Thai Journal of Mathematics Volume 16 (2016) Number 1 : 43–51

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

A Generalization on \mathcal{I} -Asymptotically Lacunary Statistical Equivalent Sequences

Ekrem Savaş

Department of Mathematics, Istanbul Commerce University , Istanbul-Turkey e-mail : esavas@ticaret.edu.tr

Abstract : This paper presents the concept of generalized asymptotically \mathcal{I} lacunary statistical equivalent of order α to multiple L and \mathcal{I} is an ideal of the subset of positive integers. In addition to this definition inclusion theorems are also presented. The study leaves some interesting open problems.

Keywords : Lacunary sequence; Ideal convergence; Asymptotically equivalent sequences; Statistical convergence of order α .

2010 Mathematics Subject Classification : 40G15; 40A35.

1 Introduction

Before continuing with this paper we present some definitions and preliminaries. The concept of \mathcal{I} -convergence was introduced by Kostyrko, Mačaj and Wilczyński in a metric space [1]. Later it was further studied by Dems [2], Savas ([3],[4], [5],[6][7],[8], [9] [10]) and Mursaleen et al. [11, 12]. \mathcal{I} -convergence is a generalization form of statistical convergence, which was introduced by Fast (see [13]) and that is based on the notion of an ideal of the subset of positive integers \mathbb{N} .

The following definitions and notions will be needed.

Definition 1.1. A family $\mathcal{I} \subset 2^{\mathbb{N}}$ is said to be an ideal of \mathbb{N} if the following conditions hold: (a) $A, B \in I$ implies $A \cup B \in \mathcal{I}$,

Copyright \bigodot 2016 by the Mathematical Association of Thailand. All rights reserved.

(b) $A \in I$, $B \subset A$ implies $B \in \mathcal{I}$,

An ideal is called non-trivial if $U^*(F)2115 \notin \mathcal{I}$ and a non-trivial ideal is called admissible if $\{n\} \in \mathcal{I}$ for each $n \in \mathbb{N}$.

Definition 1.2. A family of sets $F \subset 2^{\mathbb{N}}$ is a *filter* in \mathbb{N} if and only if

- (i) $\emptyset \notin \mathcal{F}$
- (*ii*) For each $A, B \in F$ we have $A \cap B \in \mathcal{F}$
- (*iii*) For each $A \in F$ and each $B \supseteq A$ we have $B \in \mathcal{F}$.

Proposition 1.3. \mathcal{I} is a non-trivial ideal in \mathbb{N} if and only if

$$F = F(\mathcal{I}) = \{M = \mathbb{N} \setminus A : A \in \mathcal{I}\}$$

is a filter in \mathbb{N} , (see [1]).

Definition 1.4. A real sequence $x = (x_k)$ is said to be \mathcal{I} - convergent to $L \in \mathbb{R}$ if and only if for each $\varepsilon > 0$ the set

$$A_{\varepsilon} = \{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\}$$

belongs to \mathcal{I} . The number L is called the \mathcal{I} -limit of the sequence x, (see, [1]).

Remark 1.5. If we take $\mathcal{I} = \mathcal{I}_f = \{A \subseteq \mathbf{N} : A \text{ is a finite subset }\}$. Then \mathcal{I}_f is a non-trivial admissible ideal of \mathbf{N} and the corresponding convergence coincide with the usual convergence.

In 1993, Marouf presented definitions for asymptotically equivalent sequences and asymptotic regular matrices.

Definition 1.6 ([14]). Two nonnegative sequences $x = (x_k)$ and $y = (y_k)$ are said to be asymptotically equivalent if

$$\lim_k \frac{x_k}{y_k} = 1$$

and it is denoted by $x \sim y$.

Definition 1.7 (Fridy, [15]). The sequence $x = (x_k)$ has statistic limit L, denoted by $st - \lim x = L$ provided that for every $\epsilon > 0$,

$$\lim_{n} \frac{1}{n} \{ \text{the number of } k \le n : |x_k - L| \ge \epsilon \} = 0.$$

In 2003, Patterson defined asymptotically statistical equivalent sequences by combining definitions 1.6 and 1.7 as follows:

A Generalization on $\mathcal{I}-Asymptotically$...

Definition 1.8 (Patterson, [16]). Two nonnegative sequences $x = (x_k)$ and y = (y_k) are said to be asymptotically statistical equivalent of multiple L provided that for every $\epsilon > 0$,

$$\lim_{n} \frac{1}{n} \{ \text{the number of } k < n : \left| \frac{x_k}{y_k} - L \right| \ge \epsilon \} = 0$$

(denoted by $x \stackrel{S_L}{\sim} y$), and simply asymptotically statistical equivalent if L = 1.

