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Abstract : An m,n-gonal system π = (V,E, F ), where V is a vertex set, E is an
edge set and F is a face set, is a graph of cyclic hydrocarbon molecules: each vertex
represents a carbon atom and each edge represents a chemical bond. A Kekule
structure, K ⊆ E is a perfect matching and the edges of the matching correspond
to double bonds. We count a number of perfect matchings (Kekule structures) in
m,n-gonal systems where m,n ≡ 2(mod 4). Our result is shown that the number
of perfect matchings is φ(π) = |detA(π)|, where A(π) is a biadjacency matrix for
each system. Moreover, we study the interesting properties of vertex and face
independence sets of m,n-gonal systems.

Keywords : Kekule structure; perfect matching; m,n-gonal system; cyclic hydro-
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1 Introduction

The m,n-gonal graph is a graph H = (V,E, F ) that it consists of only M and
N cycles, such that is special classes of graphs corresponded to some chemical
structure, it is called cyclic hydrocarbon molecule. The m,n-gonal system π is
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obtained by removing the edges representing carbon-hydrogen bonds and letting
the remaining edges of π represent either single or double carbon-carbon bonds.
A vertex independent set correspond to independent set of carbon atom and an
edge independent set correspond to double bonds. Therefore, chemical proper-
ties of cyclic hydrocarbon molecule such as stability and energy levels depend on
maximumlity of vertex independent set and the number of edge independent sets
(denoted by φ(π)) in its correspondingm,n-gonal system, so chemists seek efficient
methods to calculate them [1,2]. In Figure 1, we show an example of m,n-gonal
systems associated with cyclic hydrocarbon molecules.

Figure 1: (a)The 10,6-gonal system (b)The 5,7-gonal system.

Graph theory is the study of vertices and edges. In this study, the authors are
not only interested in the general graph, but also the hydrocarbon system, which
is one of chemical graphs. Chemical graphs are just graph-based descriptions of
molecules, with vertices representing the atoms, each one of them labeled by the
type (name of the corresponding element), and edges representing the bonds [3].
Therefore the hydrocarbon molecule will be transformed to a graph of vertices
and edges by removing the edges representing carbon-hydrogen bonds and letting
the remaining edges of this graph represent either single or double carbon-carbon
bonds. Then the graph of π = (V,E, F ) of hydrocarbon molecules are presented
and called hydrocarbon systems in the rest of this work. The more information re-
lated to this study, i.e. their chemical meaning as representations of hydrocarbons,
is reported by manuscript [4,5,6].

In this paper, we will research about m,n-gonal hydrocarbon systems, which
is a 2-connected plane graph with a plane embedding such that every interior
face is bounded by a regular m-gon and n-gon. For example, naphthalene is the
benzenoid whose hexagonal (6-gonal) system is the linear chain. It is used to help
derive the antibiotic aureomycin. Chrysene the benzenoid whose hexagonal system
is the chain with 4 hexagons(6-gons), present in coal heated at high temperatures.
For further discussion about some chemical properties of m,n-gonal system and
connections between chemistry and m,n-gonal systems, see [7,8,9,10,11].

For previous research of m,n-gonal systems, the researchers studied Kekule
structures of hexagonal systems [1,12]. They counted a maximum number of edge
independent sets in hexagonal systems. Their result show the maximum number
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Figure 2: The three edge independence sets of naphthalene (a) Only left ring
corresponds to edge independence set of benzene (b) Both ring corresponds
to edge independence set of benzene (c) Only right ring corresponds to edge
independence set of benzene

of edge independent sets is φ(π) = |detA(π)| when A(π) is a biadjacency matrix
for each system. In 2006 and 2007, Jack E. Graver [13,14] explores the structure of
independent sets in fullerenes, which were plane trivalent graphs with pentagonal
and hexagonal faces. They proved that the construction of a maximum vertex
independent set in a benzenoid was similar to the dual paths between pentagonal
faces replaced by dual circuits through the outside face. In this research, we will
study all properties of independent sets inm,n-gonal system π = (V,E, F ), a graph
of chemical system called cyclic hydrocarbons, because properties of independent
sets in m,n-gonal system π = (V,E, F ) correspond with chemical properties of
cyclic hydrocarbons. For example, the most stable structure formula for a cyclic
hydrocarbon is an edge independent set which has the greatest number of rings that
correspond to an edge independent set of benzene. Naphthalene is a fairly typical
example; referred to Figure 2. Of the three edge independent sets (φ(π) = 3)
shown, the most stable one is the one in which both rings correspond to edge
independent set of benzene [2].

