(2) = (1). It follows from [I6] Theorem 4.3] and Theorem [6.2 O

Theorem 6.18. Let S be a monoid. Then the following statements are equivalent:
(1) All right Rees factor S-acts satisfying Condition (PW P) are ETF.

(2) E(S) = {1} or S has no left stabilizing and left annihilating proper right
ideal.

Proof. (1) = (2). It follows from [5, Theorem 10] and Theorem [6.1
(2) = (1). It follows from [5, Theorem 10] and Theorem [6.2 O

Theorem 6.19. Let S be a monoid. Then the following statements are equivalent:
(1) All right Rees factor S-acts satisfying Condition (W P) are ETF.

(2) E(S) = {1} or S is not right reversible or S has no left stabilizing and
strongly left annihilating proper right ideal.

Proof. (1) = (2). It follows from [5, Theorem 17] and Theorem [6.1
(2) = (1). It follows from [5 Theorem 17] and Theorem [6.2 O

Theorem 6.20. Let S be a monoid. Then the following statements are equivalent:
(1) All right Rees factor S-acts satisfying Condition (Pg) are ETF.

(2) E(S) = {1} or S is not right reversible or S has no proper Pg-left annihi-
lating right ideal.

Proof. (1) = (2). It follows from [I5, Theorem 3.5] and Theorem [6.1}
(2) = (1). It follows from [I5] Theorem 3.5] and Theorem [6.2 O

Theorem 6.21. Let S be a monoid. Then the following statements are equivalent:
(1) All right Rees factor S-acts satisfying Condition (PW Pg) are ETF .

(2) E(S)={1} or S has no left stabilizing and E-left annihilating proper right
ideal.

Proof. (1) = (2). It follows from [9, Theorem 4.2] and Theorem [6.1
(2) = (1). It follows from [9, Theorem 4.2] and Theorem [6.2] O
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