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1 Introduction and Statement of Results

Let H be an infinite dimensional complex separable Hilbert space and B(H) be
the algebra of all bounded linear operators defined on H. An operator T ∈ B(H)
is called normal if TT ∗ = T ∗T , hyponormal if T ∗T ≥ TT ∗ which is equivalent
to the condition ‖T ∗x‖ ≤ ‖Tx‖, for all x ∈ H. For real numbers α and β with
0 ≤ α ≤ 1 ≤ β, an operator T acting on a Hilbert space H is called (α, β)-normal
if α2T ∗T ≤ TT ∗ ≤ β2T ∗T , which is equivalent to the condition α‖Tx‖ ≤ ‖T ∗x‖ ≤
β‖Tx‖, for all x in H [1,2]. For α = 1 = β, T is a normal operator. For α = 1, we
observe from the left inequality that T ∗ is hyponormal and for β = 1, from the right
inequality we obtain that T is hyponormal. Takagi and K. Yokouchi [3] initiated
the study of multiplication and composition operators between Lp-spaces. The
study of non-normal classes of composition operators initiated by R.K. Singh [4]
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in 1974 and later this was studied by many authors [5]- [13]. In this paper, we
obtain a necessary and sufficient condition for an operator and its adjonits to be
(α, β)-normal composition operator.

Let (X,Σ,m) be a sigma-finite measure space. The space L2(X,Σ,m) ≡ L2(m) is
defined as:

L2(m) =

{
f : X → C : f is a measurable function and

∫
X

|f |2dm <∞
}

with ‖f‖2 =

(∫
X

|f |2dm
) 1

2

.

Radon Nikodym Theorem. If (X,Σ,m) is a σ-finite measure space and m′

is a σ-finite measure on Σ such that m′ is absolutely continuous with respect to
m, then there exists a finite-valued non-negative measurable function h on X such

that for each A ∈ Σ, m′(A) =

∫
A

hdm. Also, h is unique in the sense that if

m′(A) =

∫
A

gdm for each A ∈ Σ, then h = g a.e.(m).

A mapping T : X → X is said to be measurable if T−1(A) ∈ Σ whenever
A ∈ Σ. A measurable transformation T : X → X is called non-singular if the
pre-image of every null set under T is a null set. Such a transformation induces a
well defined composition operator

CT : L2(m)→ L2(m) as

CT f = f ◦ T for each f ∈ L2(m), if

(i) the measure m ◦ T−1 is absolutely continuous with respect to m, and

(ii) the Radon-Nikodym derivative h = d(mT−1)
dm is essentially bounded.

Every essentially bounded complex-valued measurable function θ induces a bounded
operator Mθ on L2(m) which is defined by Mθf = θf for every f ∈ L2(m).

Let E ⊆ X, then the characteristic function of E, written as χE , is the function
on X defined by

χE(x) = 1 for x ∈ E and χE(x) = 0 for x ∈ (X − E)

2 (α, β)-Normal Composition Operators

In this section we obtain a necessary and sufficient condition for an operator
to be (α, β)-normal composition operator.

The following lemma due to Harrington and Whitley [7, Lemma 1] is instru-
mental in the subsequent results.

Lemma 2.1. Let P denote the projection of L2(m) on R(CT ).
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(a) C∗TCT f = hf and CTC
∗
T f = (h ◦ T )Pf for all f in L2(m).

(b) R(CT ) = {f ∈ L2(m) : f is T−1(Σ)-measurable}.

Theorem 2.2. A composition operator CT on L2(m) is (α, β)-normal
(0 ≤ α ≤ 1 ≤ β) iff α2h ≤ (h ◦ T )P ≤ β2h a.e.