2 Vertex Independent Set

Let π = (V,E, F ) be m,n-gonal system, that is a trivalent plane graph with
m-gonal and n-gonal faces. A vertex independent set of a graph π is a subset of
the vertices such that no two vertices in the subset represent an edge of π. Given
a vertex cover of a graph, all vertices not in the cover define a vertex independent
set. Given α(π) denote the vertex independent number of π, which is a maximum
vertex independent set is a vertex independent set containing the largest possible
number of vertices for a given graph [6]. We wish to compute α(π). Next, we
assume that W be a maximum vertex independent set of π, B be a maximum
vertex independent set of π in V − W and let G = V − B − W . We color the
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vertices in W white, the vertices in B black, and the vertices in G gray. A gray
vertex with only black and gray neighbors could be recolored white, and a gray
vertex with only white and gray neighbors could be recolored black. Hence, by
the maximality of W and B, we obtain the following.

Theorem 2.1. In m,n-gonal system with the vertex coloring defined above, each
gray vertex is adjacent to a black vertex and to a white vertex.

Now if g ∈ G is adjacent to two black vertices, let w be the white vertex
adjacent to g and assign (g, w) to the edge set EW ; referred to Figure 3(a). If
g ∈ G is adjacent to two white vertices, let b be the black vertex adjacent to g and
assign (g, b) to EB, Figure 3(b). Referring to Figure 3(c), there are two adjacent
gray vertices, arbitrarily labeled g1 and g2; then let b1 be the black vertex adjacent
to g1 and let w2 be the white vertex adjacent to g2. Assign (g1, b1) to EB, (g2, w2)
to EW and assign (g1, g2) to the edge set EG. Finally, if π is an m,n-gonal and
admits a gray degree 2 vertex, that vertex must be adjacent to one black and
one white vertex. Hence we may interchange its color with that of either of its
neighbors without altering |W |, |B| and |G|. Repeat this operation as often as
necessary, we may move each degree 2 gray vertex into a degree 3 gray vertex.
Hence, without loss of generality, we may assume that an m,n-gonal has no degree
2 gray vertices.

Figure 3: The set of EW , EB and EG.[14]

Theorem 2.2. Let π = (V,E, F ) be an m,n-gonal system with the vertex coloring
and edge partition defined above. Then |G| = |EB | + |EW | and no two edges in
EB ∪ EW have a common endpoint.

Proof. By definition, each gray vertex is the endpoint of exactly one edge in EB ∪
EW and each edge in EB ∪ EW has exactly one gray endpoint. Hence, |G| =
|EB ∪ EW | = |EB|+ |EW |; the last equality holds since EW and EB are disjoint.

Now suppose e, e
′

∈ EB ∪ EW have a common endpoint x. Since each gray
vertex is incident with exactly one edge in EB ∪ EW , x /∈ G. Suppose x ∈ B and
let y and y

′

be the other endpoints of e and e
′

, respectively. Clearly, y, y
′

∈ G. If y
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were adjacent to another black vertex, we would have Figure 3(a) and (x, y) would
not belong to EB. Thus, neither y nor y

′

is adjacent to another black vertex. But,
then we may recolor x gray and both y and y

′

black, contradicting the maximality
of B. Similarly, x /∈ W and we conclude that no such x exists.

Theorem 2.3. Let π = (V,E, F ) be an m,n-gonal system with the vertex coloring
and edge partition defined above. Then:

|W | = |E|+|W2|
3 - 2|EW |+|EB |

3 and |B| = |E|+|B2|
3 - 2|EB |+|EW |

3 .

where |W2| and |B2| are the set of degree 2 white and black vertices, respectively.

Proof. Let ci denote the number of type i = a, b, c configurations from Figure 3 in
π and let ebw, egw, egb and egg denote the number of blackwhite edges, graywhite
edges, grayblack edges and graygray edges, respectively. These parameters are
related by the following equations:

egb = 2ca + cb + 2cc
egw = ca + 2cb + 2cc
egg = cc

2 ebw = |E| − egg − egb − egw.
We also have:

|EB| = cb + cc
|EW | = ca + cc
|EG| = cc.

