
Thai Journal of Mathematics
Volume 14 (2016) Number 1 : 31–41

http://thaijmath.in.cmu.ac.th
ISSN 1686-0209

Extendability of the Complementary Prism

of 2-Regular Graphs1

P. Janseana†, S. Rueangthampisan† and N. Ananchuen†,‡,2

†Department of Mathematics, Faculty of Science
Silpakorn University, Nakorn Pathom 73000, Thailand

e-mail : jpongthep@yahoo.com (P. Janseana)

pang sriphan@hotmail.com (S. Rueangthampisan)

ananchuen n@su.ac.th (N. Ananchuen)
‡Centre of Excellence in Mathematics

CHE, Si Ayutthaya Rd., Bangkok 10400, Thailand

Abstract : Let G be a simple graph. The complementary prism of G, denoted by
GG, is the graph formed from the disjoint union of G and G, the complement of G,
by adding the edges of a perfect matching between the corresponding vertices of
G and G. A connected graph G of order at least 2k+2 is k-extendable if for every
matching M of size k in G, there is a perfect matching in G containing all edges
of M . The problem that arises is that of investigating the extendability of GG.
In this paper, we investigate the extendability of GG where G contains G1, . . . , Gl

as its components and the extendability of GiGi is known for 1 ≤ i ≤ l. We then
apply this result to establish the extendability of GG when G is 2-regular.

Keywords : extendable; complementary prism; regular graph.
2010 Mathematics Subject Classification : 05C70.

1 Introduction

Let G denote a finite simple undirected graph with vertex set V (G) and edge
set E(G). The complement of G is denoted by G. For a vertex v of G, degG(v)
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and NG(v) denote the degree and the neighbour set of v, respectively. Further, the
closed neighbour set of v, denoted by NG[v], is NG(v) ∪ {v}. For disjoint graphs
G1 and G2, the join of G1 and G2 is denoted by G1 ∨G2. For positive integers m
and n ≥ 3, Km and Cn denote a complete graph of order m and a cycle of order n,
respectively. For S ⊆ V (G), the induced subgraph of S in G is denoted by G[S].
A graph G is said to be H-free if G does not contain H as an induced subgraph. A
subset M of E(G) is called a matching in G if no two edges of M have a common
end vertex. M is a maximum matching in G if there is no matching M ′ in G such
that |M ′| > |M |. A vertex v of G is said to be M -saturated if v is an end vertex
of some edge in a matching M ; otherwise, v is M -unsaturated. If each vertex of G
is M -saturated, then M is called a perfect matching. Note that if M is a perfect

matching of G, then |M | = |V (G)|
2 .

In 1980, Plummer [1] introduced a concept of k-extendable. For a positive
integer k, a connected graph G of order at least 2k + 2 is said to be k-extendable
if for every matching Mof size k in G, there is a perfect matching in G containing
all edges of M . It is easy to see that K2n is k-extendable for 1 ≤ k ≤ n− 1 and a
cycle of even order is 1-extendable but not 2-extendable. Since 1980 the concept
of k-extendable graphs was investigated by several researchers. For excellence
surveys in this topic, a reader is directed to ([2],[3] and [4]). A closely concept
to k-extendable graphs is k-factor-critical graphs introduced by Favaron [5]. A
graph G is said to be k-factor-critical if for every subset S ⊆ V (G) with |S| =
k, G − S has a perfect matching. Favaron also pointed out some relationship
between extendable non-bipartite graphs and factor-critical graphs as we shall see
in Theorem 2.4, Section 2.

Haynes et al. [6] introduced the concept of complementary prism of a
graph. For a simple graph G, the complementary prism of G, denoted by GG,
is the graph formed from the disjoint union of G and G by adding the edges of
a perfect matching between the corresponding vertices of G and G. Examples
of the complementary prism of graphs are shown in Figures 1 and 2. Note that
the graph C5C5 in Figure 1 is isomorphic to the Petersen graph. One might ask
what property that a graph G should have so that GG is k-extendable for some
k. A problem that arises is that of investigating the extendability of GG. In this
paper, we first consider the extendability of GG where G contains G1, . . . , Gl as
its components and the extendability of GiGi is known for 1 ≤ i ≤ l. In fact, we
prove the following theorem:

Theorem 1.1. For positive integers i and l where 1 ≤ i ≤ l, let G1, . . . , Gl be
components of G. If GiGi is k-extendable of order pi ≥ 2k + 2 for some positive
integer k, then GG is k-extendable.

