Thai Journal of Mathematics Volume 14 (2016) Number 1 : 31–41

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Extendability of the Complementary Prism of 2-Regular Graphs¹

P. Janseana[†], S. Rueangthampisan[†] and N. Ananchuen^{†,‡,2}

[†]Department of Mathematics, Faculty of Science Silpakorn University, Nakorn Pathom 73000, Thailand e-mail: jpongthep@yahoo.com (P. Janseana) pang_sriphan@hotmail.com (S. Rueangthampisan) ananchuen_n@su.ac.th (N. Ananchuen) [‡]Centre of Excellence in Mathematics CHE, Si Ayutthaya Rd., Bangkok 10400, Thailand

Abstract: Let G be a simple graph. The complementary prism of G, denoted by $G\overline{G}$, is the graph formed from the disjoint union of G and \overline{G} , the complement of G, by adding the edges of a perfect matching between the corresponding vertices of G and \overline{G} . A connected graph G of order at least 2k + 2 is k-extendable if for every matching M of size k in G, there is a perfect matching in G containing all edges of M. The problem that arises is that of investigating the extendability of $G\overline{G}$. In this paper, we investigate the extendability of $G\overline{G}$ where G contains G_1, \ldots, G_l as its components and the extendability of $G_i\overline{G}_i$ is known for $1 \le i \le l$. We then apply this result to establish the extendability of $G\overline{G}$ when G is 2-regular.

Keywords : extendable; complementary prism; regular graph. **2010 Mathematics Subject Classification :** 05C70.

1 Introduction

Let G denote a finite simple undirected graph with vertex set V(G) and edge set E(G). The complement of G is denoted by \overline{G} . For a vertex v of G, $deg_G(v)$

 $^{^1 \}rm This$ work was supported by the Thailand Research Fund grant $\# \ {\rm BRG5480014}$ $^2 \rm Corresponding author.$

Copyright 2016 by the Mathematical Association of Thailand. All rights reserved.

and $N_G(v)$ denote the degree and the neighbour set of v, respectively. Further, the closed neighbour set of v, denoted by $N_G[v]$, is $N_G(v) \cup \{v\}$. For disjoint graphs G_1 and G_2 , the join of G_1 and G_2 is denoted by $G_1 \vee G_2$. For positive integers m and $n \geq 3$, K_m and C_n denote a complete graph of order m and a cycle of order n, respectively. For $S \subseteq V(G)$, the induced subgraph of S in G is denoted by G[S]. A graph G is said to be H-free if G does not contain H as an induced subgraph. A subset M of E(G) is called a matching in G if no two edges of M have a common end vertex. M is a maximum matching in G if there is no matching M' in G such that |M'| > |M|. A vertex v of G is said to be M-saturated if v is an end vertex of some edge in a matching M; otherwise, v is M-unsaturated. If each vertex of G is M-saturated, then M is called a perfect matching. Note that if M is a perfect matching of G, then $|M| = \frac{|V(G)|}{2}$.

In 1980, Plummer [1] introduced a concept of k-extendable. For a positive integer k, a connected graph G of order at least 2k + 2 is said to be k-extendable if for every matching M of size k in G, there is a perfect matching in G containing all edges of M. It is easy to see that K_{2n} is k-extendable for $1 \le k \le n - 1$ and a cycle of even order is 1-extendable but not 2-extendable. Since 1980 the concept of k-extendable graphs was investigated by several researchers. For excellence surveys in this topic, a reader is directed to ([2],[3] and [4]). A closely concept to k-extendable graphs is k-factor-critical graphs introduced by Favaron [5]. A graph G is said to be k-factor-critical if for every subset $S \subseteq V(G)$ with |S| =k, G - S has a perfect matching. Favaron also pointed out some relationship between extendable non-bipartite graphs and factor-critical graphs as we shall see in Theorem 2.4, Section 2.

Haynes et al. [6] introduced the concept of **complementary prism** of a graph. For a simple graph G, the complementary prism of G, denoted by $G\overline{G}$, is the graph formed from the disjoint union of G and \overline{G} by adding the edges of a perfect matching between the corresponding vertices of G and \overline{G} . Examples of the complementary prism of graphs are shown in Figures 1 and 2. Note that the graph $C_5\overline{C}_5$ in Figure 1 is isomorphic to the Petersen graph. One might ask what property that a graph G should have so that $G\overline{G}$ is k-extendable for some k. A problem that arises is that of investigating the extendability of $G\overline{G}$. In this paper, we first consider the extendability of $G\overline{G}$ where G contains G_1, \ldots, G_l as its components and the extendability of $G_i\overline{G}_i$ is known for $1 \leq i \leq l$. In fact, we prove the following theorem:

Theorem 1.1. For positive integers i and l where $1 \leq i \leq l$, let G_1, \ldots, G_l be components of G. If $G_i\overline{G}_i$ is k-extendable of order $p_i \geq 2k + 2$ for some positive integer k, then $G\overline{G}$ is k-extendable.