Eliminating the ci, we get:
egb = 2 |EW |+ |EB | − |EG|
egw = 2 |EB |+ |EW | − |EG|
egg = |EG|
ebw = |E| − 3 |EB | − 3 |EW |+ |EG|.

Then:

3 |W | - |W2| = ebw + egw= |E| - (2 |EW |+ |EB|).

Next, moving |W2| | to the right-hand side and dividing by 3 gives the required
formula for |W |. A similar derivation gives the formula for |B|.

3 Edge Independent Set

An edge independent set (matching) M in a graph π is a set of edges of π
such that no two edges from M have a vertex in common. The number of edges
in a matching M is called the size of M . A vertex v ∈ V (π) incident to some edge
e ∈ M , is covered by the matching M . Matching M is perfect if it covers every
vertex of π. Perfect matchings are known in chemistry as Kekule structures. As
the number of Kekule structures of a chemical compound is often correlated with
its stability, it may be of interest to find the number of different perfect matchings
in the corresponding graph [2,10,11]. Given φ(π) denote the number of perfect
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matchings (maximum edge independent sets) of π. In this section, we wish to
compute φ(π). An m,n-gonal system may be represented by a matrix, defined as
follows [5]. Let π be anm,n-gonal system and let E denote the set of edges in π. Let
U ∪W be the set of vertices of π, where U = {u1, u2, ...um},W = {w1, w2, ...wn}
and all edges in π join vertices in U to vertices in W . The biadjacency matrix,
written A(π) = [aij ] , is defined by aij = 1 if the edge {ui, wj} ∈ E , and aij = 0
if {ui, wj} /∈ E.

We will assume that U and W contain the same number of vertices since this
is a necessary condition for the existence of perfect matching (maximum edge
independent set). Thus the biadjacency matrix is square. In this paper, we will
use following definition of determinant:

Definition 3.1. Let A(π) = [aij ]n×n. The determinant of A(π) which is denoted
by det(A(π)) is

det(A(π)) =
∑

(±)a1j1a2j2 ...anjn

when σ = j1j2j3...jn is a pernutation of {1, 2, 3, ..., n}, we define the sign(±) to be
+1 if σ is an even permutation and −1 if σ is odd.

Remark 3.1. Let π be an m,n-gonal system such that m,n ≡ 2(mod 4) and C be
a cycle in each union of two perfect matchings (maximum edge independent sets),
then the number of vertices inside C is even.

Proof. Let M and M∗ be perfect matchings (maximum edge independent sets) in
π and C be a cycle in M ∪ M∗. Given vint be the number of vertices inside C.
Since the edges in C come alternately from M and M∗, no vertex on C can be
matched to any vertex in the interior of C by an edge in M . Since π is a planar
graph and M is a perfect matching (maximum edge independent set), each vertex
b in the interior of C lies in a unique edge {u,w} in M , with also in the interior
of C. Thus vint is even.

Theorem 3.2. Ifm,n ≡ 2(mod 4), then m,n-gonal system π has φ(π) = |detA(π)|.

Proof. Let m,n ≡ 2 (mod 4) and M , M∗ be perfect matchings (maximum edge
independent sets) in m,n-gonal system π. Give C be a cycle in M ∪M∗. Let vint
be the number of vertices inside C, eint be the number of edges inside C, rm be the
number of m-gons inside C and rn be the number of n-gons inside C. Applying
Euler’s formula to C and its interior gives

(vint + |C|)− (eint + |C|) + (rm + rn + 1) = 2

Thus

eint = vint + rm + rn − 1 (3.1)
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Since every m-gon (n-gon) has m (n) edges and every edge in the interior of C is
in exactly two m-gons (n-gons), the number of edges in C and its interior is

eint + |C| = mrm + nrn − eint

By equation (3.1),

|C| = mrm + nrn − 2eint = mrm + nrn − 2(vint + rm + rn − 1) =
(m− 2)rm + (n− 2)rn − 2vint + 2

Since m,n ≡ 2(mod 4) and vint is even (lemma 3.2),

|C| ≡ 2 (mod 4) (3.2)

Next, we will show that all perfect matchings (maximum edge independent
sets) of π have the same sign. Consider M and M∗ in π, without loss of generality,
we may label the vertices in π so that M corresponds to identity permutation, say
σ. Then M∗ corresponds to a permutation we denoted by σ∗. Now M ∪ M∗

is a union of disjoint cycles and isolated edges. Let C1, C2, C3, ..., Ck denote the
cycles in M ∪ M∗. Since |Ci| ≡ 2(mod 4) for all i, Ci corresponds to a cyclic

permutation, say σi. Moreover, the length of each cyclic permutation σi is |Ci|
2 ,

which is odd. Therefore ∀σi can be factored into an even number of transpositions.
Since σ∗ = σσ1σ2...σk, both σ and σ∗ have the same sign.