We then apply Theorem 1.1 to establish the extendability of 2-regular graphs.
We show that:

Theorem 1.2. Let G be a 2-regular H-free graph where H ∈ {C3, C4, C5}. Then
GG is 2-extendable.
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The condition of H-free and the extendability of GG stated in Theorem 1.2 are
all best possible. For positive integers n ≥ 8 and 3 ≤ i ≤ 5, let Hi = Ci ∪ Cn−i.
Then the graph HiHi, shown in Figure 2, is not 2-extendable since there is no
perfect matching containing the edge x1x2 and y1y2. Note that “a double line” in
our diagram denotes the join between corresponding graphs. Hence, the hypoth-
esis H-free where H ∈ {C3, C4, C5} in Theorem 1.2 cannot be dropped. Finally,
the extendability of GG in Theorem 1.2 is best possible by Theorem 2.2(2), stated
in Section 2, and the fact that the minimum degree of GG is 3. The proof of
Theorems 1.1 and 1.2 are in Sections 3 and 4, respectively.
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Figure 1: The graph C5C5
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Figure 2: The graph HiHi, i ∈ {3, 4, 5}
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2 Preliminaries

In this section, we provide results that we make use of in establishing our re-
sults in the next two sections. We begin with a result on an existence of a perfect
matching in a graph.

Theorem 2.1 ([7]). (Tutte’s Theorem) A graph G has a perfect matching if and
only if for a subset S of V (G), the number of odd components of G−S is at most
|S|.

The next two theorems proved by Plummer concern some properties of ex-
tendable graphs.

Theorem 2.2 ([1]). For positive integers k and p, let G be a graph of order
p ≥ 2k + 2. If G is k-extendable, then

1. G is (k − 1)-extendable, and

2. G is (k + 1)-connected.

Theorem 2.3 ([8]). Let k ≥ 1 be an integer and let G be a (2k+1)-connected
K1,3-free graph with an even number of vertices. Then G is k-extendable.

Our next result provides a relationship between extendable non-bipartite graphs
and factor-critical graphs proved by Favaron.

Theorem 2.4 ([5]). If G is a 2k-extendable non–bipartite graph for 2k ≥ 2, then
G is a 2k-factor-critical graph.

We conclude this section with our results proved in [9].

Lemma 2.5 ([9]). Let G be a k-extendable non-bipartite graph and M a matching
of G with |M | ≤ k − 1. Then G − V (M) is a (k − |M |)-extendable non-bipartite
graph. Further, if k − |M | is even, then G− V (M) is (k − |M |)-factor critical.

Lemma 2.6 ([9]). Let G be a k-extendable graph for some integer k ≥ 2 and let
S ⊆ V (G) be a cutset of G. If G[S] contains t ≤ k − 1 independent edges, then
|S| ≥ k + t + 1.

3 Fundamental results

In this section, we provide the proof of Theorem 1.1. We first establish a useful
lemma. For a matching M , we simply denote the set of end vertices of edges in
M by V (M).

Lemma 3.1. Let GG be a k-extendable graph for some positive integer k. Suppose
M is a matching in GG and S ⊆ V (G) where V (M) ∩ S = ∅ and |M |+ |S| ≤ k.
Then
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1. If |S| is even, then there is a perfect matching in GG− (V (M) ∪ S).

2. If |S| is odd, then there is a vertex y ∈ V (G) − (V (M) ∪ S) such that
GG− (V (M) ∪ S ∪ {y}) contains a perfect matching.

Proof. Observe that GG is non-bipartite.

