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1 Introduction

Let H be a real Hilbert space and C' a nonempty closed convex subset of H
with inner product (-,-) and its norm || - ||. Recall that a mapping T : C — C is
called nonexpansive if

[Tz =Tyl < ||z —yll, v,y € C.

The set of all fixed points of T is denoted by F(T) = {x € C : Tx = z}. Tt is
well-known that the fixed point set of a nonexpansive mapping is a closed convex
subset of C. A mapping g : C — C is a contraction on C if there is a constant
a € (0,1) such that

lg(@) = gl < aflz = yll, Va,y € C.

Banach’s contraction principle [I] guarantees the uniqueness of fixed point of a
contraction mapping. Now, we recall that a bifunction f : C x C — R is said to
be :

(a) monotone on C' if

(b) pseudomonotone on C if

flx,y) > 0= f(y,x) <0, Va,y € C;

(¢) pseudomonotone on C' with respect to x € C' if
flz,y) 2 0= f(y,x) <0, ¥y € C;
(d) Lipschitz-type continuous on C' with two constants ¢; > 0 and ¢o > 0 if
Fla,y) + fy,2) 2 f(a,2) = erlle — y||* = e2lly — 2%, Va,y,2 € C.

Remark 1.1. It is clear that (a) = (b) = (¢). The example of f is pseudomono-
tone on C with respect to the EP(C, f) but [ is not pseudomonotone on C can be
found in [2].

Suppose that A is an open convex set containing C' and f : A x A — R is
a bifunction such that f(z,z) = 0 for all x € C. Such a bifunction is called an
equilibrium bifunction. We consider the following equilibrium problem (EP(C, f)):

Find Z € C such that f(Z,y) >0, Yy € C. (1.1)

The set of solution of problem is denoted by Sol(C, f). This problem is
also called the Ky Fan inequality was first discovered by Ky Fan [3] in 1972. Tt
is well-known that the equilibrium problem covers many important problems in
optimization and nonlinear analysis as well as has found many applications in
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economic, transportation and engineering. Let Q := F(T') N Sol(C, f) denote the
set of common elements of the solution set of the equilibrium problem Sol(C, f)
and the set of fixed points F(T). The theory and methods for finding an element
of 2 have been well developed by many authors (see [4l 5] [0, [7]). Takahashi and
Takahashi [8] introduced the viscosity approximation method for finding a common
element of the set of solutions of an equilibrium problem and the set of fixed points
of a nonexpansive mapping in a real Hilbert space.

On the other hand, iterative methods for nonexpansive mappings have recently
been applied to solve convex minimization problems; see, e.g., [0, [0, 11, 12] and
the references therein. Convex minimization problems have a great impact and
influence in the development of almost all branches of pure and applied sciences.
A typical problem is to minimize a quadratic function over the set of the fixed
points a nonexpansive mapping on a real Hilbert space:

1
f(z) = min = (A —{x,b 1.2
() = min 3 (A, )  (z,b) (12)
where A is a linear bounded operator, C is the fixed point set of a nonexpansive
mapping T and b is a given point in H. In [I3] Marino and Xu considered a general
iterative method for a nonexpansive mapping in a Hilbert space H. Starting with
arbitrary initial g € H, define a sequence {x,} by

Tpt1 = anyf(xn) + (I — anA) Tz, n >0, (1.3)
where A is a strongly positive bounded linear operator on H, i.e.,
(Az,x) > 7||z||? for all z € H. (1.4)

They proved that if the sequence {a,} of parameters satisfies the appropriate
conditions, then the sequence {x,} generated by (1.3) converges strongly to the
unique solution z* in F(T') of the variational inequality

