Extendability of the Complementary Prism of 2-Regular Graphs

P. Janseana ${ }^{\dagger}$, S. Rueangthampisan ${ }^{\dagger}$ and N. Ananchuen ${ }^{\dagger, \star, 2}$
${ }^{\dagger}$ Department of Mathematics, Faculty of Science
Silpakorn University, Nakorn Pathom 73000, Thailand
e-mail : jpongthep@yahoo.com (P. Janseana)
pang_sriphan@hotmail.com (S. Rueangthampisan)
ananchuen_n@su.ac.th (N. Ananchuen)
\ddagger Centre of Excellence in Mathematics
CHE, Si Ayutthaya Rd., Bangkok 10400, Thailand

Abstract

Let G be a simple graph. The complementary prism of G, denoted by $G \bar{G}$, is the graph formed from the disjoint union of G and \bar{G}, the complement of G, by adding the edges of a perfect matching between the corresponding vertices of G and \bar{G}. A connected graph G of order at least $2 k+2$ is k-extendable if for every matching M of size k in G, there is a perfect matching in G containing all edges of M. The problem that arises is that of investigating the extendability of $G \bar{G}$. In this paper, we investigate the extendability of $G \bar{G}$ where G contains G_{1}, \ldots, G_{l} as its components and the extendability of $G_{i} \bar{G}_{i}$ is known for $1 \leq i \leq l$. We then apply this result to establish the extendability of $G \bar{G}$ when G is 2-regular.

Keywords : extendable; complementary prism; regular graph. 2010 Mathematics Subject Classification : 05C70.

1 Introduction

Let G denote a finite simple undirected graph with vertex set $V(G)$ and edge set $E(G)$. The complement of G is denoted by \bar{G}. For a vertex v of $G, d e g_{G}(v)$

[^0]and $N_{G}(v)$ denote the degree and the neighbour set of v, respectively. Further, the closed neighbour set of v, denoted by $N_{G}[v]$, is $N_{G}(v) \cup\{v\}$. For disjoint graphs G_{1} and G_{2}, the join of G_{1} and G_{2} is denoted by $G_{1} \vee G_{2}$. For positive integers m and $n \geq 3, K_{m}$ and C_{n} denote a complete graph of order m and a cycle of order n, respectively. For $S \subseteq V(G)$, the induced subgraph of S in G is denoted by $G[S]$. A graph G is said to be H-free if G does not contain H as an induced subgraph. A subset M of $E(G)$ is called a matching in G if no two edges of M have a common end vertex. M is a maximum matching in G if there is no matching M^{\prime} in G such that $\left|M^{\prime}\right|>|M|$. A vertex v of G is said to be M-saturated if v is an end vertex of some edge in a matching M; otherwise, v is M-unsaturated. If each vertex of G is M-saturated, then M is called a perfect matching. Note that if M is a perfect matching of G, then $|M|=\frac{|V(G)|}{2}$.

In 1980, Plummer [1] introduced a concept of k-extendable. For a positive integer k, a connected graph G of order at least $2 k+2$ is said to be k-extendable if for every matching M of size k in G, there is a perfect matching in G containing all edges of M. It is easy to see that $K_{2 n}$ is k-extendable for $1 \leq k \leq n-1$ and a cycle of even order is 1-extendable but not 2-extendable. Since 1980 the concept of k-extendable graphs was investigated by several researchers. For excellence surveys in this topic, a reader is directed to ([2], [3] and [4]). A closely concept to k-extendable graphs is k-factor-critical graphs introduced by Favaron 5]. A graph G is said to be k-factor-critical if for every subset $S \subseteq V(G)$ with $|S|=$ $k, G-S$ has a perfect matching. Favaron also pointed out some relationship between extendable non-bipartite graphs and factor-critical graphs as we shall see in Theorem 2.4, Section 2.

Haynes et al. [6] introduced the concept of complementary prism of a graph. For a simple graph G, the complementary prism of G, denoted by $G \bar{G}$, is the graph formed from the disjoint union of G and \bar{G} by adding the edges of a perfect matching between the corresponding vertices of G and \bar{G}. Examples of the complementary prism of graphs are shown in Figures 1 and 2, Note that the graph $C_{5} \bar{C}_{5}$ in Figure 1 is isomorphic to the Petersen graph. One might ask what property that a graph G should have so that $G \bar{G}$ is k-extendable for some k. A problem that arises is that of investigating the extendability of $G \bar{G}$. In this paper, we first consider the extendability of $G \bar{G}$ where G contains G_{1}, \ldots, G_{l} as its components and the extendability of $G_{i} \bar{G}_{i}$ is known for $1 \leq i \leq l$. In fact, we prove the following theorem:

Theorem 1.1. For positive integers i and l where $1 \leq i \leq l$, let G_{1}, \ldots, G_{l} be components of G. If $G_{i} \bar{G}_{i}$ is k-extendable of order $p_{i} \geq 2 k+2$ for some positive integer k, then $G \bar{G}$ is k-extendable.