A lacunary sequence is an increasing integer sequence $\theta = (k_r)$ such that $k_0 = 0$ and $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$. The intervals determined by θ will be denoted $I_r = (k_{r-1}, k_r]$ and the ratio $\frac{k_r}{k_{r-1}}$ will be denoted by q_r .

In 2006, Patterson and Savas presented definitions for asymptotically lacunary statistical equivalent sequences, (see [17]).

Definition 1.9 ([17]). Let $\theta = (k_r)$ be a lacunary sequence; the two nonnegative sequences $x = (x_k)$ and $y = (y_k)$ are said to be asymptotically lacunary statistical equivalent of multiple L provided that for every $\varepsilon > 0$

$$\lim_{r} \frac{1}{h_r} \left| \left\{ k \in I_r : \left| \frac{x_k}{y_k} - L \right| \ge \varepsilon \right\} \right| = 0$$

where the vertical bars indicate the number elements in the enclose set.

Definition 1.10. Let $\theta = (k_r)$ be a lacunary sequence; the two number sequences $x = (x_k)$ and $y = (y_k)$ are said to be strong asymptotically lacunary equivalent of multiple L provided that

$$\lim_{r} \frac{1}{h_r} \sum_{k \in I_r} \left| \frac{x_k}{y_k} - L \right| = 0$$

In 2008, Savas and Patterson [18] gave an extension on asymptotically lacunary statistical equivalent sequences and they investigated some relations between strongly asymptotically lacunary equivalent sequences and strongly Cesàro asymptotically equivalent sequences.

Definition 1.11 ([18]). Let $\theta = (k_r)$ be a lacunary sequence and $p = (p_k)$ is a sequence of positive real numbers. Two number sequences $x = (x_k)$ and $y = (y_k)$ are said to be strongly asymptotically lacunary equivalent of multiple L provided that

$$\lim_{r} \frac{1}{h_r} \sum_{k \in I_r} \left| \frac{x_k}{y_k} - L \right|^{p_k} = 0$$

(denoted by $x \stackrel{N_{\theta}^{L(p)}}{\sim} y$) and simply strongly asymptotically lacunary equivalent if L = 1.

Throughout \mathcal{I} will stand for a proper admissible ideal of \mathbb{N} and by sequence we always mean sequences of real numbers.

Recently, Savas[5] defined \mathcal{I} -asymptotically lacunary statistical equivalent sequences by using the definitions \mathcal{I} -convergence and asymptotically lacunary statistical equivalent sequences together.

Definition 1.12 ([5]). Let $\theta = (k_r)$ be a lacunary sequence; the two nonnegative sequences $x = (x_k)$ and $y = (y_k)$ are said to be \mathcal{I} -asymptotically lacunary statistical equivalent of multiple L provided that for every $\varepsilon > 0$ and $\delta > 0$,

$$\left\{ r \in \mathbb{N} : \frac{1}{h_r} \left| \left\{ k \in I_r : \left| \frac{x_k}{y_k} - L \right| \ge \varepsilon \right\} \right| \ge \delta \right\} \in \mathcal{I}.$$

In this case we write $x \overset{S^L_{\theta}(\mathcal{I})}{\sim} y$.

Quite recently Savas^[6] has given the following definitions.

Definition 1.13. Let θ be a lacunary sequence; the two nonnegative sequences $x = (x_k)$ and $y = (y_k)$ are said to be asymptotically \mathcal{I} -lacunary statistical equivalent of order α , where $0 < \alpha < 1$, to multiple L provided that for any $\epsilon > 0$ and $\delta > 0$

$$\{r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} | \{k \in I_r : |\frac{x_k}{y_k} - L| \ge \epsilon\} | \ge \delta\} \in \mathcal{I},$$

(denoted by $x \stackrel{S^L_{\theta}(I)^{\alpha}}{\sim} y$) and simply asymptotically \mathcal{I} -lacunary statistical equivalent of order α if L = 1. Furthermore, let $S^L_{\theta}(\mathcal{I})^{\alpha}$ denote the set of x and y such that $x \stackrel{S^L_{\theta}(\mathcal{I})^{\alpha}}{\sim} y$.

More investigations in this direction and more applications of asymptotically equivalent sequence can be found in [16, 17, 18].