We then apply Theorem 1.1 to establish the extendability of 2-regular graphs. We show that:

Theorem 1.2. Let G be a 2-regular H-free graph where $H \in \{C_3, C_4, C_5\}$. Then $G\overline{G}$ is 2-extendable.

The condition of H-free and the extendability of $G\overline{G}$ stated in Theorem 1.2 are all best possible. For positive integers $n \geq 8$ and $3 \leq i \leq 5$, let $H_i = C_i \cup C_{n-i}$. Then the graph $H_i\overline{H_i}$, shown in Figure 2, is not 2-extendable since there is no perfect matching containing the edge x_1x_2 and y_1y_2 . Note that "a double line" in our diagram denotes the join between corresponding graphs. Hence, the hypothesis H-free where $H \in \{C_3, C_4, C_5\}$ in Theorem 1.2 cannot be dropped. Finally, the extendability of $G\overline{G}$ in Theorem 1.2 is best possible by Theorem 2.2(2), stated in Section 2, and the fact that the minimum degree of $G\overline{G}$ is 3. The proof of Theorems 1.1 and 1.2 are in Sections 3 and 4, respectively.

Figure 1: The graph $C_5\overline{C}_5$

Figure 2: The graph $H_i\overline{H_i}$, $i \in \{3, 4, 5\}$

2 Preliminaries

In this section, we provide results that we make use of in establishing our results in the next two sections. We begin with a result on an existence of a perfect matching in a graph.

Theorem 2.1 ([7]). (Tutte's Theorem) A graph G has a perfect matching if and only if for a subset S of V(G), the number of odd components of G-S is at most |S|.

The next two theorems proved by Plummer concern some properties of extendable graphs.

Theorem 2.2 ([1]). For positive integers k and p, let G be a graph of order $p \ge 2k+2$. If G is k-extendable, then

- 1. G is (k-1)-extendable, and
- 2. G is (k+1)-connected.

Theorem 2.3 ([8]). Let $k \ge 1$ be an integer and let G be a (2k+1)-connected $K_{1,3}$ -free graph with an even number of vertices. Then G is k-extendable.

Our next result provides a relationship between extendable non-bipartite graphs and factor-critical graphs proved by Favaron.

Theorem 2.4 ([5]). If G is a 2k-extendable non-bipartite graph for $2k \ge 2$, then G is a 2k-factor-critical graph.

We conclude this section with our results proved in [9].

Lemma 2.5 ([9]). Let G be a k-extendable non-bipartite graph and M a matching of G with $|M| \leq k-1$. Then G - V(M) is a (k - |M|)-extendable non-bipartite graph. Further, if k - |M| is even, then G - V(M) is (k - |M|)-factor critical.

Lemma 2.6 ([9]). Let G be a k-extendable graph for some integer $k \ge 2$ and let $S \subseteq V(G)$ be a cutset of G. If G[S] contains $t \le k - 1$ independent edges, then $|S| \ge k + t + 1$.

3 Fundamental results

In this section, we provide the proof of Theorem 1.1. We first establish a useful lemma. For a matching M, we simply denote the set of end vertices of edges in M by V(M).

Lemma 3.1. Let $G\overline{G}$ be a k-extendable graph for some positive integer k. Suppose M is a matching in $G\overline{G}$ and $S \subseteq V(\overline{G})$ where $V(M) \cap S = \emptyset$ and $|M| + |S| \leq k$. Then

Extendability of the Complementary Prism of 2-Regular Graphs

- 1. If |S| is even, then there is a perfect matching in $G\overline{G} (V(M) \cup S)$.
- 2. If |S| is odd, then there is a vertex $\overline{y} \in V(\overline{G}) (V(M) \cup S)$ such that $G\overline{G} (V(M) \cup S \cup \{\overline{y}\})$ contains a perfect matching.

Proof. Observe that $G\overline{G}$ is non-bipartite.

