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1 Introduction

T. Ikawa obtained in [6] the following characteristic ordinary differential equa-
tion

∇X∇X∇XX −K∇XX = 0, K = k2 − τ2

for the circular helix which corresponds to the case that the curvatures k and τ of
a time-like curve α on the Lorentzian manifold M are constant.

N. Ekmekçi and H. H. Hacisalihoglu generalized in [4]. T. Ikawa’s this result,

i.e. k and τ are variable, but
k

τ
is constant.

Recently, N. Ekmekçi and K. İlarslan obtained characterizations of timelike
null helices in terms of principalnormal or binormal vector fields [5].

Furthermore, M. Bektas [1] obtained characterizations of a curve with respect
to the Frenet frame of ruled surfaces in the 3-dimensional pseudo-Galilean space
G1

3.
In this paper, we obtained characterizations of helices in terms of principal

normal vector fields and another two characterizations for a curve with respect
to the Frenet frame of Ruled surfaces in the 3-dimensional Pseudo-Galilean space
G1

3.

2 Preliminaries

We will use the same notations and terminologies as in [3] unless otherwise
stated. The pseudo-Galilean geometry is one of the real Cayley-Klein geometries



390 Thai J. Math. 4(2006)/ M. Bektaş

(of projective signature (0,0,+,-)). The absolute of the pseudo-Galilean geometry
is an ordered triple {w, f, I} where w is the ideal (absolute) plane, f is a line in w
and I is the fixed hyperbolic involution of points of f [2].

A vector X(x, y, z) is said to non isotropic if x 6= 0 . All unit non-isotropic
vectors are of the form (1, y, z). For isotropic vectors x = 0 holds. There are four
types of isotropic vectors: space-like (y2 − z2 > 0) , time-like (y2 − z2 < 0) and
two types of lightlike (y = ±z) vectors. A non-lightlike isotropic vector is a unit
vector if y2 − z2 = ±1.

A trihedron (To; e1, e2, e3) with a proper origin

To(xo, yo, zo) ∼ (1 : xo : yo : zo),

is orthonormal in pseudo-Galilean sense iff the vectors e1 ,e2, e3 are of following
form :e1 = (1, y, z), e2 = (0, y2, z2), e3 = (0, εz2, εy2) , with y2

2 − z2
2 = δ , where ε, δ

is +1 or -1.
Such trihedron (To; e1, e2, e3) is called positively oriented if for its vectors

det(e1, e2, e3) = 1 holds i.e. if y2
2 − z2

2 = ε.

3 Ruled Surfaces in the Galilean Space

A general equation of a ruled surface G1
3 is

x(u, v) = r(u) + va(u), v ∈ R; r, a ∈ C3 (3.1)

where the curve r does not line in a pseudo-Euclidean plane and is called a directix.
The curve r is given by

r(u) = (u, y(u), z(u)). (3.2)

This means that the curve r is parametrizd by the pseudo-Galilean arc length.
Further, the generator vector field is of the form

a(u) = (1, a2(u), a3(u)). (3.3)

Notice that under the given assumptions all tangent planes of ruled surfaces
are isotropic.

According to the absolute figure, we distinguish two types of ruled surfaces in
G1

3. More about ruled surface in G1
3 can be found in [3].

Type I : The equation of a ruled surface of type I in G1
3 is

{
x(u, v) = (u, y(u), z(u)) + v(1, a2(u), a3(u)),

y, z, a2, a3 ∈ C3, u ∈ I ⊆ R, v ∈ R.
(3.4)

The ruled surfaces of type I are non-conoidal and conoidal surfaces whose direc-
tional straight line at in finity is not the absolute line. The striction curve of these
surfaces does not lie in a pseudo-Euclidean space.
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The associated trihedron of a ruled surface of type I in G1
3 is defined by

T (u) = a(u), N(u) =
1

k(u)
a′(u), B(u) =

1
k(u)

(0, a′3(u), a′2(u)).

The curvature is given by k(x) =
√
|a′22 − a′23 |.

Type II : The equation of ruled surface of type II in G1
3 is





x(u, v) = (0, y(u), z(u)) + v(1, a2(u), a3(u)),
y, z, a2, a3 ∈ C3, u ∈ I ⊆ R, v ∈ R,∣∣y′2 − z′2

∣∣ = 1, y′a′2 − z′a′3 = 0.
(3.5)

A ruled surface of type II is a surface whose striction curve lies in a pseudo-
Euclidean plane.

The associated trihedron of ruled surface of type II in G1
3 is defined by

T (u) = a(u) = (1, a2, a3),
N(u) = (0, z′(u), y′(u)),
B(u) = (0, y′(u), z′(u)),

where

k(u) =
a2(u)
z′(u)

, τ(u) =
y′′(u)
z′(u)

.