In this paper we shall generalize the above definition by using sequence of positive real numbers and also some inclusion theorems are proved.

2 Main Results

In this section we shall give some new definitions and also examine some inclusion relations.

Definition 2.1. Let $\theta = (k_r)$ be a lacunary sequence and $p = (p_k)$ is a sequence of positive real numbers. Two number sequences $x = (x_k)$ and $y = (y_k)$ are said to be strongly asymptotically \mathcal{I} - lacunary equivalent of order $\alpha 51$, where $0 < \alpha < 1$, to multiple L for the sequence p provided that

$$\left\{ r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \sum_{k \in I_r} \left| \frac{x_k}{y_k} - L \right|^{p_k} \ge \varepsilon \right\} \in \mathcal{I}.$$

A Generalization on $\mathcal{I}-Asymptotically \ldots$

In this situation we write $x \stackrel{N_{\theta}^{L(p)}(\mathcal{I})^{\alpha}}{\sim} y$.

If we take $p_k = p$ for all $k \in \mathbb{N}$ we write $x \stackrel{N_{\theta}^{L_p}(\mathcal{I})^{\alpha}}{\sim} y$ instead of $x \stackrel{N_{\theta}^{L(p)}(\mathcal{I})}{\sim} y$. For $\alpha = 1$ the above definition coincides with strongly \mathcal{I} -asymptotically lacunary equivalent of multiple L, [5].

Definition 2.2. Let $p = (p_k)$ be a sequence of positive real numbers. Two number sequences $x = (x_k)$ and $y = (y_k)$ are said to be *strongly asymptotically* \mathcal{I} - *Cesáro equivalent of order* α , where $0 < \alpha < 1$, to multiple L provided that

$$\left\{ n \in \mathbb{N} : \frac{1}{n^{\alpha}} \sum_{k=1}^{n} \left| \frac{x_{k}}{y_{k}} - L \right|^{p_{k}} \ge \varepsilon \right\} \in \mathcal{I}$$

(denoted by $x \stackrel{\sigma^{(p)}(\mathcal{I})^{\alpha}}{\sim} y$) and simply strongly Cesáro \mathcal{I} -asymptotically equivalent if L = 1.

We now prove some inclusion theorems

Theorem 2.3. Let $\theta = (k_r)$ be a lacunary sequence. Then, If $x \stackrel{N_{\theta}^{L_p}(\mathcal{I})^{\alpha}}{\sim} y$ then $x \stackrel{S_{\theta}^{L}(\mathcal{I})^{\alpha}}{\sim} y$

Proof. Let $x \overset{N^{Lp}_{\theta}(\mathcal{I})^{\alpha}}{\sim} y$ and $\varepsilon > 0$ be given. Then,

$$\sum_{k \in I_r} \left| \frac{x_k}{y_k} - L \right|^p \geq \sum_{k \in I_r \& \left| \frac{x_k}{y_k} - L \right| \ge \varepsilon} \left| \frac{x_k}{y_k} - L \right|^p$$
$$\geq \varepsilon^p \left| \left\{ k \in I_r : \left| \frac{x_k}{y_k} - L \right| \ge \varepsilon \right\} \right|$$

and so

$$\frac{1}{\varepsilon^{p}h_{r}^{\alpha}}\sum_{k\in I_{r}}\left|\frac{x_{k}}{y_{k}}-L\right|^{p} \geq \frac{1}{h_{r}^{\alpha}}\left|\left\{k\in I_{r}:\left|\frac{x_{k}}{y_{k}}-L\right|\geq\varepsilon\right\}\right|$$

Then for any $\delta > 0$,

$$\left\{ r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \left| \left\{ k \in I_r : \left| \frac{x_k}{y_k} - L \right| \ge \varepsilon \right\} \right| \ge \delta \right\} \subseteq \left\{ r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \sum_{k \in I_r} \left| \frac{x_k}{y_k} - L \right|^p \ge \varepsilon^p \delta \right\} \in I$$

Therefore $x \overset{S_{\theta}^L(\mathcal{I})^{\alpha}}{\sim} y$.

Remark 2.4. The following two conditions remain true for $0 < \alpha < 1$ is not clear and we leave them as open problems.

(2)
$$x \in l_{\infty}$$
 and $x \stackrel{S^{L}_{\theta}(\mathcal{I})^{\alpha}}{\sim} y \Rightarrow x \stackrel{N^{Lp}_{\theta}(\mathcal{I})^{\alpha}}{\sim} y$,
(3) $S^{L}_{\theta}(\mathcal{I})^{\alpha} \cap l_{\infty} = N^{Lp}_{\theta}(\mathcal{I})^{\alpha} \cap l_{\infty}$.

