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Abstract : The motivation for undertaking this paper stems from doubt that
whether investors should keep the same strategy on the portfolio over periods of
market regime shift. This paper investigates portfolio risk structure for multi-
asset allocation issue using a Markov Switching copula-based approach. With this
method we focus on returns in the different regime to improve the performance of
portfolios. We conduct a Markov Switching with high dimension copula in order to
measure a dependency of the variables, thus the model is flexible and can capture
the economic behaviour change over time. The conditional Value at Risk is taken
into account in the economic change and we employ Bayesian estimation method
to estimate parameters of the model.
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1 Introduction

The Chinese stock market crash has occurred since June 2015. Notably, not
only was Shanghai main share index down 8.49 percent of its value on 24 August,
the markets in Japan, Europe and America also suffered the meltdown. Further-
more, the Bloomberg Commodity Index has hit a low for more than 15 years.
There appears to be some correlation between stock markets and commodity fu-
tures. Should investors include commodities in their portfolios to reduce risk or
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increase returns? There exists a large body of literature documenting this issue.
Daskalaki and Skiadopoulos [1] , found that commodities offer in-sample diversifi-
cation benefits only in the case where higher order moments are taken into account
and these benefits are not preserved in the out-of-sample framework. Bessler and
Wolff [2] investigated individual commodities and commodity groups separately as
well as alternative commodity indices. They found that aggregate commodity in-
dices, industrial and precious metals as well as energy improved the performance
of a stock-bond portfolio for most asset allocation strategies but hardly traced
positive portfolio effects for agricultural and livestock commodities.

So far, many studies have worked on stock and commodity portfolio returns us-
ing conventional model, such as minimum-variance portfolio optimization strategy
and sample-based mean-variance optimization model. The dependence between
financial asset returns is explained by those conventional models, which only can
explain dependence between random variables in the linear regression. In an in-
vestment environment, there are no outliers. An incorrect model for portfolio
optimization can lead to significant loss of investment. Embrechts, Lindskog and
McNeil [3] noticed that linear correlation can often be quite misleading and should
not be taken as the canonical dependence measure. In order to capture heavy
tail information regarding the financial market, we use the copula-based GARCH
model to get value at risk (VaR) and Expected ShortfallES). The copula-based
GARCH model can be used to analyze asymmetric or tail dependence structure
(see Patton [4] and Wu, Chung and Chang [5]). There are already several papers
that show its advantages. For example, Autchariyapanitkul, Chanaim and Sri-
boonchitta [6] and Ayusuk and Sriboonchitta [7] investigated multivariate t-copula
and Vine copula based on GARCH model to explain portfolio risk structure for
high-dimensional asset allocation issue. But most still worked on strong assump-
tion of no economic change. We need to relax this assumption since many papers
presented the different structure of dependency for a long time. So the dependency
may be represented as two regimes, i.e., high dependence regime and low depen-
dence regime[8]. Thus we need Markov Switching technique. Markov Switching
models have become popular for modeling non-linearities and regime shifts. Why
is it interesting to focus on a dynamic asset allocation context? Because high and
low regime can affect asset pricing and focusing on the different regime can remove
some short-term impacts in market price dynamics and distortion of performance
of portfolios. Ntantamis and Zhou [9] investigated the relation between different
market states (bull and bear markets) to examine whether being in a different
market phases for a given commodity can provide information about whether the
corresponding commodity stocks or stock market indices are in a comparatively
market states. Moreover, most investigators used MLE as an estimator. In this
paper we employ a Bayesian estimation since the likelihood function is difficult to
estimate in the discrete margins case [10]. Moreover, if estimation of the copula
parameters is undertaken jointly with the parameters of the marginal models, the
maximum likelihood estimator is difficult to reach the global maximum and is not
easy to be converged.

This study contributes to the literature in several aspects. First, the high di-
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mensional copula is extended to Markov Switching and conduct a Markov Switch-
ing with high dimensional copula in order to measure a dependency of the vari-
ables, thus the model is flexible and can capture the economic behaviour change
over time. Second, the conditional Value-at-Risk is taken into account in the eco-
nomic change, thus it will be the more accurate risk measure than the conventional
method, which is measured under the one dimension.

Our empirical results confirm that rice futures found useful in investors port-
folios. Furthermore, we consider the stock and commodity returns in high depen-
dence regime and low dependence regime. We found that rubber futures add more
value than rice and oil futures in stock and commodity portfolios.