(1) It is easy to see that if S = ∅, then, by Theorem 2.2(1), GG−(V (M)∪S) =
GG−V (M) contains a perfect matching since GG is k-extendable. So we may now
assume that S 6= ∅. Then 2 ≤ |S| ≤ |M |+ |S| ≤ k. Thus |M | ≤ k− 2. By Lemma
2.5 and the fact that GG is non–bipartite, GG − V (M) is (k − |M |)-extendable
non–bipartite. Since |S| ≤ k − |M |, GG − V (M) is |S|-extendable non–bipartite
by Theorem 2.2(1). Hence, GG− V (M) is |S|-factor-critical by Theorem 2.4 and
the fact that |S| is even. Therefore, GG−(V (M)∪S) contains a perfect matching.
This proves (1).

(2) Since |S| is odd, |S| ≥ 1 and thus |M | ≤ k−|S| ≤ k−1. We first show that
there are a vertex ū ∈ S and a vertex v̄ ∈ V (G)−(V (M)∪S) such that ūv̄ ∈ E(G).
Suppose this is not the case. Let ū0 ∈ S. Then NGG[ū0] ⊆ S∪V (M)∪{u0} where
u0 is the only vertex in G which is adjacent to ū0. Put S′ = (S − {ū0}) ∪ {u0}.
Clearly, ū0 becomes an isolated vertex in GG − (V (M) ∪ S′) and |V (M) ∪ S′|
= 2|M | + |S′| = 2|M | + |S| ≤ k + |M |. So V (M) ∪ S′ is a cutset of GG. But
this contradicts Lemma 2.6 since GG[V (M) ∪ S′] contains a matching of size at
least |M | and at most |M | + 1

2 |S
′| < |M | + |S| ≤ k and |V (M) ∪ S′| ≤ k + |M |.

Hence, there are a vertex ū ∈ S and a vertex v̄ ∈ V (G) − (V (M) ∪ S) such that
ūv̄ ∈ E(G) as required.

Now let x̄ ∈ S and a vertex ȳ ∈ V (G) − (V (M) ∪ S) such that x̄ȳ ∈ E(G).
Consider M∪{x̄ȳ}. Clearly, |M∪{x̄ȳ}| ≤ k. We first suppose that |M∪{x̄ȳ}| = k.
Because |M | ≤ k − |S|, |S| = 1 and thus S = {x̄}. Since GG is k-extendable,
GG − (V (M) ∪ {x̄ȳ}) = GG − (V (M) ∪ S ∪ {ȳ}) contains a perfect matching as
required. So we now suppose that |M ∪ {x̄ȳ}| ≤ k − 1. By Lemma 2.5 and the
fact that GG is non–bipartite, GG− (V (M)∪ {x̄ȳ}) is (k− (|M |+ 1))-extendable
non–bipartite. Since k − |M | − 1 ≥ |S| − 1 and |S| − 1 is even, it then follows
by Theorems 2.2(1) and 2.4 that GG− (V (M) ∪ {x̄ȳ}) is (|S| − 1)-factor-critical.
Hence, GG − (V (M) ∪ S ∪ {ȳ}) contains a perfect matching as required. This
proves (2) and completes the proof of our lemma.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1

Proof. Clearly, our result holds for l = 1. So we now suppose l ≥ 2. For simplicity,
the induced subgraphs GG[V (Gi)], GG[V (Gi)] and GG[V (GiGi)] are denoted by
Gi, Gi and GiGi, respectively.
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Let M be a matching of size k in GG. For 1 ≤ i ≤ l, let Mi = M ∩ E(GiGi)
and Si = {x ∈ V (GiGi)|xy ∈M and y /∈ V (GiGi)}. Observe that Si ⊆ V (Gi) and

E(GG[
⋃l

i=1 Si]) = M −
⋃l

i=1 Mi. We first suppose that |Si| is even for 1 ≤ i ≤ l.
Then, by Lemma 3.1(1), there is a perfect matching Fi in GiGi − (V (Mi) ∪ Si)

for 1 ≤ i ≤ l. Hence, (
⋃l

i=1 Fi) ∪M is a perfect matching in GG containing M as
required.