(1) It is easy to see that if $S = \emptyset$, then, by Theorem 2.2(1), $G\overline{G} - (V(M) \cup S) = G\overline{G} - V(M)$ contains a perfect matching since $G\overline{G}$ is k-extendable. So we may now assume that $S \neq \emptyset$. Then $2 \leq |S| \leq |M| + |S| \leq k$. Thus $|M| \leq k - 2$. By Lemma 2.5 and the fact that $G\overline{G}$ is non-bipartite, $G\overline{G} - V(M)$ is (k - |M|)-extendable non-bipartite. Since $|S| \leq k - |M|$, $G\overline{G} - V(M)$ is |S|-extendable non-bipartite by Theorem 2.2(1). Hence, $G\overline{G} - V(M)$ is |S|-factor-critical by Theorem 2.4 and the fact that |S| is even. Therefore, $G\overline{G} - (V(M) \cup S)$ contains a perfect matching. This proves (1).

(2) Since |S| is odd, $|S| \ge 1$ and thus $|M| \le k - |S| \le k - 1$. We first show that there are a vertex $\bar{u} \in S$ and a vertex $\bar{v} \in V(\overline{G}) - (V(M) \cup S)$ such that $\bar{u}\bar{v} \in E(\overline{G})$. Suppose this is not the case. Let $\bar{u}_0 \in S$. Then $N_{G\overline{G}}[\bar{u}_0] \subseteq S \cup V(M) \cup \{u_0\}$ where u_0 is the only vertex in G which is adjacent to \bar{u}_0 . Put $S' = (S - \{\bar{u}_0\}) \cup \{u_0\}$. Clearly, \bar{u}_0 becomes an isolated vertex in $G\overline{G} - (V(M) \cup S')$ and $|V(M) \cup S'|$ $= 2|M| + |S'| = 2|M| + |S| \le k + |M|$. So $V(M) \cup S'$ is a cutset of $G\overline{G}$. But this contradicts Lemma 2.6 since $G\overline{G}[V(M) \cup S']$ contains a matching of size at least |M| and at most $|M| + \frac{1}{2}|S'| < |M| + |S| \le k$ and $|V(M) \cup S'| \le k + |M|$. Hence, there are a vertex $\bar{u} \in S$ and a vertex $\bar{v} \in V(\overline{G}) - (V(M) \cup S)$ such that $\bar{u}\bar{v} \in E(\overline{G})$ as required.

Now let $\bar{x} \in S$ and a vertex $\bar{y} \in V(\overline{G}) - (V(M) \cup S)$ such that $\bar{x}\bar{y} \in E(\overline{G})$. Consider $M \cup \{\bar{x}\bar{y}\}$. Clearly, $|M \cup \{\bar{x}\bar{y}\}| \leq k$. We first suppose that $|M \cup \{\bar{x}\bar{y}\}| = k$. Because $|M| \leq k - |S|, |S| = 1$ and thus $S = \{\bar{x}\}$. Since $G\overline{G}$ is k-extendable, $G\overline{G} - (V(M) \cup \{\bar{x}\bar{y}\}) = G\overline{G} - (V(M) \cup S \cup \{\bar{y}\})$ contains a perfect matching as required. So we now suppose that $|M \cup \{\bar{x}\bar{y}\}| \leq k - 1$. By Lemma 2.5 and the fact that $G\overline{G}$ is non-bipartite, $G\overline{G} - (V(M) \cup \{\bar{x}\bar{y}\})$ is (k - (|M| + 1))-extendable non-bipartite. Since $k - |M| - 1 \geq |S| - 1$ and |S| - 1 is even, it then follows by Theorems 2.2(1) and 2.4 that $G\overline{G} - (V(M) \cup \{\bar{x}\bar{y}\})$ is (|S| - 1)-factor-critical. Hence, $G\overline{G} - (V(M) \cup S \cup \{\bar{y}\})$ contains a perfect matching as required. This proves (2) and completes the proof of our lemma.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1

Proof. Clearly, our result holds for l = 1. So we now suppose $l \ge 2$. For simplicity, the induced subgraphs $G\overline{G}[V(G_i)]$, $G\overline{G}[V(\overline{G}_i)]$ and $G\overline{G}[V(G_i\overline{G}_i)]$ are denoted by G_i, \overline{G}_i and $G_i\overline{G}_i$, respectively.

Let M be a matching of size k in $G\overline{G}$. For $1 \leq i \leq l$, let $M_i = M \cap E(G_i\overline{G}_i)$ and $S_i = \{x \in V(G_i\overline{G}_i) | xy \in M \text{ and } y \notin V(G_i\overline{G}_i)\}$. Observe that $S_i \subseteq V(\overline{G}_i)$ and $E(G\overline{G}[\bigcup_{i=1}^l S_i]) = M - \bigcup_{i=1}^l M_i$. We first suppose that $|S_i|$ is even for $1 \leq i \leq l$. Then, by Lemma 3.1(1), there is a perfect matching F_i in $G_i\overline{G}_i - (V(M_i) \cup S_i)$ for $1 \leq i \leq l$. Hence, $(\bigcup_{i=1}^l F_i) \cup M$ is a perfect matching in $G\overline{G}$ containing M as required.