The remainder of this study is organized as follows. In section 2 we present the
multivariate copula and Markov Switching model. Section 3 describes our dataset
of commodity futures and stock indices. In section 4 we discuss our empirical
results. Section 5 concludes.

2 Methodology

2.1 Basic Concepts of Copula

Copula is a multivariate probability distribution that is used to describe the
dependence between random variables. Sklar’s Theorem [11] states that any mul-
tivariate joint distribution can be written in terms of univariate marginal distribu-
tion functions and a copula which describes the dependence structure between the
variables. Consider the multivariate case with n random variables, given n vari-
ables x1, ..., xn with marginal distribution F1(x1), ..., Fn(xn), Sklars theorem [11]
introduced a linkage between distributions of x1, ..., xn and bind their marginals us-
ing copula function. That isH (x1, ..., xn) = C (F1(x1), ..., Fn(xn)) = C (u1, ..., un)
where u1, ..., un are uniform in the [0,1] interval. If marginals F1(x1), ..., Fn(xn)
are continuous distribution functions, then there is a unique copula function C
but ifF1(x1), ..., Fn(xn) are discrete then C is not unique. For multivariate case,
the copula density c is obtained by

c (F1(x1), ..., Fn(xn)) =
h
(
F1

(−1) (u1) , ..., Fn
(−1) (un)

)
∏n
i=1 fi

(
Fi

(−1) (ui)
) (2.1)

where
h= the density function associated to H
fi=the density function of each marginal distribution
c= the copula density.
There are two famous classes of copula functions, namely Elliptical and Archimedean.

However, this study will focus on the Elliptical class. Elliptical copula function is
a variance-covariance structure similar to the multivariate normal family, but is
essentially richer because its marginal tails are allowed to decrease to zero expo-
nentially, according to power, or at many other rates and also has symmetrical tail
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dependence. The dependence structure, related to this function, is the Pearsons
correlation which has the value of its parameter in the [-1,1] interval. The copula
functions in Elliptical class are the Gaussian and the Student-t copulas.

2.1.1 Gaussian Copula

The Gaussian, or Normal copula is a linear correlation with symmetric function
because the upper and the lower tail dependences are equal, and so it has no tail
dependence in this function. In the multivariate case, let Φ() be standard normal
cumulative distribution, thus Gaussian copula density can be written as

f(n) (R) =
1∣∣R1/2
∣∣exp

{
−1

2
γ
(
R−1 − I

)
γ′
}( n∏

i=1

exp

{
−1

2
γ2
i

})−1

(2.2)

2.1.2 Student-t Copula

The Student-t copula has a linear correlation coefficient and has symmetri-
cal tail dependence. However, it can capture some tail dependence. Thus the
multivariate Student-t copula density can be written as

f(t) (X) =

Γ[(v+n)/2]|R1/2|√
vnπnΓ(v/2){

1 + R−1(x−µ)′(x−µ)
v

} v+n
2

n∏
i=1

{
1 +

(x− µ)
′
(x− µ)

v

} v+n
2

(2.3)

Where, v is degree of freedom parameter and Γ is gamma function.

2.2 ARMA(p, q) GARCH Models for Univariate Distribu-
tions

To model the marginal distribution of each random variable, we employ a
univariate ARMA(p, q)-GARCH(m,n) specification that can be described as

yt = φ0 +

p∑
i=1

φiyt−i +

q∑
j=1

θjεt−j + εt (2.4)

εt = htηt (2.5)

h2
t = α0 +

m∑
i=1

αiε
2
t−i +

n∑
j=1

βjh
2
t−j (2.6)

where (2.4) and (2.6) are the conditional mean and variance equation, respec-
tively. εt is the residual term which consists of the standard variance, ht, and
the standardized residual, ηt, which is proposed to have a Gaussian distribution,
a Student-t distribution, a generalized error distribution (GED), a skewed GED
and a skewed-t distribution. The best-fit ARMA(p, q)-GARCH(m,n) will give the
standardized residuals to be transformed into a uniform distribution in (0,1).
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2.3 Value at Risk with Copula

Value at Risk (VaR) and conditioned Value at Risk or Expected Shortfall (ES)
has been widely used to measure risk since the 1990s. The VaR of portfolio can
be written as