Proof. By definition of (α, β)-normal operators, CT is (α, β)-normal
(0 ≤ α ≤ 1 ≤ β)

iff α2C∗TCT ≤ CTC∗T ≤ β2C∗TCT

i.e. α2〈C∗TCT f, f〉 ≤ 〈CTC∗T f, f〉 ≤ β2〈C∗TCT f, f〉 ∀ f ∈ L2(m)

iff α2〈Mhf, f〉 ≤ 〈M(h◦T )P f, f〉 ≤ β2〈Mhf, f〉 ∀ f ∈ L2(m)

iff α2〈MhχE , χE〉 ≤ 〈M(h◦T )PχE , χE〉 ≤ β2〈MhχE , χE〉,
for every χE of E in Σ such that m(E) <∞

iff

∫
E

α2h dm ≤
∫
E

(h ◦ T )P dm ≤
∫
E

β2h dm,

for every E in Σ such that m(E) <∞
iff α2h ≤ (h ◦ T )P ≤ β2h a.e., for 0 ≤ α ≤ 1 ≤ β .

Theorem 2.3. An operator T ∈ B(H) is (α, β)-normal (0 ≤ α ≤ 1 ≤ β) iff
k2(TT ∗) + 2kα2(T ∗T ) + TT ∗ ≥ 0 a.e. and k2(T ∗T ) + 2k(TT ∗) + β4(T ∗T ) ≥ 0
a.e., for all k ∈ R.

Proof. For all x ∈ H and 0 ≤ α ≤ 1 ≤ β.

k2(TT ∗) + 2kα2T ∗T + TT ∗ ≥ 0 a.e. and

k2(T ∗T ) + 2k(TT ∗) + β4(T ∗T ) ≥ 0 a.e. for all k ∈ R
iff 〈(k2TT ∗ + 2kα2T ∗T + TT ∗)x, x〉 ≥ 0 a.e. and

〈(k2T ∗T + 2kTT ∗ + β4T ∗T )x, x〉 ≥ 0 a.e. for all k ∈ R
iff k2〈TT ∗x, x〉+ 2kα2〈T ∗Tx, x〉+ 〈TT ∗x, x〉 ≥ 0 a.e. and

k2〈T ∗Tx, x〉+ 2k〈TT ∗x, x〉+ β4〈T ∗Tx, x〉 ≥ 0 a.e. for all k ∈ R
iff k2〈T ∗x, T ∗x〉+ 2kα2〈Tx, Tx〉+ 〈T ∗x, T ∗x〉 ≥ 0 a.e. and

k2〈Tx, Tx〉+ 2k〈T ∗x, T ∗x〉+ β4〈Tx, Tx〉 ≥ 0 a.e. for all k ∈ R
iff k2‖T ∗x‖2 + 2kα2‖Tx‖2 + ‖T ∗x‖2 ≥ 0 a.e. and

k2‖Tx‖2 + 2k‖T ∗x‖2 + β4‖Tx‖2 ≥ 0 a.e. for all k ∈ R
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Using elementary properties of real quadratic forms

k2TT ∗ + 2kα2T ∗T + TT ∗ ≥ 0 a.e. and

k2T ∗T + 2kTT ∗ + β4T ∗T ≥ 0 a.e. for all k ∈ R
iff 4α4‖Tx‖4 ≤ 4‖T ∗x‖4 and 4‖T ∗x‖4 ≤ 4β4‖Tx‖4

iff α‖Tx‖ ≤ ‖T ∗x‖ and ‖T ∗x‖ ≤ β‖Tx‖
T ∈ B(H) is (α, β)-normal operator

iff α‖Tx‖ ≤ ‖T ∗x‖ ≤ β‖Tx‖, 0 ≤ α ≤ 1 ≤ β

Theorem 2.4. A composition operator CT on L2(m) is (α, β)-normal operator
(0 ≤ α ≤ 1 ≤ β) iff k2(h ◦ T )P + 2kα2h + (h ◦ T )P ≥ 0 a.e. and k2h + 2k(h ◦
T )P + β4h ≥ 0 a.e. for all k ∈ R.