We now suppose that $|S_i|$ is odd for some *i*. Let l_o be the number of components G_i of G in which $|S_i|$ is odd. We may now renumber the components of G in such a way that for the first l_0 components of G, $|S_i|$ is odd for $1 \leq i \leq l_o$ and for the last $l - l_0$ components of G, $|S_i|$ is even. Since $\sum_{i=1}^{l_o} |S_i| = 2(|M - \bigcup_{i=1}^l M_i|) - \sum_{i>l_0} |S_i|$ is even, l_o is even. By Lemma 3.1(2), there is $\bar{y}_i \in V(\bar{G}_i) - (V(M_i) \cup S_i)$ such that $G_i \bar{G}_i - (V(M_i) \cup S_i \cup \{\bar{y}_i\})$ contains a perfect matching, say F'_i , for $1 \leq i \leq l_o$. Clearly, $G\bar{G}[\{\bar{y}_1, \bar{y}_2, \ldots, \bar{y}_{l_0}\}]$ is a complete graph of even order. So there is a perfect matching in $G\bar{G}[\{\bar{y}_1, \bar{y}_2, \ldots, \bar{y}_{l_0}\}]$, say F'. By Lemma 3.1(1), if $l_0 < l$, then there is a perfect matching F'_i in $G_i \bar{G}_i - (V(M_i) \cup S_i)$ for $l_o + 1 \leq i \leq l$. Therefore, $\bigcup_{i=1}^l F'_i \cup F' \cup M$ is a perfect matching in $G\bar{G}$ containing M as required. Hence, $G\bar{G}$ is k-extendable. This completes the proof of our theorem.

Our next result follows immediately from Theorems 1.1 and 2.2(1).

Corollary 3.1. For positive integers i and l where $1 \le i \le l$, let G_1, \ldots, G_l be components of G. If $G_i\overline{G}_i$ is k_i -extendable of order $p_i \ge 2k_i + 2$ for some positive integer k_i , then $G\overline{G}$ is k_0 -extendable where $k_0 = \min\{k_1, k_2, \ldots, k_l\}$.

4 The extendability of 2-regular graphs

To establish the proof of Theorem 1.2, we need to set up some lemmas. Observe that if x is a vertex of C_n for $n \ge 3$, then $C_n - x$ is a path of order n - 1. Our first lemma follows immediately by this fact.

Lemma 4.1. Let $G \cong C_n$ for $n \ge 3$ with $V(G) = \{v_1, v_2, \dots, v_n\}$ and $E(G) = \{v_i v_{i+1} | 1 \le i \le n\}$ where the subscript is read modulo n. Then

- 1. If n is even and e is an edge of G, then there is a perfect matching in G containing the edge e.
- 2. If n is odd, then, for each $1 \le k \le n$, $G-v_k$ contains a maximum matching of size $\frac{n-1}{2}$. In fact, a maximum matching of size $\frac{n-1}{2}$ is $\{v_{k+1}v_{k+2}, v_{k+3}v_{k+4}, \dots, v_{k+n-2}v_{k+n-1}\}$ which is also a perfect matching in $G-v_k$.

Lemma 4.2. Let $G \cong C_n$ for $n \ge 5$. Then \overline{G} is (n-3)-connected.

Proof. Observe that \overline{G} is (n-3)-regular. Let S be a minimum cutset of \overline{G} . For a positive integer $k \geq 2$, let H_1, \ldots, H_k be components of $\overline{G} - S$. Since \overline{G} is (n-3)-regular, $|V(H_i)| \geq n-2-|S|$. Then $n = |V(\overline{G})| = \sum_{i=1}^k |V(H_i)| + |S| \geq 2(n-2-|S|) + |S| = 2n-4 - |S|$ and thus $|S| \geq n-4$. Suppose |S| = n-4. It is easy to see that $|V(H_i)| = 2$ and k = 2. Thus $n \ge 7$ since \overline{G} is (n-3)-regular. It follows that $\overline{G} \cong 2K_2 \lor H$ where H is (n-7)-regular of order n-4. Thus G contains C_4 as an induced subgraph. But this contradicts the fact that $G \cong C_n$ where $n \ge 5$. Hence, $|S| \ge n-3$ and then \overline{G} is (n-3)-connected. This completes the proof of our lemma.