We then apply Theorem 1.1 to establish the extendability of 2-regular graphs. We show that:

Theorem 1.2. Let G be a 2-regular H-free graph where $H \in\left\{C_{3}, C_{4}, C_{5}\right\}$. Then $G \bar{G}$ is 2-extendable.

The condition of H-free and the extendability of $G \bar{G}$ stated in Theorem 1.2 are all best possible. For positive integers $n \geq 8$ and $3 \leq i \leq 5$, let $H_{i}=C_{i} \cup C_{n-i}$. Then the graph $H_{i} \overline{H_{i}}$, shown in Figure 2 is not 2-extendable since there is no perfect matching containing the edge $x_{1} x_{2}$ and $y_{1} y_{2}$. Note that "a double line" in our diagram denotes the join between corresponding graphs. Hence, the hypothesis H-free where $H \in\left\{C_{3}, C_{4}, C_{5}\right\}$ in Theorem 1.2 cannot be dropped. Finally, the extendability of $G \bar{G}$ in Theorem 1.2 is best possible by Theorem 2.2 (2), stated in Section 2, and the fact that the minimum degree of $G \bar{G}$ is 3 . The proof of Theorems 1.1 and 1.2 are in Sections 3 and 4, respectively.

Figure 1: The graph $C_{5} \bar{C}_{5}$

Figure 2: The graph $H_{i} \overline{H_{i}}, i \in\{3,4,5\}$

2 Preliminaries

In this section, we provide results that we make use of in establishing our results in the next two sections. We begin with a result on an existence of a perfect matching in a graph.

Theorem 2.1 (7). (Tutte's Theorem) A graph G has a perfect matching if and only if for a subset S of $V(G)$, the number of odd components of $G-S$ is at most $|S|$.

The next two theorems proved by Plummer concern some properties of extendable graphs.

Theorem 2.2 ([1). For positive integers k and p, let G be a graph of order $p \geq 2 k+2$. If G is k-extendable, then

1. G is $(k-1)$-extendable, and
2. G is $(k+1)$-connected.

Theorem 2.3 ([8]). Let $k \geq 1$ be an integer and let G be a (2k+1)-connected $K_{1,3}$-free graph with an even number of vertices. Then G is k-extendable.

Our next result provides a relationship between extendable non-bipartite graphs and factor-critical graphs proved by Favaron.

Theorem 2.4 ([5]). If G is a $2 k$-extendable non-bipartite graph for $2 k \geq 2$, then G is a $2 k$-factor-critical graph.

We conclude this section with our results proved in 9].
Lemma 2.5 (9). Let G be a k-extendable non-bipartite graph and M a matching of G with $|M| \leq k-1$. Then $G-V(M)$ is a $(k-|M|)$-extendable non-bipartite graph. Further, if $k-|M|$ is even, then $G-V(M)$ is $(k-|M|)$-factor critical.
Lemma 2.6 (9$]$). Let G be a k-extendable graph for some integer $k \geq 2$ and let $S \subseteq V(G)$ be a cutset of G. If $G[S]$ contains $t \leq k-1$ independent edges, then $|S| \geq k+t+1$.

3 Fundamental results

In this section, we provide the proof of Theorem 1.1. We first establish a useful lemma. For a matching M, we simply denote the set of end vertices of edges in M by $V(M)$.

Lemma 3.1. Let $G \bar{G}$ be a k-extendable graph for some positive integer k. Suppose M is a matching in $G \bar{G}$ and $S \subseteq V(\bar{G})$ where $V(M) \cap S=\emptyset$ and $|M|+|S| \leq k$. Then

1. If $|S|$ is even, then there is a perfect matching in $G \bar{G}-(V(M) \cup S)$.
2. If $|S|$ is odd, then there is a vertex $\bar{y} \in V(\bar{G})-(V(M) \cup S)$ such that $G \bar{G}-(V(M) \cup S \cup\{\bar{y}\})$ contains a perfect matching.

