

www.math.science.cmu.ac.th/thaijournal

On Characterizations of General Helices for Ruled Surfaces in the Pseudo-Galilean Space G_3^1 -(PART II)

M. Bektaş

Abstract : In this paper, we obtained characterizations of a curve with respect to the Frenet frame of Ruled surfaces in the 3-dimensional Pseudo-Galilean space G_3^1 .

Keywords : Ruled surface; General helix.2000 Mathematics Subject Classification : 53B30.

1 Introduction

T. Ikawa obtained in [6] the following characteristic ordinary differential equation

$$\nabla_X \nabla_X \nabla_X X - K \nabla_X X = 0, \qquad K = k^2 - \tau^2$$

for the circular helix which corresponds to the case that the curvatures k and τ of a time-like curve α on the Lorentzian manifold M are constant.

N. Ekmekçi and H. H. Hacisalihoglu generalized in [4]. T. Ikawa's this result, i.e. k and τ are variable, but $\frac{k}{\tau}$ is constant.

Recently, N. Ekmekçi and K. İlarslan obtained characterizations of timelike null helices in terms of principalnormal or binormal vector fields [5].

Furthermore, M. Bektas [1] obtained characterizations of a curve with respect to the Frenet frame of ruled surfaces in the 3-dimensional pseudo-Galilean space G_3^1 .

In this paper, we obtained characterizations of helices in terms of principal normal vector fields and another two characterizations for a curve with respect to the Frenet frame of Ruled surfaces in the 3-dimensional Pseudo-Galilean space G_3^1 .

2 Preliminaries

We will use the same notations and terminologies as in [3] unless otherwise stated. The pseudo-Galilean geometry is one of the real Cayley-Klein geometries (of projective signature (0,0,+,-)). The absolute of the pseudo-Galilean geometry is an ordered triple $\{w, f, I\}$ where w is the ideal (absolute) plane, f is a line in w and I is the fixed hyperbolic involution of points of f [2].

A vector X(x, y, z) is said to *non isotropic* if $x \neq 0$. All unit non-isotropic vectors are of the form (1, y, z). For isotropic vectors x = 0 holds. There are four types of isotropic vectors: space-like $(y^2 - z^2 > 0)$, time-like $(y^2 - z^2 < 0)$ and two types of lightlike $(y = \pm z)$ vectors. A non-lightlike isotropic vector is a unit vector if $y^2 - z^2 = \pm 1$.

A trihedron $(T_o; e_1, e_2, e_3)$ with a proper origin

$$T_o(x_o, y_o, z_o) \sim (1 : x_o : y_o : z_o),$$

is orthonormal in pseudo-Galilean sense iff the vectors e_1 , e_2, e_3 are of following form : $e_1 = (1, y, z), e_2 = (0, y_2, z_2), e_3 = (0, \epsilon z_2, \epsilon y_2)$, with $y_2^2 - z_2^2 = \delta$, where ϵ, δ is +1 or -1.

Such trihedron $(T_o; e_1, e_2, e_3)$ is called *positively oriented* if for its vectors $det(e_1, e_2, e_3) = 1$ holds i.e. if $y_2^2 - z_2^2 = \epsilon$.

3 Ruled Surfaces in the Galilean Space

A general equation of a ruled surface G_3^1 is

$$x(u,v) = r(u) + va(u), v \in \mathbb{R}; r, a \in \mathbb{C}^3$$

$$(3.1)$$

where the curve r does not line in a pseudo-Euclidean plane and is called a *directix*. The curve r is given by

$$r(u) = (u, y(u), z(u)).$$
 (3.2)

This means that the curve r is parametrized by the pseudo-Galilean arc length. Further, the generator vector field is of the form

$$a(u) = (1, a_2(u), a_3(u)).$$
(3.3)

Notice that under the given assumptions all tangent planes of ruled surfaces are isotropic.

According to the absolute figure, we distinguish two types of ruled surfaces in G_3^1 . More about ruled surface in G_3^1 can be found in [3].

Type I : The equation of a ruled surface of type I in G_3^1 is

$$\begin{cases} x(u,v) = (u, y(u), z(u)) + v(1, a_2(u), a_3(u)), \\ y, z, a_2, a_3 \in C^3, \quad u \in I \subseteq \mathbb{R}, \quad v \in \mathbb{R}. \end{cases}$$
(3.4)

The ruled surfaces of type I are non-conoidal and conoidal surfaces whose directional straight line at in finity is not the absolute line. The striction curve of these surfaces does not lie in a pseudo-Euclidean space.