Lemma 4.3. Let $G \cong C_n$ for $n \ge 6$. If n is even, then \overline{G} is $(\frac{n-4}{2})$ -extendable and if n is odd, then, for $1 \le k \le n$, $\overline{G} - v_k$ is $(\frac{n-5}{2})$ -extendable.

Proof. Observe that \overline{G} is $K_{1,3}$ -free otherwise G contains C_3 as an induced subgraph which contradicts the fact that $G \cong C_n$ and $n \ge 6$. By Theorem 2.3 and Lemma 4.2, \overline{G} is $\left(\frac{n-4}{2}\right)$ -extendable if n is even. We now suppose that n is odd. Then $n \ge 7$ and $\overline{G} - v_k$ is (n-4)-connected by Lemma 4.2. Hence, by Theorem 2.3, $\overline{G} - v_k$ is $\left(\frac{n-5}{2}\right)$ -extendable. This proves our lemma.

As a consequence of Theorem 2.2(1) and Lemma 4.3, we have the following corollaries.

Corollary 4.1. Let $G \cong C_n$ for $n \ge 8$. If n is even, then \overline{G} is 2-extendable and if n is odd, then, for $1 \le k \le n$, $\overline{G} - v_k$ is 2-extendable.

Corollary 4.2. Let $G \cong C_n$ for $n \ge 6$. If n is even, then \overline{G} is 1-extendable and if n is odd, then, for $1 \le k \le n$, $\overline{G} - v_k$ is 1-extendable.

Corollary 4.3. Let $G \cong C_n$ for $n \ge 6$. Further, let v_i, v_j, v_k be three distinct vertices of \overline{G} where $1 \le i, j, k \le n$, then $\overline{G} - \{v_i, v_j\}$ has a perfect matching if n is even and $\overline{G} - \{v_i, v_j, v_k\}$ has a perfect matching if n is odd.

Proof. Our result follows from Theorems 2.2(1) and 2.4 together with Corollary 4.1 if $n \ge 8$. For $6 \le n \le 7$, our result follows from Theorem 2.1, Lemma 4.2 and the fact that \overline{G} is $K_{1,3}$ -free.

Theorem 4.4. Let G be a connected 2-regular graph of order $n \ge 6$. Then $G\overline{G}$ is 2-extendable.

Proof. Clearly, $G \cong C_n$. Put $V(G) = \{v_1, v_2, \ldots, v_n\}$ and $E(G) = \{v_i v_{i+1} | 1 \le i \le n\}$ where the subscript is read modulo n. For simplicity, put $V(\overline{G}) = \{u_1, \ldots, u_n\}$ where $u_i \in V(\overline{G})$ corresponds to $v_i \in V(G)$. Then $V(G\overline{G}) = \{v_1, \ldots, v_n\} \cup \{u_1, \ldots, u_n\}$ and $E(G\overline{G}) = E(G) \cup E(\overline{G}) \cup \{v_i u_i | 1 \le i \le n\}$.

Let $T = \{e_1, e_2\}$ be a matching of size 2 in $G\overline{G}$. It is easy to see that if $\{e_1, e_2\} \subseteq \{v_i u_i | 1 \leq i \leq n\}$, then $\{v_i u_i | 1 \leq i \leq n\}$ is a perfect matching in $G\overline{G}$ containing the edges e_1 and e_2 . So we may now assume without loss of generality that $e_1 \notin \{v_i u_i | 1 \leq i \leq n\}$. For simplicity, the set of end vertices of the edge e_i is denoted by $V(e_i)$ for $1 \leq i \leq 2$. To show that there is a perfect matching in $G\overline{G}$ containing the edges e_1 and e_2 , we distinguish five cases according to the edges e_1

and e_2 .

Case 1: $\{e_1, e_2\} \subseteq E(\overline{G}).$

By Corollary 4.1 and the fact that $G \cong C_n$, it is easy to see that there is a perfect matching in $G\overline{G}$ containing the edges e_1 and e_2 if $n \ge 8$ is even. For n = 6, it is not difficult to show that there is a perfect matching in $G\overline{G}$ containing the edges e_1 and e_2 as well.

So we now suppose that $n \geq 9$ is odd. Choose a vertex $u_j \in V(\overline{G}) - (V(e_1) \cup V(e_2))$. Then, by Corollary 4.1, there is a perfect matching \overline{M}_1 , in $\overline{G} - u_j$, containing the edges e_1 and e_2 . By Lemma 4.1(2), there is a perfect matching M_1 in $\overline{G} - v_j$. Hence, $M_1 \cup \overline{M}_1 \cup \{v_j u_j\}$ is a perfect matching in $G\overline{G}$ containing the edges e_1 and e_2 .