Next we consider A(π). We have aij in A(π) is either 0 or 1 for all i, j, then
nonzero terms in the expansion of detA(π) are all either 1 or -1. Since all the
nonzero summands in detA(π) have the same sign, φ(π) = |detA(π)|.

4 Face independent set

A face independent set of a graph π is a subset of the faces such that no two
faces in the subset are adjacent in π. Let K ⊆ E be a Kekule structure of π. It
is convenient to use the Kekule number, k = |K|, as a basic parameter for the
m,n-gonal system π. Then we have |V | = 2k − b,where b is the number of edges
in K such that be boundary of π. We denote the face independent number of π
by α∗ = α∗ (π) = α (π∗).

Theorem 4.1. Let m and n be odd then m,n-gonal system π = (V,E, F ) have
not perfect face independent set.

Proof. Let m and n be odd number and π = (V,E, F ) be an m,n-gonal system.
Support that π have a perfect face independent set R, thus each vertex of π is
incident with a face in R. Then for all odd face necessary belong in R. Since for
all face of π are odd, all face belong in R. It contradics with perfect independent
set property, then π have not perfect independent set.
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For K ⊆ E be a Kekule structure for the m,n-gonal system π = (V,E, F ).
An m-gonal face of π may have 0, 1, 2, 3, ..., ⌊m

2 ⌋ of its bounding edges in K and
an n-gonal face of π may have 0, 1, 2, 3, ..., ⌊n

2 ⌋ of its bounding edges in K. We
denote by Bi (K) the set of faces that have exactly i of their bounding edges in
K. The faces in B0 (K) are called the void faces of K and (for even n) the faces
in B⌊n

2
⌋ (K) of n-gonal face and (for even n) B⌊m

2
⌋ (K) of m-gonal face are called

the full faces of K. We define β = β (π), the Fries number or Kekule parameter
of π, to be the maximum of the number of full faces over all Kekule structures for
π. Closely related to both of the parameters α∗ (π) and β (π) is the Clar number
[13] of the m,n-gonal system π. A set of full faces such that any two are pairwise
disjoint is said to be resonant . The Clar number of π, γ (π), is the size of the
largest resonant set of full faces over all Kekule structures for π or, equivalently,
the largest independent set of full faces over all Kekule structures for π.

Theorem 4.2. Let R ⊆ F be a face independent set of the m,n-gonal system
π = (V,E, F ), where m is an odd and n is even. Let p∗ (R) be the number of
m-gonal faces NOT in R and let v∗ (R) be the number of vertices NOT incident
with a face in R. Then:

(i) |R| = 2k
n

+ (m−n)M
n

− (m−n)p∗(R)+v∗(R)
n

;

(ii) α∗ (π) ≤ 2k
n

+ (m−n)M
n

with equality if and only if π admits a perfect
face independent set;

(iii) R is a perfect face independent set if and only if p∗ (R) = v∗ (R) = 0.

Proof. Given M denote the number of m-gonal faces in π. Let R, v∗ (R) and
p∗ (R) be as above and p (R) denote the number of m-gonal faces in R, then
p∗ (R) + p (R) = M . Since π is trivalent, each vertex is incident with at most 1
face in R. The number of vertices incident with some face in R is then

n |R| − (n−m)p (R) = n |R| − (n−m)(M − p∗ (R))
= n |R| − (n−m)M + (n−m)p∗ (R).

So, n |R| − (n−m)M + (n−m)p∗ (R) = |V | − v∗ (R)
n |R| − (n−m)M + (n−m)p∗ (R) = 2k − v∗ (R),

thus n |R| = 2k − v∗ (R) + (n−m)M − (n−m)p∗ (R)

giving |R| = 2k
n

+ (n−m)M
n

− v∗(R)+(n−m)p∗(R)
n

.
Parts (ii) and (iii) follow at once.