On Characterizations of General Helices for Ruled Surfaces in ...

The associated trihedron of a ruled surface of type I in G_3^1 is defined by

$$T(u) = a(u), \quad N(u) = \frac{1}{k(u)}a'(u), \quad B(u) = \frac{1}{k(u)}(0, a'_3(u), a'_2(u)).$$

The curvature is given by $k(x) = \sqrt{|a_2'^2 - a_3'^2|}$.

Type II : The equation of ruled surface of type II in G_3^1 is

$$\begin{cases} x(u,v) = (0, y(u), z(u)) + v(1, a_2(u), a_3(u)), \\ y, z, a_2, a_3 \in C^3, \quad u \in I \subseteq \mathbb{R}, \quad v \in \mathbb{R}, \\ |y'^2 - z'^2| = 1, \quad y'a'_2 - z'a'_3 = 0. \end{cases}$$
(3.5)

A ruled surface of type II is a surface whose striction curve lies in a pseudo-Euclidean plane.

The associated trihedron of ruled surface of type II in G_3^1 is defined by

$$T(u) = a(u) = (1, a_2, a_3),$$

$$N(u) = (0, z'(u), y'(u)),$$

$$B(u) = (0, y'(u), z'(u)),$$

where

$$k(u) = \frac{a_2(u)}{z'(u)}, \qquad \tau(u) = \frac{y''(u)}{z'(u)}.$$

The Frenet formulas are in type I or type II as follows.

$$\nabla_{T_{(u)}} T(u) = k(u)N(u), \qquad (3.6)$$

$$\nabla_{N_{(u)}} N(u) = \tau(u)B(u), \qquad (3.6)$$

$$\nabla_{B_{(u)}} B(u) = \tau(u)N(u).$$

4 The Characterizations of Curves on Ruled Surfaces

Definition 4.1 Let α be a curve of a ruled surface of type I or II and $\{T(u), N(u), B(u)\}$ be the Frenet frame on ruled surface of type I or II along α . If k and τ are positive constants along α , then α is called a *circular helix* with respect to the frenet frame.

Definition 4.2 Let α be a curve of a ruled surface of type I or II and $\{T(u), N(u), B(u)\}$ be the Frenet frame on ruled surface of type I or II along α . A curve α such that

$$\frac{k(u)}{\tau(u)} = const$$

is called a *general helix* with respect to Frenet Frame.

Theorem 4.3 Let α be a curve of a ruled surface of type I or II in pseudo-Galilean space G_3^1 . α is a general helix with respect to the Frenet Frame $\{T(u), N(u), B(u)\}$ if and only if

$$\nabla_{T_{(u)}} \nabla_{T_{(u)}} \nabla_{T_{(u)}} N(u) - K(u) \nabla_{T_{(u)}} N(u) = \frac{3}{\lambda} \tau'(u) \nabla_{T_{(u)}} T(u)$$
(4.1)

where $K(u) = \frac{\tau''(u)}{\tau(u)} + \tau^2(u)$.

Proof. Suppose that α is general helix with respect to the Frenet Frame $\{T(u), N(u), B(u)\}$. Then from (3.6), we have

$$\nabla_{T_{(u)}} \nabla_{T_{(u)}} \nabla_{T_{(u)}} N(u) = (\tau''(u) + \tau^3(u)) B(u) + (3\tau(u)\tau'(u)) N(u).$$
(4.2)

Now, since α is general helix with respect to the Frenet Frame

$$\frac{k(u)}{\tau(u)} = \lambda = const. \tag{4.3}$$

If we substitute the equations

$$N(u) = \frac{1}{k(u)} \nabla_{T_{(u)}} T(u),$$
(4.4)

$$B(u) = \frac{1}{\tau(u)} \nabla_{T_{(u)}} N(u) \tag{4.5}$$

and (4.5) in (4.2), we obtain (4.1).