Proof. Observe that $G \bar{G}$ is non-bipartite.
(1) It is easy to see that if $S=\emptyset$, then, by Theorem $2.2(1), G \bar{G}-(V(M) \cup S)=$ $G \bar{G}-V(M)$ contains a perfect matching since $G \bar{G}$ is k-extendable. So we may now assume that $S \neq \emptyset$. Then $2 \leq|S| \leq|M|+|S| \leq k$. Thus $|M| \leq k-2$. By Lemma 2.5 and the fact that $G \bar{G}$ is non-bipartite, $G \bar{G}-V(M)$ is ($k-|M|$)-extendable non-bipartite. Since $|S| \leq k-|M|, G \bar{G}-V(M)$ is $|S|$-extendable non-bipartite by Theorem $2.2(1)$. Hence, $G \bar{G}-V(M)$ is $|S|$-factor-critical by Theorem 2.4 and the fact that $|S|$ is even. Therefore, $G \bar{G}-(V(M) \cup S)$ contains a perfect matching. This proves (1).
(2) Since $|S|$ is odd, $|S| \geq 1$ and thus $|M| \leq k-|S| \leq k-1$. We first show that there are a vertex $\bar{u} \in S$ and a vertex $\bar{v} \in V(\bar{G})-(V(M) \cup S)$ such that $\bar{u} \bar{v} \in E(\bar{G})$. Suppose this is not the case. Let $\bar{u}_{0} \in S$. Then $N_{G \bar{G}}\left[\bar{u}_{0}\right] \subseteq S \cup V(M) \cup\left\{u_{0}\right\}$ where u_{0} is the only vertex in G which is adjacent to \bar{u}_{0}. Put $S^{\prime}=\left(S-\left\{\bar{u}_{0}\right\}\right) \cup\left\{u_{0}\right\}$. Clearly, \bar{u}_{0} becomes an isolated vertex in $G \bar{G}-\left(V(M) \cup S^{\prime}\right)$ and $\left|V(M) \cup S^{\prime}\right|$ $=2|M|+\left|S^{\prime}\right|=2|M|+|S| \leq k+|M|$. So $V(M) \cup S^{\prime}$ is a cutset of $G \bar{G}$. But this contradicts Lemma 2.6 since $G \bar{G}\left[V(M) \cup S^{\prime}\right]$ contains a matching of size at least $|M|$ and at most $|M|+\frac{1}{2}\left|S^{\prime}\right|<|M|+|S| \leq k$ and $\left|V(M) \cup S^{\prime}\right| \leq k+|M|$. Hence, there are a vertex $\bar{u} \in S$ and a vertex $\bar{v} \in V(\bar{G})-(V(M) \cup S)$ such that $\bar{u} \bar{v} \in E(\bar{G})$ as required.

Now let $\bar{x} \in S$ and a vertex $\bar{y} \in V(\bar{G})-(V(M) \cup S)$ such that $\bar{x} \bar{y} \in E(\bar{G})$. Consider $M \cup\{\bar{x} \bar{y}\}$. Clearly, $|M \cup\{\bar{x} \bar{y}\}| \leq k$. We first suppose that $|M \cup\{\bar{x} \bar{y}\}|=k$. Because $|M| \leq k-|S|,|S|=1$ and thus $S=\{\bar{x}\}$. Since $G \bar{G}$ is k-extendable, $G \bar{G}-(V(M) \cup\{\bar{x} \bar{y}\})=G \bar{G}-(V(M) \cup S \cup\{\bar{y}\})$ contains a perfect matching as required. So we now suppose that $|M \cup\{\bar{x} \bar{y}\}| \leq k-1$. By Lemma 2.5 and the fact that $G \bar{G}$ is non-bipartite, $G \bar{G}-(V(M) \cup\{\bar{x} \bar{y}\})$ is $(k-(|M|+1))$-extendable non-bipartite. Since $k-|M|-1 \geq|S|-1$ and $|S|-1$ is even, it then follows by Theorems $2.2(1)$ and 2.4 that $G \bar{G}-(V(M) \cup\{\bar{x} \bar{y}\})$ is $(|S|-1)$-factor-critical. Hence, $G \bar{G}-(V(M) \cup S \cup\{\bar{y}\})$ contains a perfect matching as required. This proves (2) and completes the proof of our lemma.

We are now ready to prove Theorem 1.1 .

Proof of Theorem 1.1

Proof. Clearly, our result holds for $l=1$. So we now suppose $l \geq 2$. For simplicity, the induced subgraphs $G \bar{G}\left[V\left(G_{i}\right)\right], G \bar{G}\left[V\left(\bar{G}_{i}\right)\right]$ and $G \bar{G}\left[V\left(G_{i} \bar{G}_{i}\right)\right]$ are denoted by G_{i}, \bar{G}_{i} and $G_{i} \bar{G}_{i}$, respectively.

Let M be a matching of size k in $G \bar{G}$. For $1 \leq i \leq l$, let $M_{i}=M \cap E\left(G_{i} \bar{G}_{i}\right)$ and $S_{i}=\left\{x \in V\left(G_{i} \bar{G}_{i}\right) \mid x y \in M\right.$ and $\left.y \notin V\left(G_{i} \bar{G}_{i}\right)\right\}$. Observe that $S_{i} \subseteq V\left(\bar{G}_{i}\right)$ and $E\left(G \bar{G}\left[\bigcup_{i=1}^{l} S_{i}\right]\right)=M-\bigcup_{i=1}^{l} M_{i}$. We first suppose that $\left|S_{i}\right|$ is even for $1 \leq i \leq l$. Then, by Lemma 3.1(1), there is a perfect matching F_{i} in $G_{i} \bar{G}_{i}-\left(V\left(M_{i}\right) \cup S_{i}\right)$ for $1 \leq i \leq l$. Hence, $\left(\bigcup_{i=1}^{l} F_{i}\right) \cup M$ is a perfect matching in $G \bar{G}$ containing M as required.