(A=~f)x*,x—a*y >0, x € F(T), (1.5)

which is the optimality condition for the minimization problem: min,c¢ %<AJJ, x)—
h(zx), where h is a potential function for v f(i.e.,h'(z) = vf(z) for z € H). Re-
cently, Wangkeeree and Preechasilp [14] introduced the new algorithm for solving
the common element of the set of fixed points of a nonexpansive mapping, the
solution set of equilibrium problems and the solution set of the variational in-
equality problems for an inverse strongly monotone mapping. Let f be monotone,
Lipschitz-type continuous on C' with two constants ¢; > 0 and ¢3 > 0, A a strongly
linear bounded operator with coefficient 4 and B a f-inverse strongly monotone
mapping. Let g : C'— C be a contraction with coefficient « such that 0 < v < 7/«
and T : C' — C a nonexpansive mapping. The algorithm is now described as fol-
lows.
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For a given point g =z € C:

yr = argmin{ A f(zr, y) + 5lly — 2xl|? 1 y € CY,
tr = argmin{ g f (yx, y) + %Hy—kaQ 1y € C}, (1.6)
zri1 = Po (arvg(ar) + (I — ax A)T Po(ty — BBty)),

where P¢ is the metric projection of H onto C'. They proved that under some
control conditions the proposed sequences {zy}, {yr}, and {t;} defined by
converge strongly to a common element of solution set of monotone, Lipschitz-
type continuous equilibrium problems and the set of fixed points of nonexpansive
mappings which is a unique solution of some variational inequalities, (For more
related result, see [15]) .

In general, it is hard to find the constants ¢; and co satisfying the assumed
Lipschitz-type condition (d). Furthermore solving the strongly convex programs
is expensive excepts special cases when C has a simple structure. To avoid
the advantages, Anh and Muu [2] introduced a new algorithm for solving problem
F(T)N Sol(C, f). More precisely, by using the concepts of e-subdifferential, they
introduced a new algorithm for solving the problem of finding a common element
of the solution set of the equilibrium problem and the set of fixed point problem,
which is a combination of the well-known Mann’s iterative scheme for fixed point
and the projection method for equilibrium problems. Furthermore, the proposed
algorithm uses only one projection and does not require any Lipschitz condition
for the bifunctions.

In this paper, motivated by the idea in Marino and Xu [13], Anh and Muu [2],
and Wangkeeree and Preechasilp [14], we propose a new general iterative scheme
using the concepts of e-subdifferential for approximating the common element in
F(T)NSol(C, f) which is a solution of a certain optimization problem related to a
strongly positive linear operator. Under suitable control conditions, we prove the
strong convergence theorems of such iterative scheme in a real Hilbert space. The
main result extends various results existing in the current literature.

2 Preliminaries

First of all, we introduce the concepts of e-subdifferential. Notice that d¢(x)
may turn out to be empty, even though x € dom . To overcome this aspect of
subdifferentials, the concept of the e-subdifferential came into existence; it not
only overcomes the drawback of subdifferentials but is also important from the
optimization point of view. The idea can be found in the work of Brgnsted and
Rockafellar [I6] but the theory of e-subdifferential calculus was given by Hiriart-
Urruty [17].

Definition 2.1. [I8] Let ¢ : H — R be a proper convex function. For e > 0, the
e-subdifferential of @ at T € dom @ is given by

Oep(z) ={§ € H:p(x) —p(2) 2 ({,x —7) —¢, Ve € H}.
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Proposition 2.2. [18] Let ¢ : R® — R be a proper lower semicontinuous convex
function and lete > 0 be given. Then for every T € dom, the e-subdifferential(0.p(T))
is a nonempty closed conver set and

0p(z) = () 0-().

e>0
For g1 > €3, 0e,(Z) C 0, (T).
Now, we recall the following technical lemmas which will be used in the sequel.

Lemma 2.3. [11] Let {ar} be a sequence of non-negative real number satisfying
the property
a1 < (1 —0x)ax + 0por +vk, k>0,

where {v} C (0,1) and {b} C R such that

(i) >ohzoau = oo

(ii) limsup,_,o 0k <0, and > o vk < 00.
Then {ay} converges to zero, as k — 0.

The metric (nearest point) projection Pe from a Hilbert space H to a closed

convex subset C' of H is defined as follows: given € H, Pox is the only point

in C such that ||z — Pox| = inf {|[z — y|| : y € C}. In what follows lemma can be
found in any standard functional analysis book.