The Frenet formulas are in type I or type II as follows.

∇T(u)T (u) = k(u)N(u), (3.6)

∇N(u)N(u) = τ(u)B(u),

∇B(u)B(u) = τ(u)N(u).

4 The Characterizations of Curves on Ruled Sur-
faces

Definition 4.1 Let α be a curve of a ruled surface of type I or II and {T (u), N(u), B(u)}
be the Frenet frame on ruled surface of type I or II along α. If k and τ are positive
constants along α, then α is called a circular helix with respect to the frenet frame.

Definition 4.2 Let α be a curve of a ruled surface of type I or II and {T (u), N(u),
B(u)} be the Frenet frame on ruled surface of type I or II along α. A curve α such
that

k(u)
τ(u)

= const

is called a general helix with respect to Frenet Frame.
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Theorem 4.3 Let α be a curve of a ruled surface of type I or II in pseudo-Galilean
space G1

3 . α is a general helix with respect to the Frenet Frame {T (u), N(u), B(u)}if
and only if

∇T(u)∇T(u)∇T(u)N(u)−K(u)∇T(u)N(u) =
3
λ

τ ′(u)∇T(u)T (u) (4.1)

where K(u) = τ ′′(u)
τ(u) + τ2(u).

Proof. Suppose that α is general helix with respect to the Frenet Frame
{T (u), N(u), B(u)}. Then from (3.6) , we have

∇T(u)∇T(u)∇T(u)N(u) = (τ ′′(u) + τ3(u))B(u) + (3τ(u)τ ′(u))N(u). (4.2)

Now, since α is general helix with respect to the Frenet Frame

k(u)
τ(u)

= λ = const. (4.3)

If we substitute the equations

N(u) =
1

k(u)
∇T(u)T (u), (4.4)

B(u) =
1

τ(u)
∇T(u)N(u) (4.5)

and (4.5) in (4.2), we obtain (4.1).
Conversely let us assume that the equation (4.1) holds. We show that the

curve α is a general helix. Differentiating covariantly (4.5) we obtain

∇T(u)B(u) = − τ ′(u)
τ2(u)

∇T(u)N(u) +
1

τ(u)
∇T(u)∇T(u)N(u) (4.6)

and so

∇T(u)∇T(u)B(u) =
(
− τ ′(u)

τ2(u)

)′
∇T(u)N(u)− 2

τ ′(u)
τ2(u)

∇T(u)∇T(u)N(u)

+
1

τ(u)
∇T(u)∇T(u)∇T(u)N(u). (4.7)

If we use (4.1) in (4.7) and make some calculations, we have

∇T(u)∇T(u)B(u) =

[(
− τ ′(u)

τ2(u)

)′
+

K(u)
τ(u)

]
∇T(u)N(u)− 2

τ ′(u)
τ2(u)

∇T(u)∇T(u)N(u)

+
3
λ

τ ′(u)k(u)
τ(u)

N(u). (4.8)

Also we obtain
∇T(u)∇T(u)B(u) = τ2(u)B(u) + τ ′(u)N(u) (4.9)

since (4.8) and (4.9) are equal, routine calculations show that α is a general helix.
¤
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Corollary 4.4 Let α be a curve of ruled surface of type I or II in pseudo-Galilean
space G1

3. α is a circular helix with respect to the Frenet Frame {T (u), N(u),
B(u)}, if and only if

∇T(u)∇T(u)∇T(u)N(u) = τ2(u)∇T(u)N(u). (4.10)

Proof. From the hypotesis of corollary 4.4 and since α is a circular helix, we can
show easily (4.10). ¤

Theorem 4.5 Let α be a curve of a ruled surface of type I or II in pseudo-Galilean
space G1

3 . α is a general helix with respect to the Frenet Frame {T (u), N(u), B(u)}
if and only if ∇T(u)T (u) and ∇T(u)B(u) are linear independent.

Proof. Suppose that α is a general helix with respect to the Frenet Frame
{T (u), N(u), B(u)}. Then from (4.3), we have

k(u) = λτ(u). (4.11)

If we product n with (4.11) equation and consider (3.6), we obtain

∇T(u)T (u) = λ∇T(u)B(u). (4.12)

Conversely let us assume that the equation (4.12) holds. We show that the
curve α is a general helix. From (4.12), we obtain

k(u)
τ(u)

= λ = const

That is α is a general helix. ¤

Theorem 4.6 Let α be a curve of a ruled surface of type I or II in pseudo-Galilean
space G1

3 . α is a general helix with respect to the Frenet Frame {T (u), N(u), B(u)}
if and only if ∇T(u)∇T(u)T (u) and ∇T(u)∇T(u)B(u) are linear independent.

Proof. It is similar to the proof of Theorem 4.5. ¤
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