We now suppose that |Si| is odd for some i. Let lo be the number of components
Gi of G in which |Si| is odd. We may now renumber the components of G in such
a way that for the first l0 components of G, |Si| is odd for 1 ≤ i ≤ lo and for the

last l − l0 components of G, |Si| is even. Since
∑lo

i=1 |Si| = 2(|M −
⋃l

i=1 Mi|)−∑
i>l0
|Si| is even, lo is even. By Lemma 3.1(2), there is ȳi ∈ V (Gi)−(V (Mi)∪Si)

such that GiGi − (V (Mi) ∪ Si ∪ {ȳi}) contains a perfect matching, say F ′i , for
1 ≤ i ≤ lo. Clearly, GG[{ȳ1, ȳ2, . . . , ȳl0}] is a complete graph of even order. So
there is a perfect matching in GG[{ȳ1, ȳ2, . . . , ȳl0}], say F ′. By Lemma 3.1(1), if
l0 < l, then there is a perfect matching F ′i in GiGi−(V (Mi)∪Si) for lo+1 ≤ i ≤ l.

Therefore,
⋃l

i=1 F
′
i ∪F ′∪M is a perfect matching in GG containing M as required.

Hence, GG is k-extendable. This completes the proof of our theorem.

Our next result follows immediately from Theorems 1.1 and 2.2(1).

Corollary 3.1. For positive integers i and l where 1 ≤ i ≤ l, let G1, . . . , Gl be
components of G. If GiGi is ki-extendable of order pi ≥ 2ki + 2 for some positive
integer ki, then GG is k0-extendable where k0 = min{k1, k2, . . . , kl}.

4 The extendability of 2-regular graphs

To establish the proof of Theorem 1.2, we need to set up some lemmas. Observe
that if x is a vertex of Cn for n ≥ 3, then Cn − x is a path of order n − 1. Our
first lemma follows immediately by this fact.

Lemma 4.1. Let G ∼= Cn for n ≥ 3 with V (G) = {v1, v2, . . . , vn} and E(G) =
{vivi+1|1 ≤ i ≤ n} where the subscript is read modulo n. Then

1. If n is even and e is an edge of G, then there is a perfect matching in G
containing the edge e.

2. If n is odd, then, for each 1 ≤ k ≤ n, G−vk contains a maximum matching of
size n−1

2 . In fact, a maximum matching of size n−1
2 is {vk+1vk+2, vk+3vk+4,

. . . , vk+n−2vk+n−1} which is also a perfect matching in G− vk.

Lemma 4.2. Let G ∼= Cn for n ≥ 5. Then G is (n− 3)-connected.

Proof. Observe that G is (n − 3)-regular. Let S be a minimum cutset of G.
For a positive integer k ≥ 2, let H1, . . . ,Hk be components of G − S. Since G is
(n − 3)-regular, |V (Hi)| ≥ n − 2 − |S|. Then n = |V (G)| =

∑k
i=1 |V (Hi)| + |S|

≥ 2(n− 2− |S|) + |S| = 2n− 4− |S| and thus |S| ≥ n− 4. Suppose |S| = n− 4. It
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is easy to see that |V (Hi)| = 2 and k = 2. Thus n ≥ 7 since G is (n− 3)-regular.
It follows that G ∼= 2K2 ∨H where H is (n − 7)-regular of order n − 4. Thus G
contains C4 as an induced subgraph. But this contradicts the fact that G ∼= Cn

where n ≥ 5. Hence, |S| ≥ n− 3 and then G is (n− 3)-connected. This completes
the proof of our lemma.

Lemma 4.3. Let G ∼= Cn for n ≥ 6. If n is even, then G is (n−4
2 )-extendable and

if n is odd, then, for 1 ≤ k ≤ n, G− vk is (n−5
2 )-extendable.

Proof. Observe that G is K1,3-free otherwise G contains C3 as an induced sub-
graph which contradicts the fact that G ∼= Cn and n ≥ 6. By Theorem 2.3 and
Lemma 4.2, G is (n−4

2 )-extendable if n is even. We now suppose that n is odd.

Then n ≥ 7 and G − vk is (n − 4)-connected by Lemma 4.2. Hence, by Theorem
2.3, G− vk is (n−5

2 )-extendable. This proves our lemma.

As a consequence of Theorem 2.2(1) and Lemma 4.3, we have the following
corollaries.