We now suppose that $\left|S_{i}\right|$ is odd for some i. Let l_{o} be the number of components G_{i} of G in which $\left|S_{i}\right|$ is odd. We may now renumber the components of G in such a way that for the first l_{0} components of $G,\left|S_{i}\right|$ is odd for $1 \leq i \leq l_{o}$ and for the last $l-l_{0}$ components of $G,\left|S_{i}\right|$ is even. Since $\sum_{i=1}^{l_{o}}\left|S_{i}\right|=2\left(\left|M-\bigcup_{i=1}^{l} M_{i}\right|\right)-$ $\sum_{i>l_{0}}\left|S_{i}\right|$ is even, l_{o} is even. By Lemma 3.1 2 2), there is $\bar{y}_{i} \in V\left(\bar{G}_{i}\right)-\left(V\left(M_{i}\right) \cup S_{i}\right)$ such that $G_{i} \bar{G}_{i}-\left(V\left(M_{i}\right) \cup S_{i} \cup\left\{\bar{y}_{i}\right\}\right)$ contains a perfect matching, say F_{i}^{\prime}, for $1 \leq i \leq l_{o}$. Clearly, $G \bar{G}\left[\left\{\bar{y}_{1}, \bar{y}_{2}, \ldots, \bar{y}_{l_{0}}\right\}\right]$ is a complete graph of even order. So there is a perfect matching in $G \bar{G}\left[\left\{\bar{y}_{1}, \bar{y}_{2}, \ldots, \bar{y}_{l_{0}}\right\}\right]$, say F^{\prime}. By Lemma 3.1 (1), if $l_{0}<l$, then there is a perfect matching F_{i}^{\prime} in $G_{i} \bar{G}_{i}-\left(V\left(M_{i}\right) \cup S_{i}\right)$ for $l_{o}+1 \leq i \leq l$. Therefore, $\bigcup_{i=1}^{l} F_{i}^{\prime} \cup F^{\prime} \cup M$ is a perfect matching in $G \bar{G}$ containing M as required. Hence, $G \bar{G}$ is k-extendable. This completes the proof of our theorem.

Our next result follows immediately from Theorems 1.1 and 2.2(1).
Corollary 3.1. For positive integers i and l where $1 \leq i \leq l$, let G_{1}, \ldots, G_{l} be components of G. If $G_{i} \bar{G}_{i}$ is k_{i}-extendable of order $p_{i} \geq 2 k_{i}+2$ for some positive integer k_{i}, then $G \bar{G}$ is $k_{0}-$ extendable where $k_{0}=\min \left\{k_{1}, k_{2}, \ldots, k_{l}\right\}$.

4 The extendability of 2-regular graphs

To establish the proof of Theorem 1.2, we need to set up some lemmas. Observe that if x is a vertex of C_{n} for $n \geq 3$, then $C_{n}-x$ is a path of order $n-1$. Our first lemma follows immediately by this fact.

Lemma 4.1. Let $G \cong C_{n}$ for $n \geq 3$ with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E(G)=$ $\left\{v_{i} v_{i+1} \mid 1 \leq i \leq n\right\}$ where the subscript is read modulo n. Then

1. If n is even and e is an edge of G, then there is a perfect matching in G containing the edge e.
2. If n is odd, then, for each $1 \leq k \leq n, G-v_{k}$ contains a maximum matching of size $\frac{n-1}{2}$. In fact, a maximum matching of size $\frac{n-1}{2}$ is $\left\{v_{k+1} v_{k+2}, v_{k+3} v_{k+4}\right.$, $\left.\ldots, v_{k+n-2} v_{k+n-1}\right\}$ which is also a perfect matching in $G-v_{k}$.

Lemma 4.2. Let $G \cong C_{n}$ for $n \geq 5$. Then \bar{G} is $(n-3)$-connected.
Proof. Observe that \bar{G} is $(n-3)$-regular. Let S be a minimum cutset of \bar{G}. For a positive integer $k \geq 2$, let H_{1}, \ldots, H_{k} be components of $\bar{G}-S$. Since \bar{G} is $(n-3)$-regular, $\left|V\left(H_{i}\right)\right| \geq n-2-|S|$. Then $n=|V(\bar{G})|=\sum_{i=1}^{k}\left|V\left(H_{i}\right)\right|+|S|$ $\geq 2(n-2-|S|)+|S|=2 n-4-|S|$ and thus $|S| \geq n-4$. Suppose $|S|=n-4$. It
is easy to see that $\left|V\left(H_{i}\right)\right|=2$ and $k=2$. Thus $n \geq 7$ since \bar{G} is $(n-3)$-regular. It follows that $\bar{G} \cong 2 K_{2} \vee H$ where H is $(n-7)$-regular of order $n-4$. Thus G contains C_{4} as an induced subgraph. But this contradicts the fact that $G \cong C_{n}$ where $n \geq 5$. Hence, $|S| \geq n-3$ and then \bar{G} is $(n-3)$-connected. This completes the proof of our lemma.

Lemma 4.3. Let $G \cong C_{n}$ for $n \geq 6$. If n is even, then \bar{G} is $\left(\frac{n-4}{2}\right)$-extendable and if n is odd, then, for $1 \leq k \leq n, \bar{G}-v_{k}$ is $\left(\frac{n-5}{2}\right)$-extendable.