Proof. By Theorem 2.3, CT is (α, β)-normal operator (0 ≤ α ≤ 1 ≤ β)

iff 〈(k2CTC∗T + 2kα2C∗TCT + CTC
∗
T )(f), f〉 ≥ 0 and

〈(k2C∗TCT + 2kCTC
∗
T + β4C∗TCT )(f), f〉 ≥ 0

for all f ∈ L2(m) and for all k ∈ R
iff 〈(k2CTC∗T + 2kα2C∗TCT + CTC

∗
T )χE , χE〉 ≥ 0 and

〈(k2C∗TCT + 2kCTC
∗
T + β4C∗TCT )χE , χE〉 ≥ 0

for every χE of E in Σ such that m(E) <∞ and k ∈ R
iff 〈(k2M(h◦T )P + 2kα2Mh +M(h◦T )P )χE , χE〉 ≥ 0 and

〈(k2Mh + 2kM(h◦T )P + β4Mh)χE , χE〉 ≥ 0

for every χE of E in Σ such that m(E) <∞ and k ∈ R

iff

∫
(k2M(h◦T )P + 2kα2Mh +M(h◦T )P )χEdm ≥ 0 and∫

(k2Mh + 2kM(h◦T )P + β4Mh)χEdm ≥ 0

for every χE of E in Σ such that m(E) <∞ and k ∈ R

iff

∫
E

(k2(h ◦ T )P + 2kα2h+ (h ◦ T )P )dm ≥ 0 and∫
E

(k2h+ 2k(h ◦ T )P + β4h)dm ≥ 0

for every E in Σ such that m(E) <∞ and k ∈ R
iff k2(h ◦ T )P + 2kα2h+ (h ◦ T )P ≥ 0 a.e. and

k2h+ 2k(h ◦ T )P + β4h ≥ 0 a.e. for all k ∈ R.

Corollary 2.5. A composition operator CT on L2(m) with dense range is (α, β)-
normal (0 ≤ α ≤ 1 ≤ β) iff k2(h ◦ T ) + 2kα2h+ (h ◦ T ) ≥ 0 a.e. and k2h+ 2k(h ◦
T ) + β4h ≥ 0 a.e. for all k ∈ R.
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Corollary 2.6. A composition operator CT on L2(m) with dense range is (α, β)-
normal (0 ≤ α ≤ 1 ≤ β) iff α2h ≤ (h ◦ T ) ≤ β2h a.e.

Corollary 2.7. A composition operator CT on L2(m) is (α, β)-normal
(0 ≤ α ≤ 1 ≤ β) iff for all f ∈ L2(m)

(a) ‖αh 1
2 f‖ ≤ ‖(h ◦ T )

1
2Pf‖ ≤ ‖βh 1

2 f‖.

(b) ‖αh 1
2Pf‖ ≤ ‖(h ◦ T )

1
2Pf‖ ≤ ‖βh 1

2Pf‖.

Theorem 2.8. A composition operator CT on L2(m) is (α, β)-normal,

(0 ≤ α ≤ 1 ≤ β) iff α
d(mT−2)

dm
≤ h2 ≤ β d(mT−2)

dm
a.e.

Proof. Let a composition operator CT on L2(m) be a (α, β)-normal operator
(0 ≤ α ≤ 1 ≤ β).

Then by Corollary 2.7(b)

‖αh 1
2Pf‖ ≤ ‖(h ◦ T )h

1
2Pf‖ ≤ ‖βh 1

2Pf‖

Let E be a set of finite measure in Σ. Let A = T−1(E). As A is T−1(Σ) measur-
able, therefore P χA = χA and

0 ≤ ‖(h ◦ T )
1
2PχA‖2 − ‖αh

1
2PχA‖2

=

∫
A

(h ◦ T − αh)dm

=

∫
A

(h ◦ T )dm− α d(mT−1)(A)

=

∫
(h ◦ T )CT χEdm− α d(mT−1)(A)

=

∫
(h ◦ T )(χE ◦ T )dm− α d(mT−1)(A)

=

∫
E

(
h2 − αdmT

−2

dm

)
dm.

Therefore,

h2 − αdmT
−2

dm
≥ 0 a.e.

or h2 ≥ αdmT
−2

dm
a.e. (2.1)

Also,

0 ≤ ‖βh 1
2PχA‖2 − ‖(h ◦ T )

1
2PχA‖2

=

∫
E

(
β
dmT−2

dm
− h2

)
dm.
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Therefore

β
dmT−2

dm
− h2 ≥ 0 a.e.

or β
dmT−2

dm
≥ h2 a.e. (2.2)

Combining (2.1) and (2.2)

α
dmT−2

dm
≤ h2 ≤ β dmT

−2

dm
a.e.