Conversely let us assume that the equation (4.1) holds. We show that the curve α is a general helix. Differentiating covariantly (4.5) we obtain

$$\nabla_{T_{(u)}} B(u) = -\frac{\tau'(u)}{\tau^2(u)} \nabla_{T_{(u)}} N(u) + \frac{1}{\tau(u)} \nabla_{T_{(u)}} \nabla_{T_{(u)}} N(u)$$
(4.6)

and so

$$\nabla_{T_{(u)}} \nabla_{T_{(u)}} B(u) = \left(-\frac{\tau'(u)}{\tau^2(u)} \right)' \nabla_{T_{(u)}} N(u) - 2\frac{\tau'(u)}{\tau^2(u)} \nabla_{T_{(u)}} \nabla_{T_{(u)}} N(u) + \frac{1}{\tau(u)} \nabla_{T_{(u)}} \nabla_{T_{(u)}} \nabla_{T_{(u)}} N(u).$$
(4.7)

If we use (4.1) in (4.7) and make some calculations, we have

$$\nabla_{T_{(u)}} \nabla_{T_{(u)}} B(u) = \left[\left(-\frac{\tau'(u)}{\tau^2(u)} \right)' + \frac{K(u)}{\tau(u)} \right] \nabla_{T_{(u)}} N(u) - 2 \frac{\tau'(u)}{\tau^2(u)} \nabla_{T_{(u)}} \nabla_{T_{(u)}} N(u) + \frac{3}{\lambda} \frac{\tau'(u)k(u)}{\tau(u)} N(u).$$
(4.8)

Also we obtain

$$\nabla_{T_{(u)}} \nabla_{T_{(u)}} B(u) = \tau^2(u) B(u) + \tau'(u) N(u)$$
(4.9)

since (4.8) and (4.9) are equal, routine calculations show that α is a general helix.

392

Corollary 4.4 Let α be a curve of ruled surface of type I or II in pseudo-Galilean space G_3^1 . α is a circular helix with respect to the Frenet Frame $\{T(u), N(u), B(u)\}$, if and only if

$$\nabla_{T_{(u)}} \nabla_{T_{(u)}} \nabla_{T_{(u)}} N(u) = \tau^2(u) \nabla_{T_{(u)}} N(u).$$
(4.10)

Proof. From the hypotesis of corollary 4.4 and since α is a circular helix, we can show easily (4.10).

Theorem 4.5 Let α be a curve of a ruled surface of type I or II in pseudo-Galilean space G_3^1 . α is a general helix with respect to the Frenet Frame $\{T(u), N(u), B(u)\}$ if and only if $\nabla_{T(u)} T(u)$ and $\nabla_{T(u)} B(u)$ are linear independent.

Proof. Suppose that α is a general helix with respect to the Frenet Frame $\{T(u), N(u), B(u)\}$. Then from (4.3), we have

$$k(u) = \lambda \tau(u). \tag{4.11}$$

If we product n with (4.11) equation and consider (3.6), we obtain

$$\nabla_{T_{(u)}} \overline{T}(u) = \lambda \nabla_{T_{(u)}} B(u). \tag{4.12}$$

Conversely let us assume that the equation (4.12) holds. We show that the curve α is a general helix. From (4.12), we obtain

$$\frac{k(u)}{\tau(u)} = \lambda = const$$

That is α is a general helix.

Theorem 4.6 Let α be a curve of a ruled surface of type I or II in pseudo-Galilean space G_3^1 . α is a general helix with respect to the Frenet Frame $\{T(u), N(u), B(u)\}$ if and only if $\nabla_{T(u)} \nabla_{T(u)} T(u)$ and $\nabla_{T(u)} \nabla_{T(u)} B(u)$ are linear independent.

Proof. It is similar to the proof of Theorem 4.5.

- M. Bektas, On Characterization of General Helices for Ruled Surfaces in the pseudo-Galilean space G¹₃ -I, J. Math. Kyoto Univ., 44(3)(2004), 523–528.
- [2] B. Divjak, The General Solution of the Frenet System of Differential Equations for Curves in the Pseudo-Galilean Space G_3^1 , Math. Com., 2(1997), 143–147.
- [3] B. Divjak and Z. Milin-Sipus, Special Curves on Ruled Surfaces in Galilean and Pseudo-Galilean Spaces, *Acta Math. Hungar.*, **98**(3)(2003), 203–215.

- [4] N. Ekmekçi and H. H. Hacisalihoglu, On Helices of a Lorentzian manifold, Commun. Fac. Sci., Üniv. Ank. Series A1,(1996), 45–50.
- [5] N. Ekmekçi and K. Ilarslan, On Characterization of General Helices in Lorentzian Space, *Hadronic J.*, To appear.
- [6] T. Ikawa, On Curves and Submanifolds in an Indefinite-Riemannian Manifold, *Tsukuba J. Math.*, 9(1985), 353–371.

(Received 25 February 2006)

M. Bektaş Department of Mathematics Firat University 23119 ELAZIĞ, Turkey. e-mail : mbektas@firat.edu.tr

394