In next theorem we will prove about β (π). Define b is the number of edges in
K which are boundary of π.

Theorem 4.3. Let K ⊆ E be a Kekule structure for the m,n-gonal system
π = (V,E, F ), where m,n are even and m < n. For i = 0, 1, 2, 3, ...,n2 , let Bi (K)
denote the set of faces of π that have exactly i of their bounding edges in K. Then:

(i) mBm

2
(K) + nBn

2
(K) = 4k − 2b− 2 (|B1 (K)|) + 2 |B2 (K)|+

...+
(

m
2 − 1

)

∣

∣

∣
B(m

2
−1) (K)

∣

∣

∣
+...+

(

n
2 − 1

) ∣

∣Bn

2
−1 (K)

∣

∣;

(ii) β (H) = Bm

2
(K)+Bn

2
(K) and mBm

2
(K)+nBn

2
(K) ≤ 4k − 2b with equal-

ity
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if and only if π admits a perfect Kekule structure;
(iii) K is a perfect Kekule structure if and only if |Bi (K)| = 0 ∀i /∈

{

m
2 ,

n
2

}

.

Proof. Let b be the number of edges in K such that be boundary of π. Adding
up the number of edges of K in the boundary of each face, we get |B1 (K)| +
2 |B2 (K)|+ ...+

(

m
2

) ∣

∣Bm

2
(K)

∣

∣+ ...+
(

n
2

) ∣

∣Bn

2
(K)

∣

∣ = 2k− b. Solving for Bm

2
(K)

and Bn

2
(K) gives (i). Parts (ii) and (iii) follow at once from (i).

Theorem 4.4. Let K ⊆ E be a Kekule structure for the m,n-gonal system π =
(V,E, F ),where m is odd and n is even. For i = 0, 1, 2, 3, ..., z = max

{

⌊m
2 ⌋,

n
2

}

,
let Bi (K) denote the set of faces of π that have exactly i of their bounding edges
in K. Then:

(i) Bn

2
(K) = 4k−2b

n
− 2

n
(|B1 (K)|) + 2 |B2 (K)|+ ...+

(

n
2 − 1

)

∣

∣

∣
B(n

2
−1) (K)

∣

∣

∣

+
(

n
2 + 1

)

∣

∣

∣
B(n

2
+1) (K)

∣

∣

∣
+ ...+ (z) |Bz (K)|;

(ii) β (H) ≤ 4k−2b
n

with equality if and only if π admits a perfect Kekule
structure;

(iii) K is a perfect Kekule structure if and only if |Bi (K)| = 0 ∀i 6= n
2 .

Proof. Let b be the number of edges in K such that be boundary of π. Adding
up the number of edges of K in the boundary of each face, we get |B1 (K)| +
2 |B2 (K)|+ ...+(z) |Bz (K)| = 2k− b. Solving for Bn

2
(K) gives (i). Parts (ii) and

(iii) follow at once from (i).

Theorem 4.5. Let K ⊆ E be a Kekule structure for the m,n-gonal system π =
(V,E, F ). If m,n are both odd integers. Then π does not admit a perfect Kekule
structure.

Proof. It is obvious that if m,n are both odd integers then it has not full face in
π.

What can we say about the Clar number? First of all, since a resonant set
is an independent set, γ(π) ≤ α∗(π) [13]. Hence, we do not expect equality here.
The best that we can say at this time is stated in the next theorem.

Theorem 4.6. Let C ⊆ F be a resonant face set of the m,n-gonal system π =
(V,E, F ), where m is an odd and n is even. Let p∗ (C) be the number of m-gonal
faces NOT in C and let v∗ (C) be the number of vertices NOT incident with a face
in C. Then:

(i) |C| = 2k
n

+ (m−n)M
n

− (m−n)p∗(C)+v∗(C)
n

;

(ii) γ (π) ≤ 2k
n

+ (m−n)M
n

.

Proof. Since C is an independent face set |C| = 2k
n
+ (m−n)M

n
− (m−n)p∗(C)+v∗(C)

n
,

giving the result.