Lemma 2.4. Let C be a closed convex subset of a real Hilbert space H. Given
x € H andy € C, then

(i) y = Pox if and only if (x —y,y — z) >0 for all z € C,
(ii
(iii
(iv
Lemma 2.5. [I9] Let C be a closed convex subset of a Hilbert space H and let

T :C — C be a nonexpansive mapping such that F(T) # 0. If a sequence {zx} in
C such that xp, — T and x, — Txr — 0, then TT = .

)
) Pc is nonexpansive,

) (x —y, Pcx — Poy) > |Pox — Peyl|? for all z,y € H,
)

(x — Pox,Pcx —y) for allz € H and y € C.

Lemma 2.6. [13] Assume that A is a strongly positive linear bounded operator on a
Hilbert space H with coefficient ¥ > 0 and 0 < p < ||A[|71, then ||I—pA| < 1—p7.

3 Main Results

We are in a position to state and investigate the new general iterative method
for finding a common solution of the set of equilibrium problems and the set of
fixed points of nonexpansive mappings which is a solution of a certain optimization
problem related to a strongly positive linear operator.
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Assumption 3.1. The bifunction f : C'xC — R satisfies the following conditions:
(E1) For each x, f(x,z) =0 and f(x,-) is lower semicontinuous convex on C;

(BEy) If {z*} C C is bounded and i | 0 as k — oo, then the sequence {wk} with
wh € 0, f(zF,)(x*) is bounded, where O f (x, -)(x) stands for e-subdifferential
of the convex function f(z,-) at x;

(E3) f is pseudomonotone on C with respect to every solution of EP(C, f);
(E4) For each x € C, f(-,x) is weakly upper semicontinuous on C;

(Es) The solution set 2 of Problem EP(C, f) N F(T) is nonempty.

Assumption 3.2. Initialization: Now suppose that the sequences {\g}, {Br}, {ex}
and {0} of nonnegative numbers satisfy the following conditions

(i) 0 <A< Ag;

(i) Do 0k =00, Yopey [0k41 — 6| < 00 and limy_,o 6 = 0;

(iil) B > 0, peg Br < +o00;

(iv) limg_ 0o ?—:‘ =0 and limp_, o opcr, = 0.

Algorithm 3.3. Let g : C — C be a contraction with coefficient « and A a
strongly positive linear bounded operator on H with coefficient ¥ > 0 such that
0 <~y <7¥/a. Let {6} be a real sequence such that 0 < 0 < min {1, 771704}' Now
the general iterative scheme for finding a common point in the set of solutions of

Problem EP(C, f) and the set of fized points of the nonexpansive mapping T can
be generated as follows:

choose xg € C,
compute wy, € O, f(k, ) (xk);
take vy := max{ g, |wk||} and oy := 71«; (3.1)
k
compute yr, = Po(x, — apwy) and,
let xi41 = Po (okvg(wr) + (I — 6k A)Tyx) bk =0,1,....
Remark 3.4. [2]

1. If [ is pseudomonotone on C with respect to the solution set Sol(C, f) of
Problem EP(C, f), then under Assumptions E1 and Ey, the set Sol(C, f)
is closed and convex.

2. Assumption E3 holds true if f is pseudomonotone on C and satisfies the
paramonotonicily property :

x € Sol(C, f),y € C, f(x,y) = f(y,r) = 0=y € Sol(C, f).

3. Assumption Fs holds true whenever Ej is satisfied and the function f :
A x A — R is continuous on A x A.
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Remark 3.5. .
1. For an example of control sequences, let 6 = %, Br = k% and €, = Yy for

all k € N.

2. Since f(x,-) is a lower semicontinuous convex function and C C domf(zx,-)
for every x € C, by Proposition[2.3, the ei-diagonal subdifferential O, f(zk,-)(zx) #
0 for every ey, > 0. Thus the Algorithm (3.3) is well defined.