We now consider n = 7. Observe that $V(\overline{G}) - (V(e_1) \cup V(e_2))$ contains an edge, say e_3 , otherwise G contains C_3 as an induced subgraph. Put $\{u_{j'}\} = V(\overline{G}) - \bigcup_{i=1}^3 V(e_i)$. By Lemma 4.1(2), there is a perfect matching M_2 in $G - v_{j'}$. Thus $M_2 \cup \{e_1, e_2, e_3, v_{j'}u_{j'}\}$ is a perfect matching in $G\overline{G}$ containing the edges e_1 and e_2 . This proves Case 1.

Case 2: $e_1 \in E(G), e_2 \in E(\overline{G}).$

Suppose $e_1 = v_j v_{j+1}$ and $e_2 = u_k u_{k'}$ where $1 \leq j, k, k' \leq n$ and $k \neq k'$. By Lemma 4.1(1) and Corollary 4.2, it is easy to see that there is a perfect matching containing the edges e_1 and e_2 if n is even. So we now suppose that n is odd.

We first suppose that $j + 2 \notin \{k, k'\}$. Then a maximum matching M_1 , in $G - v_{j+2}$, containing the edge $e_1 = v_j v_{j+1}$ is a matching of size $\frac{n-1}{2}$. Thus M_1 is a perfect matching in $G - v_{j+2}$ by Lemma 4.1(2). By Corollary 4.2, $\overline{G} - u_{j+2}$ has a perfect matching \overline{M}_1 containing the edge e_2 . Then $M_1 \cup \overline{M}_1 \cup \{v_{j+2}u_{j+2}\}$ is a perfect matching in $G\overline{G}$ containing the edges e_1 and e_2 .

By similar arguments, if $j - 1 \notin \{k, k'\}$, then there is a perfect matching in $G\overline{G}$ containing the edges e_1 and e_2 . We may now assume that $\{j - 1, j + 2\} = \{k, k'\}$. Then $e_2 = u_k u_{k'} = u_{j-1} u_{j+2}$. Now consider $G - v_{j+4}$. Since $n \ge 7$, $j + 4 \notin \{j - 1, j + 2\}$. Then a maximum matching M_2 , in $G - v_{j+4}$, of size $\frac{n-1}{2}$ must contain the edge $e_1 = v_j v_{j+1}$. By Lemma 4.1(2), M_2 is a perfect matching in $G - v_{j+4}$. By Corollary 4.2, $\overline{G} - u_{j+4}$ has a perfect matching \overline{M}_2 containing the edge e_2 . Then $M_2 \cup \overline{M}_2 \cup \{v_{j+4}u_{j+4}\}$ is a perfect matching in $G\overline{G}$ containing the edges e_1 and e_2 .

Case 3: $e_1 \in E(G), e_2 \in \{v_i u_i | 1 \le i \le n\}.$

Let $e_2 = v_k u_k$ for some $1 \le k \le n$. Consider $G - v_k$. Observe that $G - v_k$ is a path of order n-1. Let M_1 and M_2 be matchings in $G - v_k$ where $E(G - v_k) = M_1 \cup M_2$ and $M_1 \cap M_2 = \emptyset$. We may assume that $|M_1| \ge |M_2|$. We first suppose that n is odd. Then $|M_1| = \frac{n-1}{2}$ and $|M_2| = \frac{n-3}{2}$. Further, v_{k-1} and v_{k+1} are M_2 -unsaturated. By Lemma 4.1(2), M_1 is a perfect matching in $G - v_k$. If $e_1 \in M_1$, then $M_1 \cup \overline{M}_1 \cup \{v_k u_k\}$ is a perfect matching in \overline{GG} containing the edges e_1 and e_2 where \overline{M}_1 is a perfect matching, in $\overline{G} - u_k$. Note that \overline{M}_1 exists by Corollary

4.2. We now suppose that $e_1 \in M_2$. By Corollary 4.3, there is a perfect matching \overline{M}_2 , in $\overline{G} - \{u_{k-1}, u_k, u_{k+1}\}$. Hence, $M_2 \cup \overline{M}_2 \cup \{v_{k-1}u_{k-1}, v_ku_k, v_{k+1}u_{k+1}\}$ is a perfect matching in $G\overline{G}$ containing the edges e_1 and e_2 .

We now suppose that n is even. Then $|M_1| = |M_2| = \frac{n-2}{2}$. Then either v_{k-1} or v_{k+1} is M'-unsaturated where $M' \in \{M_1, M_2\}$. Suppose without loss of generality that $e_1 \in M_1$ and v_{k-1} is M_1 -unsaturated. By Corollary 4.3, there is a perfect matching \overline{M}_3 , in $\overline{G} - \{u_{k-1}, u_k\}$. Hence, $M_1 \cup \overline{M}_3 \cup \{v_{k-1}u_{k-1}, v_ku_k\}$ is a perfect matching in $G\overline{G}$ containing the edges e_1 and e_2 . This proves Case 3.