Proof. Observe that \bar{G} is $K_{1,3}$-free otherwise G contains C_{3} as an induced subgraph which contradicts the fact that $G \cong C_{n}$ and $n \geq 6$. By Theorem 2.3 and Lemma $4.2 \bar{G}$ is $\left(\frac{n-4}{2}\right)$-extendable if n is even. We now suppose that n is odd. Then $n \geq 7$ and $\bar{G}-v_{k}$ is $(n-4)$-connected by Lemma 4.2. Hence, by Theorem 2.3. $\bar{G}-v_{k}$ is $\left(\frac{n-5}{2}\right)$-extendable. This proves our lemma.

As a consequence of Theorem 2.2(1) and Lemma 4.3, we have the following corollaries.

Corollary 4.1. Let $G \cong C_{n}$ for $n \geq 8$. If n is even, then \bar{G} is 2 -extendable and if n is odd, then, for $1 \leq k \leq n, \bar{G}-v_{k}$ is 2 -extendable.

Corollary 4.2. Let $G \cong C_{n}$ for $n \geq 6$. If n is even, then \bar{G} is 1 -extendable and if n is odd, then, for $1 \leq k \leq n, \bar{G}-v_{k}$ is 1 -extendable.

Corollary 4.3. Let $G \cong C_{n}$ for $n \geq 6$. Further, let v_{i}, v_{j}, v_{k} be three distinct vertices of \bar{G} where $1 \leq i, j, k \leq n$, then $\bar{G}-\left\{v_{i}, v_{j}\right\}$ has a perfect matching if n is even and $\bar{G}-\left\{v_{i}, v_{j}, v_{k}\right\}$ has a perfect matching if n is odd.

Proof. Our result follows from Theorems 2.2(1) and 2.4 together with Corollary 4.1 if $n \geq 8$. For $6 \leq n \leq 7$, our result follows from Theorem 2.1. Lemma 4.2 and the fact that \bar{G} is $K_{1,3}-$ free.

Theorem 4.4. Let G be a connected 2 -regular graph of order $n \geq 6$. Then $G \bar{G}$ is 2 -extendable.

Proof. Clearly, $G \cong C_{n}$. Put $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E(G)=\left\{v_{i} v_{i+1} \mid 1 \leq\right.$ $i \leq n\}$ where the subscript is read modulo n. For simplicity, put $V(\bar{G})=$ $\left\{u_{1}, \ldots, u_{n}\right\}$ where $u_{i} \in V(\bar{G})$ corresponds to $v_{i} \in V(G)$. Then $V(G \bar{G})=$ $\left\{v_{1}, \ldots, v_{n}\right\} \cup\left\{u_{1}, \ldots, u_{n}\right\}$ and $E(G \bar{G})=E(G) \cup E(\bar{G}) \cup\left\{v_{i} u_{i} \mid 1 \leq i \leq n\right\}$.

Let $T=\left\{e_{1}, e_{2}\right\}$ be a matching of size 2 in $G \bar{G}$. It is easy to see that if $\left\{e_{1}, e_{2}\right\} \subseteq\left\{v_{i} u_{i} \mid 1 \leq i \leq n\right\}$, then $\left\{v_{i} u_{i} \mid 1 \leq i \leq n\right\}$ is a perfect matching in $G \bar{G}$ containing the edges e_{1} and e_{2}. So we may now assume without loss of generality that $e_{1} \notin\left\{v_{i} u_{i} \mid 1 \leq i \leq n\right\}$. For simplicity, the set of end vertices of the edge e_{i} is denoted by $V\left(e_{i}\right)$ for $1 \leq i \leq 2$. To show that there is a perfect matching in $G \bar{G}$ containing the edges e_{1} and e_{2}, we distinguish five cases according to the edges e_{1}
and e_{2}.
Case 1: $\left\{e_{1}, e_{2}\right\} \subseteq E(\bar{G})$.
By Corollary 4.1 and the fact that $G \cong C_{n}$, it is easy to see that there is a perfect matching in $G \bar{G}$ containing the edges e_{1} and e_{2} if $n \geq 8$ is even. For $n=6$, it is not difficult to show that there is a perfect matching in $G \bar{G}$ containing the edges e_{1} and e_{2} as well.

So we now suppose that $n \geq 9$ is odd. Choose a vertex $u_{j} \in V(\bar{G})-\left(V\left(e_{1}\right) \cup\right.$ $\left.V\left(e_{2}\right)\right)$. Then, by Corollary 4.1, there is a perfect matching \bar{M}_{1}, in $\bar{G}-u_{j}$, containing the edges e_{1} and e_{2}. By Lemma 4.1(2), there is a perfect matching M_{1} in $G-v_{j}$. Hence, $M_{1} \cup \bar{M}_{1} \cup\left\{v_{j} u_{j}\right\}$ is a perfect matching in $G \bar{G}$ containing the edges e_{1} and e_{2}.

We now consider $n=7$. Observe that $V(\bar{G})-\left(V\left(e_{1}\right) \cup V\left(e_{2}\right)\right)$ contains an edge, say e_{3}, otherwise G contains C_{3} as an induced subgraph. Put $\left\{u_{j^{\prime}}\right\}=$ $V(\bar{G})-\bigcup_{i=1}^{3} V\left(e_{i}\right)$. By Lemma 4.1(2), there is a perfect matching M_{2} in $G-v_{j^{\prime}}$. Thus $M_{2} \cup\left\{e_{1}, e_{2}, e_{3}, v_{j^{\prime}} u_{j^{\prime}}\right\}$ is a perfect matching in $G \bar{G}$ containing the edges e_{1} and e_{2}. This proves Case 1 .