Next theorem, we will talk about the relationship between perfect face inde-
pendent sets and perfect Kekule structure.
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Figure 4: The structure of some chemical componds (a) 4H-
1,3-Oxazin-4-one, 2,5,6-triphenyl-(C22H15NO2) (b) 2-Chloro-
6(methylamino)purine(C6H6ClN5) (c) Barrelene(C8H8) (d)
Tricyclo[3,3,0,02,6 ]octa-3,8-diene

Theorem 4.7. Let the m,n-gonal system π = (V,E, F ) be given. Then
(i) The collection of void faces of a Kekule structure for π is a face independent

set of π.
(ii) The collection of void faces of a perfect Kekule structure for π is a perfect

face independent set of π(Only in case m is odd and n is even).

Proof. (i) Let K be a Kekule structure for π = (V,E, F ) and let F be a void face.
Note that all of the edges that share exactly one vertex with F must belong to
K. Hence, all of the faces that share a common boundary edge with F belong to
Bi(K) for some i = 0, 1, 2, 3, ..., max

{

⌊m
2 ⌋,

n
2

}

and no two void faces are adjacent.
(ii) Assume K is a perfect Kekule structure and we have m is odd and n is

even. Then |Bi (K)| = 0 ∀i 6= n
2 . Let R be the independent collection of void faces

for K. Since m-gons cannot be full, they must be void. Hence, p∗ (R) = 0. Next
we note that, at each vertex, we have 2 full and one void face. Hence v∗ (R) = 0.
By Theorem 4.2., we conclude that R is a perfect face independent set.

5 Comments

The authors can develop this study to another cyclic hydrocarbon’s derivatives
or three dimension structures in order to understand about some mathematical
properties of chemical componds, which correspond to chemical properties of it.
For example, see Figure 4.



Independent Sets of m,n-gonal Graphs 11

Acknowledgements : The authors would like to thank many teachers and friends
for all the comments and remarks. This research is (partially) supported by the
Centre of Excellence in Mathematics, the Commission on Higher Education, Thai-
land.

References

[1] S. Cyvin, I. Gutman, Kekule Structures in Benzennoid Hydrocarbons,
Springer-Verlag, New York, NY, 1988.

[2] Francis A. Carey, Organic chemistry, 2nd ed., Department of Chemistry Uni-
versity of Virginia,1992, pp. 418-419.

[3] F. Rossello, G. Valiente, Chemical Graphs, Chemical Reaction Graphs, and
Chemical Graph Transformation, Electronic Notes in Theoretical Computer
Science. 127 (2005) 157-166.

[4] J. Aihara, Why aromatic compounds are stable, Scientific American, March
1992, pp. 62-28.

[5] N. Trinajstic, Chemical Graph Theory, 2nd ed., CRC Press, Boca Raton, FL,
1992.

[6] S. Skiena, Implementing Discrete Mathematics: Combinatorics and Graph
Theory with Mathematica, MA: Addison-Wesley, pp. 218-219, 1990.

[7] B. Dong, F. Zhang, Perfect Matchings of the Small Polyominoes, Electronic
Notes in Discrete Mathematics 22 (2005) 6972.

[8] K. Salem, S. Klavzar, I. Gutman, On the role of hypercubes in the resonance
graphs of benzenoid graphs, Discrete Mathematics 306 (2006) 699-704.

[9] D. Klabjan, B. Mohar, The number of matchings of low order in hexagonal
systems, Discrete Mathematics. 186 (1998) 167-175.

[10] T. Doslic, Importance and Redundancy in Fullerene Graphs, CROATICA
CHEMICA ACTA 75 (4) 869-879 (2002).

[11] T. Doslic, Fullerene graphs with exponentially many perfect matchings, Jour-
nal of Mathematical Chemistry, Vol. 41, No. 2, February 2007.

[12] F. J. Rispoli, Counting Perfect Matchings in Hexagonal Systems Associated
with Benzenoids, Mathematics Magazine. 74 (3) (2001) 194-200.

[13] J. E. Graver, Kekule structures and the face independent number of a
fullerene, European Journal of Combinatorics 28 (2007) 1115-1130.



12 Thai J. Math. 14 (2016)/ A. Khantavchai and T. Jiarasuksakun

[14] J. E. Graver, The independent numbers of fullerenes and benzenoids, Euro-
pean Journal of Combinatorics 27 (2006) 850-863.

(Received 20 April 2015)
(Accepted 30 June 2015)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

http://thaijmath.in.cmu.ac.th

	Introduction
	Vertex Independent Set
	Edge Independent Set
	Face independent set
	Comments