Conversely, suppose that

α
d(mT−2)

dm
≤ h2 ≤ β d(mT−2)

dm
a.e.

Then, for any E in Σ such that m(E) < ∞, the argument above shows that the
inequality of Corollary 2.7(b) holds for f = χ

T−1(E)
. Suppose that f is T−1(Σ)-

measurable and simple. Then, we can write

f =
∑
j

ajAj

where Aj ’s are disjoint sets in T−1(Σ).
Then,

‖βh 1
2Pf‖2 = Σ‖βajh

1
2χAj

‖2

≥ Σ‖aj(h ◦ T )
1
2χAj‖2

= ‖(h ◦ T )
1
2Pf‖2

Similarly,

‖αh 1
2Pf‖2 ≤ ‖(h ◦ T )‖ 1

2Pf‖2

As T−1(Σ)-measurable simple functions are dense in R(CT ), the inequality

‖αh 1
2Pf‖ ≤ ‖(h ◦ T )

1
2Pf‖ ≤ ‖βh 1

2Pf‖ holds for all f ∈ L2(m)

and hence, CT is (α, β)-normal (0 ≤ α ≤ 1 ≤ β).

Example 2.9. Let X = N and let m be the counting measure.
Define T : N→ N as

T (n) = 2n ∀ n ∈ N

Then, h(2n) = 1 ∀ n ∈ N.
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By Corollary 2.6, CT is (α, β)-normal (0 ≤ α ≤ 1 ≤ β) if

α2h ≤ h ◦ T ≤ β2h, a.e.

if α2h(2n) ≤ (h ◦ T )(2n) ≤ β2h(2n) ∀ n ∈ N
if α2 · 1 ≤ h(4n) ≤ β2 · 1 ∀ n ∈ N
if α2 ≤ 1 ≤ β2, which is true since 0 ≤ α ≤ 1 ≤ β.

Hence, the composition operator induced by above T is (α, β)-normal operator
(0 ≤ α ≤ 1 ≤ β).

3 Adjoint of (α, β)-Normal Composition Opera-
tors

In this section we explore the conditions under which the adjoint of a compo-
sition operator is (α, β)-normal operator.

Theorem 3.1. An operator C∗T ∈ B(L2(m)) is (α, β)-normal
(0 ≤ α ≤ 1 ≤ β) iff α2(h ◦ T )P ≤ h ≤ β2(h ◦ T )P .

Proof. By definition of (α, β)-normal operator, C∗T is (α, β)-normal
(0 ≤ α ≤ 1 ≤ β)

iff α2CTC
∗
T ≤ C∗TCT ≤ β2CTC

∗
T

iff α2〈CTC∗T f, f〉 ≤ 〈C∗TCT f, f〉 ≤ β2〈CTC∗T f, f〉 ∀ f ∈ L2(m)

iff α2〈M(h◦T )P f, f〉≤〈Mhf, f〉≤β2〈M(h◦T )P f, f〉 ∀ f ∈L2(m)

iff α2〈M(h◦T )PχE , χE〉 ≤ 〈MhχE , χE〉 ≤ β2〈M(h◦T )PχE , χE〉 ∀ f ∈ L2(m)

and for every χE of E in Σ such that m(E) <∞

iff

∫
E

α2(h ◦ T )Pdm ≤
∫
E

hdm ≤
∫
E

β2(h ◦ T )Pdm

for every E in Σ such that m(E) <∞
iff α2(h ◦ T )P ≤ h ≤ β2(h ◦ T )P a.e. for 0 ≤ α ≤ 1 ≤ β

Theorem 3.2. An operator C∗T ∈ B(L2(m)) is (α, β)-normal
(0 ≤ α ≤ 1 ≤ β) iff

k2h+ 2kα2(h ◦ T )P + h ≥ 0 a.e. and

k2(h ◦ T )P + 2kh+ β4(h ◦ T )P ≥ 0 a.e. for all k ∈ R

Proof. By Theorem 2.3 C∗T ∈ B(L2(m)) is (α, β)-normal (0 ≤ α ≤ 1 ≤ β)

iff 〈(k2Mh + 2kα2M(h◦T )P +Mh)χE , χE〉 ≥ 0 and

〈(k2M(h◦T )P + 2kMh + β4M(h◦T )P )χE , χE〉 ≥ 0

for every χE of E in Σ such that m(E) <∞ and for all k ∈ R
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iff