Corollary 4.1. Let G ∼= Cn for n ≥ 8. If n is even, then G is 2-extendable and
if n is odd, then, for 1 ≤ k ≤ n, G− vk is 2-extendable.

Corollary 4.2. Let G ∼= Cn for n ≥ 6. If n is even, then G is 1-extendable and
if n is odd, then, for 1 ≤ k ≤ n, G− vk is 1-extendable.

Corollary 4.3. Let G ∼= Cn for n ≥ 6. Further, let vi, vj , vk be three distinct
vertices of G where 1 ≤ i, j, k ≤ n, then G−{vi, vj} has a perfect matching if n is
even and G− {vi, vj , vk} has a perfect matching if n is odd.

Proof. Our result follows from Theorems 2.2(1) and 2.4 together with Corollary
4.1 if n ≥ 8. For 6 ≤ n ≤ 7, our result follows from Theorem 2.1, Lemma 4.2 and
the fact that G is K1,3-free.

Theorem 4.4. Let G be a connected 2-regular graph of order n ≥ 6. Then GG is
2-extendable.

Proof. Clearly, G ∼= Cn. Put V (G) = {v1, v2, . . . , vn} and E(G) = {vivi+1|1 ≤
i ≤ n} where the subscript is read modulo n. For simplicity, put V (G) =
{u1, . . . , un} where ui ∈ V (G) corresponds to vi ∈ V (G). Then V (GG) =
{v1, . . . , vn} ∪ {u1, . . . , un} and E(GG) = E(G) ∪ E(G) ∪ {viui|1 ≤ i ≤ n}.

Let T = {e1, e2} be a matching of size 2 in GG. It is easy to see that if
{e1, e2} ⊆ {viui|1 ≤ i ≤ n}, then {viui|1 ≤ i ≤ n} is a perfect matching in GG
containing the edges e1 and e2. So we may now assume without loss of generality
that e1 /∈ {viui|1 ≤ i ≤ n}. For simplicity, the set of end vertices of the edge ei is
denoted by V (ei) for 1 ≤ i ≤ 2. To show that there is a perfect matching in GG
containing the edges e1 and e2, we distinguish five cases according to the edges e1
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and e2.

Case 1: {e1, e2} ⊆ E(G).

By Corollary 4.1 and the fact that G ∼= Cn, it is easy to see that there is a
perfect matching in GG containing the edges e1 and e2 if n ≥ 8 is even. For n = 6,
it is not difficult to show that there is a perfect matching in GG containing the
edges e1 and e2 as well.

So we now suppose that n ≥ 9 is odd. Choose a vertex uj ∈ V (G)− (V (e1) ∪
V (e2)). Then, by Corollary 4.1, there is a perfect matching M1, in G − uj ,
containing the edges e1 and e2. By Lemma 4.1(2), there is a perfect matching
M1 in G− vj . Hence, M1 ∪M1 ∪ {vjuj} is a perfect matching in GG containing
the edges e1 and e2.

We now consider n = 7. Observe that V (G) −(V (e1) ∪ V (e2)) contains an
edge, say e3, otherwise G contains C3 as an induced subgraph. Put {uj′} =

V (G)−
⋃3

i=1 V (ei). By Lemma 4.1(2), there is a perfect matching M2 in G− vj′ .
Thus M2 ∪ {e1, e2, e3, vj′uj′} is a perfect matching in GG containing the edges e1
and e2. This proves Case 1.

Case 2: e1 ∈ E(G), e2 ∈ E(G).

Suppose e1 = vjvj+1 and e2 = ukuk′ where 1 ≤ j, k, k′ ≤ n and k 6= k′. By
Lemma 4.1(1) and Corollary 4.2, it is easy to see that there is a perfect matching
containing the edges e1 and e2 if n is even. So we now suppose that n is odd.

We first suppose that j + 2 /∈ {k, k′}. Then a maximum matching M1, in
G− vj+2, containing the edge e1 = vjvj+1 is a matching of size n−1

2 . Thus M1 is

a perfect matching in G− vj+2 by Lemma 4.1(2). By Corollary 4.2, G− uj+2 has
a perfect matching M1 containing the edge e2. Then M1 ∪ M1 ∪ {vj+2uj+2} is a
perfect matching in GG containing the edges e1 and e2.