Case 2: $e_{1} \in E(G), e_{2} \in E(\bar{G})$.
Suppose $e_{1}=v_{j} v_{j+1}$ and $e_{2}=u_{k} u_{k^{\prime}}$ where $1 \leq j, k, k^{\prime} \leq n$ and $k \neq k^{\prime}$. By Lemma 4.1. (1) and Corollary 4.2, it is easy to see that there is a perfect matching containing the edges e_{1} and e_{2} if n is even. So we now suppose that n is odd.

We first suppose that $j+2 \notin\left\{k, k^{\prime}\right\}$. Then a maximum matching M_{1}, in $G-v_{j+2}$, containing the edge $e_{1}=v_{j} v_{j+1}$ is a matching of size $\frac{n-1}{2}$. Thus M_{1} is a perfect matching in $G-v_{j+2}$ by Lemma 4.1(2). By Corollary 4.2, $\bar{G}-u_{j+2}$ has a perfect matching \bar{M}_{1} containing the edge e_{2}. Then $M_{1} \cup \bar{M}_{1} \cup\left\{v_{j+2} u_{j+2}\right\}$ is a perfect matching in $G \bar{G}$ containing the edges e_{1} and e_{2}.

By similar arguments, if $j-1 \notin\left\{k, k^{\prime}\right\}$, then there is a perfect matching in $G \bar{G}$ containing the edges e_{1} and e_{2}. We may now assume that $\{j-1, j+2\}=$ $\left\{k, k^{\prime}\right\}$. Then $e_{2}=u_{k} u_{k^{\prime}}=u_{j-1} u_{j+2}$. Now consider $G-v_{j+4}$. Since $n \geq 7$, $j+4 \notin\{j-1, j+2\}$. Then a maximum matching M_{2}, in $G-v_{j+4}$, of size $\frac{n-1}{2}$ must contain the edge $e_{1}=v_{i} v_{j+1}$. By Lemma 4.1(2), M_{2} is a perfect matching in $G-v_{j+4}$. By Corollary $4.2, \bar{G}-u_{j+4}$ has a perfect matching \bar{M}_{2} containing the edge e_{2}. Then $M_{2} \cup \bar{M}_{2} \cup\left\{v_{j+4} u_{j+4}\right\}$ is a perfect matching in $G \bar{G}$ containing the edges e_{1} and e_{2}.

Case 3: $e_{1} \in E(G), e_{2} \in\left\{v_{i} u_{i} \mid 1 \leq i \leq n\right\}$.
Let $e_{2}=v_{k} u_{k}$ for some $1 \leq k \leq n$. Consider $G-v_{k}$. Observe that $G-v_{k}$ is a path of order $n-1$. Let M_{1} and M_{2} be matchings in $G-v_{k}$ where $E\left(G-v_{k}\right)=M_{1}$ $\cup M_{2}$ and $M_{1} \cap M_{2}=\emptyset$. We may assume that $\left|M_{1}\right| \geq\left|M_{2}\right|$. We first suppose that n is odd. Then $\left|M_{1}\right|=\frac{n-1}{2}$ and $\left|M_{2}\right|=\frac{n-3}{2}$. Further, v_{k-1} and v_{k+1} are $M_{2}-$ unsaturated. By Lemma 4.1 (2), M_{1} is a perfect matching in $G-v_{k}$. If $e_{1} \in M_{1}$, then $M_{1} \cup \bar{M}_{1} \cup\left\{v_{k} u_{k}\right\}$ is a perfect matching in $G \bar{G}$ containing the edges e_{1} and e_{2} where \bar{M}_{1} is a perfect matching, in $\bar{G}-u_{k}$. Note that \bar{M}_{1} exists by Corollary
4.2. We now suppose that $e_{1} \in M_{2}$. By Corollary 4.3, there is a perfect matching \bar{M}_{2}, in $\bar{G}-\left\{u_{k-1}, u_{k}, u_{k+1}\right\}$. Hence, $M_{2} \cup \bar{M}_{2} \cup\left\{v_{k-1} u_{k-1}, v_{k} u_{k}, v_{k+1} u_{k+1}\right\}$ is a perfect matching in $G \bar{G}$ containing the edges e_{1} and e_{2}.

We now suppose that n is even. Then $\left|M_{1}\right|=\left|M_{2}\right|=\frac{n-2}{2}$. Then either v_{k-1} or v_{k+1} is M^{\prime}-unsaturated where $M^{\prime} \in\left\{M_{1}, M_{2}\right\}$. Suppose without loss of generality that $e_{1} \in M_{1}$ and v_{k-1} is M_{1}-unsaturated. By Corollary 4.3, there is a perfect matching \bar{M}_{3}, in $\bar{G}-\left\{u_{k-1}, u_{k}\right\}$. Hence, $M_{1} \cup \bar{M}_{3} \cup\left\{v_{k-1} u_{k-1}, v_{k} u_{k}\right\}$ is a perfect matching in $G \bar{G}$ containing the edges e_{1} and e_{2}. This proves Case 3 .