Case 4: $e_1 \in E(\overline{G}), e_2 \in \{v_i u_i | 1 \le i \le n\}.$

Let $e_1 = u_j u_{j'}$ and $e_2 = v_k u_k$ for some $1 \leq j, j', k \leq n$. Clearly, $k \notin \{j, j'\}$. We first suppose that n is odd. By Lemma 4.1(2), $G - v_k$ contains M_1 as a perfect matching. By Corollary 4.2, $\overline{G} - u_k$ has a perfect matching containing the edge e_1 , say \overline{M}_1 . Thus $M_1 \cup \overline{M}_1 \cup \{v_k u_k\}$ is a perfect matching in $G\overline{G}$ containing the edges e_1 and e_2 .

We now suppose that $n \geq 8$ is even. Let M_2 and M_3 be perfect matchings in G containing the edges $v_k v_{k+1}$ and $v_{k-1} v_k$, respectively. Observe that if $S \subseteq V(G)$ with |S| = 4, then G[S] contains a matching of size two since G is (n-3)-regular and G does not contain C_3 as an induced subgraph. We first suppose that $k+1 \notin \{j, j'\}$. By Corollary 4.1, $\overline{G} - \{u_j, u_{j'}, u_k, u_{k+1}\}$ contains \overline{M}_2 as a perfect matching. Then $(M_2 - \{v_k v_{k+1}\}) \cup \overline{M}_2 \cup \{u_j u_{j'}, v_k u_k, v_{k+1} u_{k+1}\}$ is a perfect matching in $G\overline{G}$ containing the edges e_1 and e_2 . By similar arguments, if $k-1 \notin \{j, j'\}$, then $(M_3 - \{v_{k-1}v_k\}) \cup \overline{M}_3 \cup \{u_j u_{j'}, v_{k-1}u_{k-1}, v_k u_k\}$ is a perfect matching in $G\overline{G}$ containing the edges e_1 and e_2 where \overline{M}_3 is a perfect matching in $\overline{G} - \{u_j, u_{j'}, u_{k-1}, u_k\}$. Finally, we suppose that $\{j, j'\} = \{k-1, k+1\}$. By Corollary 4.1 and the observation that $\overline{G}[S]$ contains a matching of size two if $S \subseteq V(\overline{G})$ with |S| = 4, $\overline{G} - \{u_{k-1}, u_k, u_{k+1}, u_{k+3}\}$ contains \overline{M}_4 as a perfect matching. Then $(M_2 - \{v_k v_{k+1}, v_{k+2} v_{k+3}\}) \cup \overline{M}_4 \cup \{u_j u_{j'}, v_k u_k, v_{k+1} v_{k+2}, v_{k+3} u_{k+3}\}$ is a perfect matching in GG containing the edges e_1 and e_2 . For n = 6, it is routine to show that there is a perfect matching in GG containing the edges e_1 and e_2 . This proves Case 4.

Case 5: $\{e_1, e_2\} \subseteq E(G)$.

Let M be a maximum matching in G containing the edge e_1 . Clearly, M is a perfect matching if n is even and if n is odd, then there is exactly one M-unsaturated vertex, say v_j , for some $1 \leq j \leq n$. We first suppose that $e_2 \in M$. Then there is a perfect matching F containing the edges e_1 and e_2 where $F = M \cup \overline{M}$ if n is even and $F = M \cup \overline{M}_1 \cup \{v_j u_j\}$ if n is odd where \overline{M} and \overline{M}_1 are perfect matchings in \overline{G} and $\overline{G} - u_j$, respectively. Such \overline{M} and \overline{M}_1 exist by Lemma 4.3.

We now suppose that $e_2 \notin M$. Put $e_2 = v_k v_{k+1}$ where $1 \leq k \leq n$. We first assume that *n* is even. Then $\{v_{k-1}v_k, v_{k+1}v_{k+2}\} \subseteq M - \{e_1\}$ since $\{e_1, e_2\}$ is a matching, *M* is a perfect matching and $G \cong C_n$. Clearly, $\{v_{k-1}, v_{k+2}\} \cap V(e_1) = \emptyset$. By Corollary 4.3, there exists a perfect matching in \overline{M}_2 in $\overline{G} - \{u_{k-1}, u_{k+2}\}$. Then $(M - \{v_{k-1}v_k, v_{k+1}v_{k+2}\}) \cup \overline{M}_2 \cup \{v_k v_{k+1}, v_{k-1}u_{k-1}, v_{k+2}u_{k+2}\}$ is a perfect matching in $G\overline{G}$ containing the edges e_1 and e_2 .