By similar arguments, if j − 1 /∈ {k, k′}, then there is a perfect matching in
GG containing the edges e1 and e2. We may now assume that {j − 1, j + 2} =
{k, k′}. Then e2 = ukuk′ = uj−1uj+2. Now consider G − vj+4. Since n ≥ 7,
j + 4 /∈ {j − 1, j + 2}. Then a maximum matching M2, in G − vj+4, of size n−1

2
must contain the edge e1 = vjvj+1. By Lemma 4.1(2), M2 is a perfect matching
in G − vj+4. By Corollary 4.2, G − uj+4 has a perfect matching M2 containing
the edge e2. Then M2 ∪M2 ∪ {vj+4uj+4} is a perfect matching in GG containing
the edges e1 and e2.

Case 3: e1 ∈ E(G), e2 ∈ {viui|1 ≤ i ≤ n}.
Let e2 = vkuk for some 1 ≤ k ≤ n. Consider G− vk. Observe that G− vk is a

path of order n−1. Let M1 and M2 be matchings in G−vk where E(G−vk) = M1

∪ M2 and M1∩M2 = ∅. We may assume that |M1| ≥ |M2|. We first suppose that
n is odd. Then |M1| = n−1

2 and |M2| = n−3
2 . Further, vk−1 and vk+1 are M2-

unsaturated. By Lemma 4.1(2), M1 is a perfect matching in G− vk. If e1 ∈ M1,
then M1 ∪ M1 ∪ {vkuk} is a perfect matching in GG containing the edges e1 and
e2 where M1 is a perfect matching, in G− uk. Note that M1 exists by Corollary
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4.2. We now suppose that e1 ∈M2. By Corollary 4.3, there is a perfect matching
M2, in G − {uk−1, uk, uk+1}. Hence, M2 ∪ M2 ∪ {vk−1uk−1, vkuk, vk+1uk+1} is
a perfect matching in GG containing the edges e1 and e2.

We now suppose that n is even. Then |M1| = |M2| = n−2
2 . Then either vk−1

or vk+1 is M ′-unsaturated where M ′ ∈ {M1,M2}. Suppose without loss of gen-
erality that e1 ∈ M1 and vk−1 is M1-unsaturated. By Corollary 4.3, there is a
perfect matching M3, in G− {uk−1, uk}. Hence, M1 ∪ M3 ∪ {vk−1uk−1, vkuk} is
a perfect matching in GG containing the edges e1 and e2. This proves Case 3.

Case 4: e1 ∈ E(G), e2 ∈ {viui|1 ≤ i ≤ n}.
Let e1 = ujuj′ and e2 = vkuk for some 1 ≤ j, j′, k ≤ n. Clearly, k /∈ {j, j′}.

We first suppose that n is odd. By Lemma 4.1(2), G−vk contains M1 as a perfect
matching. By Corollary 4.2, G − uk has a perfect matching containing the edge
e1, say M1. Thus M1 ∪ M1 ∪ {vkuk} is a perfect matching in GG containing the
edges e1 and e2.

We now suppose that n ≥ 8 is even. Let M2 and M3 be perfect match-
ings in G containing the edges vkvk+1 and vk−1vk, respectively. Observe that if
S ⊆ V (G) with |S| = 4, then G[S] contains a matching of size two since G is
(n− 3)-regular and G does not contain C3 as an induced subgraph. We first sup-
pose that k + 1 /∈ {j, j′}. By Corollary 4.1, G−{uj , uj′ , uk, uk+1} contains M2 as
a perfect matching. Then (M2 − {vkvk+1}) ∪ M2 ∪ {ujuj′ , vkuk, vk+1uk+1} is a
perfect matching in GG containing the edges e1 and e2. By similar arguments, if
k− 1 /∈ {j, j′}, then (M3−{vk−1vk}) ∪ M3 ∪ {ujuj′ , vk−1uk−1, vkuk} is a perfect
matching in GG containing the edges e1 and e2 where M3 is a perfect matching in
G−{uj , uj′ , uk−1, uk}. Finally, we suppose that {j, j′} = {k−1, k+1}. By Corol-
lary 4.1 and the observation that G[S] contains a matching of size two if S ⊆ V (G)
with |S| = 4, G−{uk−1, uk, uk+1, uk+3} contains M4 as a perfect matching. Then
(M2−{vkvk+1, vk+2vk+3}) ∪ M4 ∪ {ujuj′ , vkuk, vk+1vk+2, vk+3uk+3} is a perfect
matching in GG containing the edges e1 and e2. For n = 6, it is routine to show
that there is a perfect matching in GG containing the edges e1 and e2. This proves
Case 4.