∫
(k2Mh + 2kα2M(h◦T )P +Mh)χE dm ≥ 0 and∫
(k2M(h◦T )P + 2kMh + β4M(h◦T )P )χE dm ≥ 0

for every χE of E in Σ such that m(E) <∞ and for all k ∈ R

iff

∫
E

(k2h+ 2kα2(h ◦ T )P + h)dm ≥ 0 and∫
E

(k2(h ◦ T )P + 2kh+ β4(h ◦ T )P )dm ≥ 0,

for every χE of E in Σ such that m(E) <∞ and for all k ∈ R
iff k2h+ 2kα2(h ◦ T )P + h ≥ 0 a.e. and

k2(h ◦ T )P + 2kh+ β4(h ◦ T )P ≥ 0 a.e. for all k ∈ R

Corollary 3.3. A composition operator C∗T on L2(m) with dense range is (α, β)-
normal (0 ≤ α ≤ 1 ≤ β) iff k2h+ 2kα2(h ◦ T ) + h ≥ 0 a.e. and k2(h ◦ T ) + 2kh+
β4(h ◦ T ) ≥ 0 a.e. for all k ∈ R.

Corollary 3.4. Let C∗T on L2(m) be a composition operator with dense range.
Then, C∗T is (α, β)-normal (0 ≤ α ≤ 1 ≤ β) iff α2(h ◦ T ) ≤ h ≤ β2(h ◦ T ) ≥ 0 a.e.

Corollary 3.5. For an operator, the adjoint C∗T of composition operator is (α, β)-
Normal (0 ≤ α ≤ 1 ≤ β) iff

(a)
∑
σ(h) ⊆ T−1(Σ), and

(b) α2(h ◦T ) ≤ h ≤ β2(h ◦T ) a.e., where
∑
σ(h) denote the relative completion of

the sigma-algebra generated by {A∩ support of h : A in Σ}.

Proof. Suppose C∗T is (α, β)-Normal (0 ≤ α ≤ 1 ≤ β).
Since

∑
σ(h) ⊆ T−1(Σ), therefore kerC∗T ⊆ kerCT .

Therefore, (a) holds and so h is T−1(Σ)-measurable.
Hence, the set A = {s : α2h(T (s)) > h(s) > β2h(T (s))} belongs to T−1(Σ)

and so A can be written as disjoint union of sets An of finite measure which also
belong to T−1(Σ).

Since, C∗T is (α, β)-Normal operator

0 ≤ 〈(C∗TCT − α2CTC
∗
T )χAn

, χAn
〉

= 〈hχAn , χAn〉 − 〈α2(h ◦ T )P χAn , χAn〉

=

∫
An

(h− α2(h ◦ T ))dm ≤ 0.

Hence, m(An) = 0, ∀ n ∈ N and therefore (b) holds.
Conversely, let (a) and (b) hold.

Write f = f1 + f2, where f1 ∈ (R(CT )) and f2 ∈ R(CT )
⊥

.
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We have,

〈(C∗TCT − α2CTC
∗
T ), f〉 = 〈hf − α2(h ◦ T )Pf, f〉

= 〈h(f1 + f2)− α2(h ◦ T )P (f1 + f2), (f1 + f2)〉

since, α2(h ◦ T )f1 is T−1(Σ)-measurable, therefore it belongs to R(CT ) and so
〈α2(h ◦ T )Pf1, f2〉 = 0.

Since, f2 ∈ kerCT . Therefore, hf2 = C∗TCT f2 = 0 and 〈hf1, f2〉 = 〈hf2, f1〉 =
〈hf2, f2〉 = 0.

So,

〈(C∗TCT − α2CTC
∗
T )〉 = 〈hf1, f1〉 − α2〈(h ◦ T )f1, f1〉

=

∫
(h− α2(h ◦ T ))|f1|2dm

≥ 0

Similarly, β2CTC
∗
T ≥ C∗TCT .

Therefore, C∗T is (α, β)-normal operator.
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