Theorem 3.6. Suppose that Assumptions|3.1 are satisfied. Further, assume
that ||A]| = 1. Then the sequences {xx} and {yi} strongly converge to the same
point g € Q := Sol(C, f)NF(T), where ¢ = Po(yg+ (I — A))(q) which is a unique
solution of the variational inequality

(vg = A)g,z —q) <0, Vo € Q. (3.2)

Proof. We first prove that Po(yg + (I — A)) is a contraction mapping with a
coefficient (1 — (¥ — y«)). To this end, applying ||A]| = 1 to Lemma we can
calculate the following, for any =,y € H,

[Po(vg + (I — A))x — Pa(yg + (I — A))yll [vg + (I — A))z — (vg+ (I — A))yll
Yllg(@) — gl + 11 — Allllz — yl|
vallz =yl + (1 =)z -yl

(1= =)z -yl

IN A IA

By Banach’s contraction principle guarantees that Po(vg+ (I — A)) has a unique
fixed point, say ¢ € H. That is, ¢ = Po(yg + (I — A))(¢). By Lemma2.4] (i), we
obtain that

Next, we show that {x} is bounded. Since, for all &k > 0, yr, = Po(z) — apwy)
and xj € C, it follows from metric projection property that

ok —uell® < o (wn, 1 — )
< agllwgllllzk — el
S S | A
max{ A, [[wk|}
< Brllee — vl (3.4)
which gives that
|z — il < Br, for all k > 0. (3.5)

From limj_,o 8x = 0, one has ||z — yx|| — 0 as k — oo. Further, for every p € Q,
we have

llzx — ol + llyr — 2kl
2 — pll + Br- (3.6)

lyr —

INIA
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Since limy_, o ?—:‘ = 0 = limg_,00 Bk, we have that limy_, % = 0. Then,

for any fixed 7 > 0 there exists a number N > 0 such that % < 7 for all
k > N, one arrives that

(1 - 5}{7)5}6 < OpT, forall k> N.

This together with Lemma [2.6] implies that

| Pc (6kvg(zr) + (I — a A)T(yx)) — pl|

0kvg(2r) + (I — arA)T(yx) — p||

Skllvg(zr) — Apll + 11 — ok AT (yx) — T(p)|l

Skllvg(@r) — Apll + ([T — 0k Allllyx — p|

Skllvg(xr) — Apll + (1 = 6x7) (l|lzr — pll + Br)

dpyellzy — pll + okllvg(p) — Apll + (1 — 67) (lzk — pll + Br)
Spyelzk — pll + 0kllvg(p) — Apll + (1 = oY) Iz — pll + (1 — 67) Br,
Spyallry — pll + oxllvg(p) — Apll + (1 — 6x9)|lzk — pll + 0x T,

(1= 6k(y —ya)llzk — pll + 0k (llvg(p) — Apl| + 7).

k41— pll

(VAN VAN VANNR VAN VANR VAR VAR VAN

By induction, we get that

—Ap||+ 7
ok — pll < maX{leN _ ), U = Apl + 7) } k>N
7 -y

Hence {zy} is bounded, and so are {yi},{g(xx—1)} and {AT (yx—1)}. Now, we
prove that

nl;ngo lzg+1 — x| = 0. (3.7
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Using (3.13)), we can calculate the following, for all k£ > 0,

lzrs1 — 2kl

= ||Pc (0rvg(zr) + (I — arA)T(yr)) — Po (0x—179(xr—1) + (I — ax—1A)T (yr—1)) ||

< |owvg(zr) + (I = 0 A) T (yr) — ck—1v9(xk—1) — (I = 0k—1 A)T (y1—1) ||

= |lokvg(2r) — Orvg(@h—1) + Okvg(zr—1) — Oh—1vg(wp—1) + (I — 6 A)T (yr)
— (I =0k A)T(yp—1) + (I = 6, A)T (yr—1) — (I — ag—1A)T (yx-1)||