We now investigate the relationship between $x \stackrel{N_{\theta}^{L(p)}(\mathcal{I})^{\alpha}}{\sim} y$ and $x \stackrel{S_{\theta}^{L}(\mathcal{I})^{\alpha}}{\sim} y$.

Theorem 2.5. Let $\theta = (k_r)$ be a lacunary sequence, $\inf_k p_k = h$ and $\sup_k p = H$. Then,

$$x \overset{N^{L(p)}_{\theta}(\mathcal{I})^{\alpha}}{\sim} y \text{ implies } x \overset{S^{L}_{\theta}(\mathcal{I})^{\alpha}}{\sim} y$$

Proof. Assume that $x \stackrel{N_{\theta}^{L(p)}(\mathcal{I})^{\alpha}}{\sim} y$ and $\varepsilon > 0$. Then,

$$\frac{1}{h_r^{\alpha}} \sum_{k \in I_r} \left| \frac{x_k}{y_k} - L \right|^{p_k} = \frac{1}{h_r^{\alpha}} \sum_{k \in I_r \ \&} \left| \frac{x_k}{y_k} - L \right|^{p_k} + \frac{1}{h_r^{\alpha}} \sum_{k \in I_r \ \&} \left| \frac{x_k}{y_k} - L \right|^{p_l}$$

$$\geq \frac{1}{h_r^{\alpha}} \sum_{k \in I_r \ \&} \left| \frac{x_k}{y_k} - L \right|^{p_k}$$

$$\geq \frac{1}{h_r^{\alpha}} \sum_{k \in I_r \ \&} \left| \frac{x_k}{y_k} - L \right|^{p_k}$$

$$\geq \frac{1}{h_r^{\alpha}} \sum_{k \in I_r \ \&} \left| \frac{x_k}{y_k} - L \right|^{p_k}$$

$$\geq \frac{1}{h_r^{\alpha}} \sum_{k \in I_r \ \&} \left| \frac{x_k}{y_k} - L \right|^{p_k}$$

$$\geq \frac{1}{h_r^{\alpha}} \sum_{k \in I_r \ \&} \left| \frac{x_k}{y_k} - L \right|^{p_k}$$

$$\geq \frac{1}{h_r^{\alpha}} \max_{k \in I_r \ \&} \left| \frac{x_k}{y_k} - L \right|^{p_k}$$

and

$$\left\{ r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \left| \left\{ k \in I_r : \left| \frac{x_k}{y_k} - L \right| \ge \varepsilon \right\} \right| \ge \delta \right\} \subseteq \left\{ r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \sum_{k \in I_r} \left| \frac{x_k}{y_k} - L \right|^{p_k} \ge \delta \min\left\{ (\varepsilon)^h, (\varepsilon)^H \right\} \right\} \in I.$$

Thus we have $x \stackrel{S^L_{\theta}(\mathcal{I})}{\sim} y.$

Theorem 2.6. Let \mathcal{I} be an ideal and $\theta = \{k_r\}$ is a lacunary sequence, then

$$x \overset{\sigma^{(p)}(\mathcal{I})}{\sim} y \text{ implies } x \overset{N^{L(p)}_{\theta}(\mathcal{I})}{\sim} y.$$

 $if \liminf_r q_r^\alpha > 1.$

Proof. If $\liminf_r q_r^{\alpha} > 1$ then there exists $\delta > 0$ such that $q_r^{\alpha} \ge 1 + \delta$ for all $r \ge 1$. Since $h_r = k_r - k_{r-1}$, we have $\frac{k_r}{h_r} \le \frac{1+\delta}{\delta}$ and $\frac{k_{r-1}}{h_r} \le \frac{1}{\delta}$. Let $\varepsilon > 0$ and define the set,

$$S = \left\{ k_r \in \mathbb{N} : \frac{1}{k_r} \sum_{k=1}^{k_r} \left| \frac{x_k}{y_k} - L \right|^{p_k} < \varepsilon \right\}.$$

A Generalization on $\mathcal{I}-Asymptotically \ldots$

We can easily say that $S \in F(\mathcal{I})$ which is the filter of the ideal \mathcal{I} .