Case 4: $e_{1} \in E(\bar{G}), e_{2} \in\left\{v_{i} u_{i} \mid 1 \leq i \leq n\right\}$.
Let $e_{1}=u_{j} u_{j^{\prime}}$ and $e_{2}=v_{k} u_{k}$ for some $1 \leq j, j^{\prime}, k \leq n$. Clearly, $k \notin\left\{j, j^{\prime}\right\}$. We first suppose that n is odd. By Lemma 4.1(2), $G-v_{k}$ contains M_{1} as a perfect matching. By Corollary 4.2, $\bar{G}-u_{k}$ has a perfect matching containing the edge e_{1}, say \bar{M}_{1}. Thus $M_{1} \cup \overline{M_{1}} \cup\left\{v_{k} u_{k}\right\}$ is a perfect matching in $G \bar{G}$ containing the edges e_{1} and e_{2}.

We now suppose that $n \geq 8$ is even. Let M_{2} and M_{3} be perfect matchings in G containing the edges $v_{k} v_{k+1}$ and $v_{k-1} v_{k}$, respectively. Observe that if $S \subseteq V(\bar{G})$ with $|S|=4$, then $\bar{G}[S]$ contains a matching of size two since \bar{G} is $(n-3)$-regular and G does not contain C_{3} as an induced subgraph. We first suppose that $k+1 \notin\left\{j, j^{\prime}\right\}$. By Corollary 4.1 $\bar{G}-\left\{u_{j}, u_{j^{\prime}}, u_{k}, u_{k+1}\right\}$ contains \bar{M}_{2} as a perfect matching. Then $\left(M_{2}-\left\{v_{k} v_{k+1}\right\}\right) \cup \bar{M}_{2} \cup\left\{u_{j} u_{j^{\prime}}, v_{k} u_{k}, v_{k+1} u_{k+1}\right\}$ is a perfect matching in $G \bar{G}$ containing the edges e_{1} and e_{2}. By similar arguments, if $k-1 \notin\left\{j, j^{\prime}\right\}$, then $\left(M_{3}-\left\{v_{k-1} v_{k}\right\}\right) \cup \bar{M}_{3} \cup\left\{u_{j} u_{j^{\prime}}, v_{k-1} u_{k-1}, v_{k} u_{k}\right\}$ is a perfect matching in $G \bar{G}$ containing the edges e_{1} and e_{2} where \bar{M}_{3} is a perfect matching in $\bar{G}-\left\{u_{j}, u_{j^{\prime}}, u_{k-1}, u_{k}\right\}$. Finally, we suppose that $\left\{j, j^{\prime}\right\}=\{k-1, k+1\}$. By Corollary 4.1 and the observation that $\bar{G}[S]$ contains a matching of size two if $S \subseteq V(\bar{G})$ with $|S|=4, \bar{G}-\left\{u_{k-1}, u_{k}, u_{k+1}, u_{k+3}\right\}$ contains \bar{M}_{4} as a perfect matching. Then $\left(M_{2}-\left\{v_{k} v_{k+1}, v_{k+2} v_{k+3}\right\}\right) \cup \bar{M}_{4} \cup\left\{u_{j} u_{j^{\prime}}, v_{k} u_{k}, v_{k+1} v_{k+2}, v_{k+3} u_{k+3}\right\}$ is a perfect matching in $G \bar{G}$ containing the edges e_{1} and e_{2}. For $n=6$, it is routine to show that there is a perfect matching in $G \bar{G}$ containing the edges e_{1} and e_{2}. This proves Case 4.

Case 5: $\left\{e_{1}, e_{2}\right\} \subseteq E(G)$.
Let M be a maximum matching in G containing the edge e_{1}. Clearly, M is a perfect matching if n is even and if n is odd, then there is exactly one M unsaturated vertex, say v_{j}, for some $1 \leq j \leq n$. We first suppose that $e_{2} \in M$. Then there is a perfect matching F containing the edges e_{1} and e_{2} where $F=$ $M \cup \bar{M}$ if n is even and $F=M \cup \bar{M}_{1} \cup\left\{v_{j} u_{j}\right\}$ if n is odd where \bar{M} and \bar{M}_{1} are perfect matchings in \bar{G} and $\bar{G}-u_{j}$, respectively. Such \bar{M} and \bar{M}_{1} exist by Lemma 4.3 .