< drvallze — zp-1ll + [0k — Sk—1l[[vg(zr-1)]|
+ 1 = Sk AT (y&) — T (yr—1) | + [0k — Sp—1[[| AT (y—1) |

< dpvallzy — zp—1l| + |6k — dk—1l[[vg(xk—1)]|

I = 0k Al (lyr — wll + llzn — zr—all + 121 = yr—1ll) + [0k = k[ AS (g1

< dpyallzr — zr—1l + [0k = Ok—1[llvg(zr-1)]]

+ (1= 07) (lyr — il + llzx = zr—a ]| + llex—1 = o ll) + 16k — S [[[AT (yx—1)|

< pyallzr — zg-1ll + [0k = Ok—1lllvg(zr—1)I + |6k — Sk—1 [l AT (yx—1)|

+ (1 = M) ye — zell + (1 = ) lzn — zp—1 ] + (L — 66V [2k—1 — yr—1ll)
< (Okya+ (1= 6,7)) |2k — Th—1]] + [0k — Op—1|M + (1 — 0175) Bk + (1 — 017) Br—1
< (T =0k(y —v) |z — zp—1 |l + |6k — Sk—1[M + (1 — 67) (Br + Br—1) ,

where M is a constant such that

M = sup (i) + AT ()}

Since > po [0k+1 — 0] < o0 and Y p Bk < +oo, by applying Lemma we

have lim,,_, o || Zk+1 — zk|| = 0. Next, we show that
lim ||x — Tag| = 0. (3.8)
n—oQ

From definition of xj, we have

lzk+1 — Tyrll = oxllvf(zx) — ATyl
Since limy_, o 0 = 0, we have limy_, o0 ||Zx+1 — Tyx|| = 0. This together with (3.7))
and (3.8]) implies that
Tz — il < [ T2k — Tyel + 1 Tyx — 2o | + |zr41 — |
< ok =yl + 1 Tye — zrsa | + l2k1 — 2xl| = 0 as k — oo,

Now, we claim that, for any = € (,

limsup((vg — A)g, Tyx — q) < 0. (3.9)

k—o0
Indeed, We may assume without loss of generality that there exists a subsequence
{zk,} of {z)} such that

limsup((vg — A)g, Ty, — q) = lim ((vg — A)g, Ty, — q)

k—o0



62 Thai J. Math. 14 (2016)/ E. Thailert et al.

and zp, — z* as i — oo for some z* € C. Since limy_, o ||z — Txk| = 0, by
demiclosedness of a mapping T, we get that * € F(T). Next, we show that
x* € Sol(C, f). Since yx = Po(zp — apwy) and w* € 0., f(z*, ) (%), z* € C, we
can have

ag(wy, v — yr) < ag (f(or,y) — f(Tr, 1) + k)
apf(zr,y) + areg

(Th — Yoy —Yk) <
<

since and f(xz,x) = 0 for all z € C. Since limit of 8, exists, then there exists § > 0
such that 8, < S for all k. Since 0 < A < Ay for all k and v, = max{Ag, ||wk|},
we get that %ﬂ < % Hence oy = f—: < g, and so

Tk — Yk, ¥ — yk) < arf(Tr,y) + ager < gf(ffk,y) + akeg, for all k> 0.
Taking k := k; in the last inequality, we arrive that

B
<x/€1 Yk Y — yk?'i> < akif(kay) + Qg Ek; < Xf(xkny) + Qg€ -

Since f(-,y) is weakly upper semicontinuous on C, limy_, o ager = 0 and limy_, o ||z5—
yr|l = 0, we have that

éf(x*, y) > limsup éf(xkb ,y) + lim sup o, e,
> lim sup (Bf(kay) + akgkri>
> limsup(zk, — Yk, ¥ — Yk,) = 0,

k}iHOO
which gives that
flx*,y) >0, forallyeC,

and so z* € Sol(C, f). Thus, z* € Q. This also implies that

limsup((vg — A)q, Tyr —q) = lim ((vg — A)q, Ty, — q)

i—00 1—00

= ((vg—A)g,z" —q) <0.
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Finally, we show that z;, — g as k — co. We observe that

[Ee

IAIA

IN

IN IN IN IN IN IN

IN

| Pc(8kvg(ar) + (I — 0k A)Tyx) — Po(q)||?