Case 5: {e1, e2} ⊆ E(G).
Let M be a maximum matching in G containing the edge e1. Clearly, M

is a perfect matching if n is even and if n is odd, then there is exactly one M -
unsaturated vertex, say vj , for some 1 ≤ j ≤ n. We first suppose that e2 ∈ M .
Then there is a perfect matching F containing the edges e1 and e2 where F =
M ∪M if n is even and F = M ∪M1 ∪ {vjuj} if n is odd where M and M1 are
perfect matchings in G and G−uj , respectively. Such M and M1 exist by Lemma
4.3.

We now suppose that e2 /∈ M . Put e2 = vkvk+1 where 1 ≤ k ≤ n. We first
assume that n is even. Then {vk−1vk, vk+1vk+2} ⊆ M − {e1} since {e1, e2} is a
matching, M is a perfect matching and G ∼= Cn. Clearly, {vk−1, vk+2}∩V (e1) = ∅.
By Corollary 4.3, there exists a perfect matching in M2 in G − {uk−1, uk+2}.
Then (M−{vk−1vk, vk+1vk+2}) ∪M2 ∪ {vkvk+1, vk−1uk−1, vk+2uk+2} is a perfect
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matching in GG containing the edges e1 and e2.
We now suppose that n is odd. Recall that vj is the only M -unsaturated

of G. If {vk, vk+1} ∩ {vj} = {vk}, then {vk+1vk+2} ⊆ M − {e1} and thus
(M − {vk+1vk+2}) ∪ M3 ∪ {vkvk+1, vk+2uk+2} is a perfect matching in GG con-
taining the edges e1 and e2 where M3 is a perfect matching in G − uk+2. Note
that M3 exists by Corollary 4.2. Similarly, if {vk, vk+1} ∩ {vj} = {vk+1}, then
M − {vk−1vk} ∪ M4 ∪ {vkvk+1, vk−1uk−1} is a perfect matching in GG contain-
ing the edges e1 and e2 where M4 is a perfect matching in G − uk−1. We now
consider the case that {vk, vk+1}∩ {vj} = ∅. Observe that j /∈ {k− 1, k + 2} since
e2 /∈ M and vj is M -unsaturated. Then {vk−1vk, vk+1vk+2} ⊆ M − {e1}. By
Corollary 4.3, there exists a perfect matching M5 in G − {uj , uk−1, uk+2}. Then
(M−{vk−1vk, vk+1vk+2}) ∪M5 ∪ {vkvk+1, vk−1uk−1, vk+2uk+2, vjuj} is a perfect
matching in GG containing the edges e1 and e2. This proves Case 5 and completes
the proof of our theorem

Note that the bound on n in Theorem 4.4 is sharp since the graph C5C5 in
Figure 1 is not 2-extendable because there is no perfect matching containing the
edges v1u1 and v3v4.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2
It is easy to see that our theorem follows immediately from Theorems 1.1 and

4.4.

Corollary 4.4. Let G be a connected 2-regular graph of order n ≥ 4. Then GG
is 1-extendable.

Proof. Our result follows from Theorems 2.2(1) and 4.4 if n ≥ 6. It is not diffi-
cult to show that the result is true for 4 ≤ n ≤ 5.

The next corollary follows immediately from Theorem 1.1 and Corollary 4.4.

Corollary 4.5. Let G be a 2-regular C3-free graph. Then GG is 1-extendable.
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