We now suppose that $e_{2} \notin M$. Put $e_{2}=v_{k} v_{k+1}$ where $1 \leq k \leq n$. We first assume that n is even. Then $\left\{v_{k-1} v_{k}, v_{k+1} v_{k+2}\right\} \subseteq M-\left\{e_{1}\right\}$ since $\left\{e_{1}, e_{2}\right\}$ is a matching, M is a perfect matching and $G \cong C_{n}$. Clearly, $\left\{v_{k-1}, v_{k+2}\right\} \cap V\left(e_{1}\right)=\emptyset$. By Corollary 4.3, there exists a perfect matching in \bar{M}_{2} in $\bar{G}-\left\{u_{k-1}, u_{k+2}\right\}$. Then $\left(M-\left\{v_{k-1} v_{k}, v_{k+1} v_{k+2}\right\}\right) \cup \bar{M}_{2} \cup\left\{v_{k} v_{k+1}, v_{k-1} u_{k-1}, v_{k+2} u_{k+2}\right\}$ is a perfect
matching in $G \bar{G}$ containing the edges e_{1} and e_{2}.
We now suppose that n is odd. Recall that v_{j} is the only M-unsaturated of G. If $\left\{v_{k}, v_{k+1}\right\} \cap\left\{v_{j}\right\}=\left\{v_{k}\right\}$, then $\left\{v_{k+1} v_{k+2}\right\} \subseteq M-\left\{e_{1}\right\}$ and thus $\left(M-\left\{v_{k+1} v_{k+2}\right\}\right) \cup \bar{M}_{3} \cup\left\{v_{k} v_{k+1}, v_{k+2} u_{k+2}\right\}$ is a perfect matching in $G \bar{G}$ containing the edges e_{1} and e_{2} where \bar{M}_{3} is a perfect matching in $\bar{G}-u_{k+2}$. Note that \bar{M}_{3} exists by Corollary 4.2 Similarly, if $\left\{v_{k}, v_{k+1}\right\} \cap\left\{v_{j}\right\}=\left\{v_{k+1}\right\}$, then $M-\left\{v_{k-1} v_{k}\right\} \cup \bar{M}_{4} \cup\left\{v_{k} v_{k+1}, v_{k-1} u_{k-1}\right\}$ is a perfect matching in $G \bar{G}$ containing the edges e_{1} and e_{2} where \bar{M}_{4} is a perfect matching in $\bar{G}-u_{k-1}$. We now consider the case that $\left\{v_{k}, v_{k+1}\right\} \cap\left\{v_{j}\right\}=\emptyset$. Observe that $j \notin\{k-1, k+2\}$ since $e_{2} \notin M$ and v_{j} is M-unsaturated. Then $\left\{v_{k-1} v_{k}, v_{k+1} v_{k+2}\right\} \subseteq M-\left\{e_{1}\right\}$. By Corollary 4.3 there exists a perfect matching \bar{M}_{5} in $\bar{G}-\left\{u_{j}, u_{k-1}, u_{k+2}\right\}$. Then $\left(M-\left\{v_{k-1} v_{k}, v_{k+1} v_{k+2}\right\}\right) \cup \overline{M_{5}} \cup\left\{v_{k} v_{k+1}, v_{k-1} u_{k-1}, v_{k+2} u_{k+2}, v_{j} u_{j}\right\}$ is a perfect matching in $G \bar{G}$ containing the edges e_{1} and e_{2}. This proves Case 5 and completes the proof of our theorem

Note that the bound on n in Theorem 4.4 is sharp since the graph $C_{5} \bar{C}_{5}$ in Figure 1 is not 2 -extendable because there is no perfect matching containing the edges $v_{1} u_{1}$ and $v_{3} v_{4}$.

We are now ready to prove Theorem 1.2 .

Proof of Theorem 1.2

It is easy to see that our theorem follows immediately from Theorems 1.1 and 4.4

Corollary 4.4. Let G be a connected 2 -regular graph of order $n \geq 4$. Then $G \bar{G}$ is 1-extendable.

Proof. Our result follows from Theorems 2.2(1) and 4.4 if $n \geq 6$. It is not difficult to show that the result is true for $4 \leq n \leq 5$.

The next corollary follows immediately from Theorem 1.1 and Corollary 4.4 .
Corollary 4.5. Let G be a 2 -regular C_{3}-free graph. Then $G \bar{G}$ is 1-extendable.

References

[1] M. D. Plummer, On n-extendable graphs, Discrete mathematics. 31 (1980) 201-210.
[2] M. D. Plummer, Extending matchings in graphs: a survey, Discrete mathematics. 127 (1994) 277-292.
[3] M. D. Plummer, Extending matchings in graphs : an update, Congressus numerantium. 116 (1996) 3-32.
[4] M. D. Plummer, Recent Progress in Matching Extension, Bolyai Society Mathematical Studies. 19 (2008) 427-454.
[5] O. Favaron, On n-factor-critical graphs, Discussiones Math., Graph Theory. 16 (1996) 41-51.
[6] T. W. Haynes, M. A. Henning, P. J. Slater, L. C. van der Merwe, The complementary product of two graphs, Bulletin of the Institute of Combinatorics and its Applications. 51 (2007) 21-30.
[7] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications. The Macmillan Press, London (1976).
[8] M. D. Plummer, Extending matchings in claw-free graphs, Discrete Mathematics. 125 (1994) 301-307.
[9] P. Janseana, N. Ananchuen, Extendability of complementary prism of extendable graphs, Thai Journal of Mathematics. 13 (3) (2015) 705-723.
(Received 10 June 2015)
(Accepted 16 October 2015)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ This work was supported by the Thailand Research Fund grant \# BRG5480014
 ${ }^{2}$ Corresponding author.