16k79(@r) + (I — 6, A)Tyr, — |

Sellvg(ar) — Agll + (I = 6, A)(Tyx — 9)|1?

+ 201, ((I — 0k A)(Tyr — q),79(xx) — Aq)

Sillvg(ar) — Agll + (1 = 6:3)? | Tyr — qll?

+26k(Tyx — ¢,79(xr) — Ag) — 267 (A(Tyx — q),vg(xx) — Aqg)
(1= 6721 Tye — qll* + ¢ llvg(ze) — Aql|

+ 20k (T'yx — ¢, v9(xx) — v9(q)) + 20Ty — q,79(q) — Ag)
— 267 (A(Tyr, — q),v9(zk) — Aq)

(1= 6:7) 2y — all® + 67 lvg(xx) — Aqgll

+ 20k lyx — allllvg(zr) — v9(@l + 206 (Tyx — ¢, v9(q) — Aq)
— 267 (A(Tyr, — q),v9(zx) — Aq)

(1= 69 llze — ql” + 62 llvg(zr) — A

+ 2yadi|lyk — allllzk — all + 206 (Tyr — ¢, v9(q) — Aq)

— 263 (A(Tyx, — q),vg(zx) — Ag)

(1= 69Nz — al” + Sk llvg(zr) — Al

+ 2vadi (| — qll + Br)llzn — all + 206 (Tyx — ¢,79(q) — Aq)
— 267 (A(Tyr, — q),v9(zx) — Aq)

(1= 667)%(|lzr — qll® + 67llvg(zx) — Aq]|

+ 2valdy||zk — ql|* + 27vadk B + 26k (Tyx — q,7v9(q) — Aq)
— 267 (A(Tyr, — q),v9(zx) — Aq)

(1= 6:3)? ||z — qll* + 7 llvg(x) — Aql|

+ 2vadk||lzk — ql|® + 2vadk B + 26k (Tyr — q,7v9(q) — Aq)
+ 262 |A(Tyr, — q) | Ivg () — Aq|

(1 = 61%) + 2vadk) |z — ql|* + S¢llvg(zk) — Aq|

+ 2yady Br + 20k (Tyr — ¢,79(q) — Aq)

+ 203 |A(Tyr — q) | Ivg(xx) — Aq|

(1—20,(7 — 7)) [lzx — ql?

+ Ok (6k||’79(xk) — Aq|| + 2vaBy + 2(Tyx — ¢,v9(q) — Aq)
+ 20| A(Tye — @)l 7g(w) — Agll + 67z — al*)

(1= 26,(7 — ya)) ||z — ql?

+ 6, (2<Tyk — ¢,79(q) — Aq) + 0k[vg(zk) — Ag|]?

+ 266 | A(Tyi — @) ||| Aq — vg(zi) || + 6k |2k — Q\\2>- (3.10)
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Since {x1}, {g9(xr)} and ||Twg]|| are bounded, we can take a constant M > 0 such
that

M 2 sup {lIvg(zr) — Agll* + 2| A(Twi, — @)|| | Aq — vg (i) || + ¥ llzx — ql} -

This implies that
ks — qll* < (1 =27 = va)ar)|zx — q|l* + arow, (3.11)

where o, = 2(Tyr,—q,7v9(q) — Aq) + M ay,. From (3.9), we have limsup,, , . o < 0.
Applying Lemma to (3.11]), we obtain that xzp — ¢ as k — oco. This completes
the proof. O

Remark 3.7. In contrast to results in [I4], the function f as in Theorem [3.6| did
not need to be Lipschitz-type continuous on C.