$$\frac{1}{h_r^{\alpha}} \sum_{k \in I_r} \left| \frac{x_k}{y_k} - L \right|^{p_k} = \frac{1}{h_r^{\alpha}} \sum_{k=1}^{k_r} \left| \frac{x_k}{y_k} - L \right|^{p_k} - \frac{1}{h_r} \sum_{k=1}^{k_{r-1}} \left| \frac{x_k}{y_k} - L \right|^{p_k}$$
$$= \frac{k_r}{h_r^{\alpha}} \frac{1}{k_r} \sum_{k=1}^{k_r} \left| \frac{x_k}{y_k} - L \right|^{p_k} - \frac{k_{r-1}}{h_r^{\alpha}} \frac{1}{k_{r-1}} \sum_{k=1}^{k_{r-1}} \left| \frac{x_k}{y_k} - L \right|^{p_k}$$
$$\leq \left(\frac{1+\delta}{\delta} \right) \varepsilon - \frac{1}{\delta} \varepsilon'$$

for each $k_r \in S$. Choose $\eta = \left(\frac{1+\delta}{\delta}\right)\varepsilon - \frac{1}{\delta}\varepsilon'$. Therefore,

$$\left\{ r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \sum_{k \in I_r} \left| \frac{x_k}{y_k} - L \right|^{p_k} < \eta \right\} \in F(\mathcal{I})$$

and it completes the proof.

Remark 2.7. The converse of this result is not clear for $\alpha < 1$ and we leave it as an open problem.

For the next result we assume that the lacunary sequence θ satisfies the condition that for any set $C \in F(I)$, $\bigcup \{n : k_{r-1} < n < k_r, r \in C\} \in F(I)$.

Theorem 2.8. For a lacunary sequence θ satisfying the above condition,

$$x \overset{N_{\theta}^{L(p)}(\mathcal{I})}{\sim} y \text{ implies } x \overset{\sigma^{(p)}(\mathcal{I})}{\sim} y$$

$$if \sup_{r} \sum_{i=0}^{r-1} \frac{h_{i+1}^{\alpha}}{(k_{r-1})^{\alpha}} = B(say) < \infty.$$

Proof. If $\limsup_{\theta \to \infty} q_r < \infty$ then there exists B > 0 such that $q_r < B$ for all $r \ge 1$. Let $x \xrightarrow{N_{\theta}^{L(p)}(\mathcal{I})} y$ and define the sets T and R such that,

$$T = \left\{ r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \sum_{k \in I_r} \left| \frac{x_k}{y_k} - L \right|^{p_k} < \varepsilon_1 \right\}$$

and

$$R = \left\{ n \in \mathbb{N} : \frac{1}{n^{\alpha}} \sum_{k=1}^{n} \left| \frac{x_{k}}{y_{k}} - L \right|^{p_{k}} < \varepsilon_{2} \right\}.$$

Let

$$A_j = \frac{1}{h_j^{\alpha}} \sum_{k \in I_j} \left| \frac{x_k}{y_k} - L \right|^{p_k} < \varepsilon_1$$

for all $j \in T$. It is obvious that $T \in F(\mathcal{I})$. Choose n is any integer with $k_{r-1} < n < k_r$ where $r \in T$.

$$\begin{split} &\frac{1}{n^{\alpha}}\sum_{k=1}^{n} \left|\frac{x_{k}}{y_{k}}-L\right|^{p_{k}} \\ &\leq \left|\frac{1}{k_{r-1}^{\alpha}}\sum_{k=1}^{k_{r}}\right| \left|\frac{x_{k}}{y_{k}}-L\right|^{p_{k}} \\ &= \left|\frac{1}{k_{r-1}^{\alpha}}\left(\sum_{k\in I_{1}}\left|\frac{x_{k}}{y_{k}}-L\right|^{p_{k}}+\sum_{k\in I_{2}}\left|\frac{x_{k}}{y_{k}}-L\right|^{p_{k}}+\ldots+\sum_{k\in I_{r}}\left|\frac{x_{k}}{y_{k}}-L\right|^{p_{k}}\right) \\ &= \left|\frac{k_{1}^{\alpha}}{k_{r-1}^{\alpha}}\left(\frac{1}{h_{1}^{\alpha}}\sum_{k\in I_{1}}\left|\frac{x_{k}}{y_{k}}-L\right|^{p_{k}}\right)+\frac{(k_{2}-k_{1})^{\alpha}}{k_{r-1}^{\alpha}}\left(\frac{1}{h_{2}^{\alpha}}\sum_{k\in I_{2}}\left|\frac{x_{k}}{y_{k}}-L\right|^{p_{k}}\right)+\ldots\right. \\ &+\frac{(k_{r}-k_{r-1})^{\alpha}}{k_{r-1}^{\alpha}}\left(\frac{1}{h_{r}^{\alpha}}\sum_{k\in I_{r}}\left|\frac{x_{k}}{y_{k}}-L\right|^{p_{k}}\right) \\ &= \left|\frac{k_{1}^{\alpha}}{k_{r-1}^{\alpha}}A_{1}+\frac{(k_{2}-k_{1})^{\alpha}}{k_{r-1}^{\alpha}}A_{2}+\cdots+\frac{(k_{r}-k_{r-1})^{\alpha}}{k_{r-1}^{\alpha}}A_{r}\right. \\ &\leq \left|\sup_{j\in C}A_{j}.\sup_{r}\sum_{i=0}^{r-1}\frac{(k_{i+1}-k_{i})^{\alpha}}{k_{r-1}^{\alpha}}\right. \end{aligned}$$