We now suppose that n is odd. Recall that v_j is the only M-unsaturated of G. If $\{v_k, v_{k+1}\} \cap \{v_j\} = \{v_k\}$, then $\{v_{k+1}v_{k+2}\} \subseteq M - \{e_1\}$ and thus $(M - \{v_{k+1}v_{k+2}\}) \cup \overline{M}_3 \cup \{v_kv_{k+1}, v_{k+2}u_{k+2}\}$ is a perfect matching in \overline{G} containing the edges e_1 and e_2 where \overline{M}_3 is a perfect matching in $\overline{G} - u_{k+2}$. Note that \overline{M}_3 exists by Corollary 4.2. Similarly, if $\{v_k, v_{k+1}\} \cap \{v_j\} = \{v_{k+1}\}$, then $M - \{v_{k-1}v_k\} \cup \overline{M}_4 \cup \{v_kv_{k+1}, v_{k-1}u_{k-1}\}$ is a perfect matching in $\overline{G}\overline{G}$ containing the edges e_1 and e_2 where \overline{M}_4 is a perfect matching in $\overline{G}\overline{G}$ containing the edges e_1 and e_2 where \overline{M}_4 is a perfect matching in \overline{G} or u_{k-1} . We now consider the case that $\{v_k, v_{k+1}\} \cap \{v_j\} = \emptyset$. Observe that $j \notin \{k-1, k+2\}$ since $e_2 \notin M$ and v_j is M-unsaturated. Then $\{v_{k-1}v_k, v_{k+1}v_{k+2}\} \subseteq M - \{e_1\}$. By Corollary 4.3, there exists a perfect matching \overline{M}_5 in $\overline{G} - \{u_j, u_{k-1}, u_{k+2}\}$. Then $(M - \{v_{k-1}v_k, v_{k+1}v_{k+2}\}) \cup \overline{M}_5 \cup \{v_kv_{k+1}, v_{k-1}u_{k-1}, v_{k+2}u_{k+2}, v_ju_j\}$ is a perfect matching in $\overline{G}\overline{G}$ containing the edges e_1 and e_2 . This proves Case 5 and completes the proof of our theorem

Note that the bound on n in Theorem 4.4 is sharp since the graph $C_5\overline{C}_5$ in Figure 1 is not 2-extendable because there is no perfect matching containing the edges v_1u_1 and v_3v_4 .

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2

It is easy to see that our theorem follows immediately from Theorems 1.1 and 4.4. $\hfill \Box$

Corollary 4.4. Let G be a connected 2-regular graph of order $n \ge 4$. Then $G\overline{G}$ is 1-extendable.

Proof. Our result follows from Theorems 2.2(1) and 4.4 if $n \ge 6$. It is not difficult to show that the result is true for $4 \le n \le 5$.

The next corollary follows immediately from Theorem 1.1 and Corollary 4.4.

Corollary 4.5. Let G be a 2-regular C_3 -free graph. Then $G\overline{G}$ is 1-extendable.

References

- M. D. Plummer, On *n*-extendable graphs, Discrete mathematics. 31 (1980) 201-210.
- [2] M. D. Plummer, Extending matchings in graphs: a survey, Discrete mathematics. 127 (1994) 277-292.
- [3] M. D. Plummer, Extending matchings in graphs : an update, Congressus numerantium. 116 (1996) 3 32.

Extendability of the Complementary Prism of 2-Regular Graphs

- [4] M. D. Plummer, Recent Progress in Matching Extension, Bolyai Society Mathematical Studies. 19 (2008) 427-454.
- [5] O. Favaron, On n-factor-critical graphs, Discussiones Math., Graph Theory. 16 (1996) 41-51.
- [6] T. W. Haynes, M. A. Henning, P. J. Slater, L. C. van der Merwe, The complementary product of two graphs, Bulletin of the Institute of Combinatorics and its Applications. 51 (2007) 21-30.
- [7] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications. The Macmillan Press, London (1976).
- [8] M. D. Plummer, Extending matchings in claw-free graphs, Discrete Mathematics. 125 (1994) 301–307.
- [9] P. Janseana, N. Ananchuen, Extendability of complementary prism of extendable graphs, Thai Journal of Mathematics. 13 (3) (2015) 705–723.

(Received 10 June 2015) (Accepted 16 October 2015)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th