Remark 3.8. In general case, if ¢ : C — C is a contraction with coefficient
a and A is any strongly positive bounded linear operator with coefficient 4 and
0 < v < 7/a. We define a new bounded linear operator A on H by

A=A A

It is easy to see that A is a strongly positive with coefficient |AI"!'5 > 0 such
that ||A]] =1 and
0 <A™y < A7/

Let the bifunction f : C x C — R be satisfied all conditions in Assumption
Now suppose that the sequences {Ar}, {8k}, {er} and {dx} of nonnegative numbers
satisfy all conditions in Assumption Let {dx} be a real sequence such that

scheme for finding a common point in the set of solutions of Problem EP(C, f)

and the set of fixed points of the nonexpansive mapping T can be generated as
follows:

} and limy_, o, 0 = 0. Now the new general iterative

choose zg € C;

compute wy € O, f(zk, ) (xk);

take vy := max{\g, ||wk||} and oy := %; (3.12)
k

compute yx = Po(x — apwy) and; B

let Th4+1 = Pc (5]6”14”71’}/9(30]@) + (I — 5kA)Tyk) ,k = 0, 1, e

From Theorem we have that {zj} converges strongly, as k — oo, to a point ¢
satisfying

q=Po (I |A]|7"(A~~9))q,
which is a unique solution of the variational inequality:

A" H(A — vg9)g,x — q) > 0,z € C;

which gives that
(A=rg9)g,z —q) >0,z € C.
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Using Theorem we obtain the following two strong convergence theorems
of new general iterative approximation methods for a nonexpansive mapping.

Theorem 3.9. Suppose that Assumptions|3.1 are satisfied. Let g : C' — C be
a contraction with coefficient a and A a strongly positive linear bounded operator
on H with coefficient ¥ > 0 such that 0 < v < ¥/a. Let {6} be a real sequence

such that 0 < § < min{l
and {y,.} be generated by

,ﬁ and limy_, o 0 = 0. Let the sequences {x} }

choose xj, € C,

compute w;, € Og, f(z}.,)(z}.);

take vy, := max{ Ay, |w}[|} and o), = ﬂ—f; (3.13)
compute y;, = Po(z), — ajw),) and, K

let xj | = Po (0pvg(Tx)) + (I — 6xA)Ty;,) , k=0,1,....

Then the sequences {x}.} and {y;} strongly converge to the same point q that
obtained in Theorem [3.4.

Proof. Define the sequence {zy} by

choose xg = xj, € C}

compute wy, € O, f(zx, ) (1)

take i, 1= max{ Ay, |wg||} and ay := &; (3.14)
Yk

compute y; = Po(xr — apwy) and;

let xx4+1 = Po (§kfyg(xk) + (I - (5kA)Tyk) kE=0,1,....

Applying Theorem we can conclude that both sequences {zy} and {y}
strongly converge to the same point ¢ € Q := Sol(C, f) N F(T), where ¢ =
Pao(vg + (I — A))(g). Next, we prove that =, — ¢ and y;, — ¢ as k — oo.
By using the same proof as in (3.6]), for each k& > 0, we have

s — @il + lok — @l + lloe — vl

Br + ||z — x|l + B

[z}, — @l + 285

It then follows that, for each k > 1

[

INIAIA

21 — zriall < 10wy g(Tay) + (I = 0p A) Ty, — Sryg(zr) — (I — S A) Tyl
< allg(Tay) — g(@e)ll + (1 = s Ty — Tyl
< dpyal|Taxy, — okl + (1= 07) () — il + Br + Bk)
< oya(|Tay, — Tqll + |Tq — Tayl) + (1 = 0y) (|2}, — k]l + Br + B)
< dwvalzy — gl + devallg — @kl + (1 = 6:7) ([[2), — 2kl + Br + Br)
< Spyallxy, — x| + Seyallek — qll + dkyallg — zk|
+(1 =0 (|2}, — xxll + Br + Br)
< (1= 0k(y —va)llaf, — zxll + 20k vallzy — gl + 2(1 — 6,7) Br-
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Since z = ¢, Y peq Be = 00, by using Lemma we obtain that ||z}, — || — 0
as k — oo. Consequently, ;. — ¢ as required. O
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