Choose $\varepsilon_2 = \frac{\varepsilon_1}{B}$ and in view of the fact that $\bigcup \{n : k_{r-1} < n < k_r, r \in T\} \subset R$ where $T \in F(I)$ it follows from our assumption on θ that the set R also belongs to F(I) and this completes the proof of the theorem. \Box

Acknowledgements : I would like to express my gratitude to the referees of the paper for his useful comments and suggestions towards the quality improvement of the paper.

References

- P. Kostyrko, Šalát, T. and Wilezyński, W., *I*-Convergence, Real Analysis Exchange. 26 (2) (2000/2001) 669-686.
- [2] K. Dems, On *I*-Cauchy sequences, Real Anal. Exchance. 30 (2004-2005) 123-128.
- [3] P. Das, E. Savaş, On *I*-statistical and *I*-lacunary statistical convergence of order *alpha* Bull. iranian Soc. 40 (2) (2014) 459-472.

A Generalization on $\mathcal{I}-Asymptotically\ \ldots$

- [4] E. Savaş, R.F. Patterson, An extension asymptotically lacunary statistical equivalent sequences, Aligarh Bull. Math. 27 (2) (2008) 109-113.
- [5] E. Savaş, On *I* asymptotically lacunary statistical equivalent sequences, Advances in Difference Equations.2013, 2013:111. DOI: 10.1186/1687-1847-2013-111.
- [6] E. Savaş, On asymptotically *I*-lacunary statistical equivalent sequences of order α, the 2014 International Conference on Pure Mathematics-Applied Mathematics Venice, Italy, March 15-17, 2014.
- [7] E. Savaş, △^m -strongly summable sequences spaces in 2-normed spaces defined by Ideal convergence and an orlicz function, App. Math. Comp. 217 (2010) 271-276.
- [8] E. Savaş, A-sequence spaces in 2-normed space defined by ideal convergence and an Orlicz function, Abst. Appl. Analy., Vol. 2011 (2011), Article ID 741382.
- [9] E. Savas, On some new sequence spaces in 2-normed spaces using Ideal convergence and an Orlicz function, J. Ineq. Appl. Article Number: 482392 DOI: 10.1155/2010/482392 Published: 2010.
- [10] E. Savaş, P. Das, A generalized statistical convergence via ideals, Appl. Math. Letters. 24 (2011) 826 - 830.
- [11] Mursaleen M. and Sharma Sunil K., Spaces of ideal convergent sequences, The Scientific World Journal, Volume 2014, Article ID 134534, 1-5.
- [12] Mursaleen M., Alotaibi A., On I-convergence in random 2-normed spaces, Mathematica Slovaca, 61 (6) (2011) 933-940.
- [13] H. Fast, Sur la Convergence Statistique, Coll. Math. 2 (1951) 241-244.
- [14] M. S. Marouf, Asymptotic equivalence and summability, Internat. J.Math & Math. Sci. 16 (4) (1993) 755-162.
- [15] J. A. Fridy, On statistical convergence, Analysis. 5 (1985) 301-313.
- [16] R.F. Patterson, On asymptotically statistical equivalent sequences, Demonstratio Mathematica. XXXVI (1) (2003), 1-7.
- [17] R.F. Patterson, E. Savaş, On asymptotically lacunary statistical equivalent sequences, Thai Journal of Mathematics. 4 (2) (2006) 267-272.
- [18] E. Savaş, R.F. Patterson, An extension Asymptotically lacunary statistical equivalent sequences, Aligarh Bull. Math. 27 (2) (2008) 109-113.

(Received 19 September 2014) (Accepted 25 January 2015)