V aRα = inf {l ∈ R : P (L > l) ≤ 1− α} (2.7)

where, α is a confidence level with a value [0,1] which presents the probability
of Loss L to exceed l but not larger than (1− α). While an alternative method,
ES, is the extension of the VaR approach to remedy two conceptual problems of
VaR ([12]). Firstly, VaR measures only percentiles of profit-loss distribution with
difficulty to control for non-normal distribution. Secondly, VaR is not sub-additive.
ES can be written as

ESα = E (L|L > V aRα) . (2.8)

To find the optimal portfolios, Rockafellar and Uryasev [13] introduced the
portfolio optimization by calculating VaR and extend VaR to optimized ES. The
approach focused on the minimizing of ES to obtain the optimal weight of a large
number of instruments. In other words, we can write the problem as in the fol-
lowing The objective function is to

Minimize ESα = E (L|L > inf {l ∈ R : P (L > l) ≤ 1− α}) (2.9)

Subject to

Rp =

n∑
i=1

(wi • ri)

n∑
i=1

(wi) = 1

0 ≤ wi ≤ 1, i = 1, 2, ..., n

where Rp is an expected return of the portfolios, wi is a vector of weight portfolio,
and ri is the return of each instrument.

2.4 Regime Switching Copula

In general, financial time series exhibit different behaviour and lead to different
dependencies over time; for this reason, the dependence structure of the variables
may be determined by a hidden Markov chain with two regimes or more. There-
fore, it is reasonable to extend the copula to Markov Switching [14] and obtain
Markov Switching copula. Thus the model becomes more flexible since it allows
the dependence copula parameter (RSt

c,t) to be governed by an unobserved variable
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at time t (St ). Let St be the state variable, which is assumed to have two states
(k=2), namely high dependence regime and low dependence regime. The joint
distribution of x1, ..., xn conditional on St, is defined as(

x1,t, ..., xn,t|St = i
)
∼ CSt

t

(
u1t, ..., unT |θ

St
c,t, R

St
c,t

)
, i = 1, 2. (2.10)

The unobservable regime (St ) is governed by the first order Markov chain,
which is characterized by the following transition probabilities (P):

Pij = Pr (St+1 = j|St = i) and

k∑
j=1

Pij = 1 for i = 1, 2 (2.11)

where Pij is the probability of switching from regime i to regime j, and these
transition probabilities can be formed in a transition matrix P , as follows:

P =

[
p11 p12 = 1− P11

p21 = 1− P22 p22

]
(2.12)

The Gaussian copula density function from Eq.(2.2) can be rewritten in the like-
lihood function form as

L(n) (u1, .., un|θ1, .., θn, R) =
1∣∣R1/2
∣∣ T∏
i=1

exp{−1

2
γ
(
R−1 − I

)
γ′
} n∏
j=1

fi (xij ; θj)


(2.13)

where fi (xij ; θj) is the density function obtained from the ARMA-GARCH step
and we assume this function to be fix. Similarly, the Student-t copula density
function from Eq.(2.3) can be rewritten in the likelihood function form as

L(t) (u1, .., un|θ1, .., θn, R, v) =

T∏
i=1


Γ[(v+n)/2]|R1/2|√

vnπnΓ(v/2){
1 + R−1(x−µ)′(x−µ)

v

} v+n
2

n∏
j=1

fi (xij ; θj , v)

.
(2.14)

In this study, the method of Kim’s filtering algorithm [15] is conducted to filter
the state variable St and let L(t) and L(n) be L(T ) and L(N) respectively, thus
we can write the two regime Markov Switching copula log likelihood as

logLN (θN,St , RN,St , P ) =

2∑
St=1

logL(N)Pr
[
St|θN,St−1 , RN,St−1 , P

]
Gaussian

(2.15)

logLT (θT,St
, RT,St

, P ) =

2∑
St=1

logL(T )Pr
[
St|θT,St−1

, RT,St−1
, P
]

Student− t.

(2.16)
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To evaluate the log-likelihood in Eq. (2.15) and Eq. (2.16), we need to
calculate the weight Pr

[
St|θn,St−1

, Rn,St−1

]
and Pr

[
St|θt,St−1

, Rt,St−1
, vSt−1

]
for

St=1,2 because the estimation of the Markov Switching copula needs inferences
on the probabilities of St,

Pr (St = 1|wt) =
logL (θSt=1, RSt=1, P )Pr (St = 1|wt−1)∑2
St=1 logL(θSt

, RSt
, P )Pr [St = St|wt−1]

(2.17)

Pr (St = 2|wt) = 1− Pr (St = 1|wt) (2.18)

where w is all the information set of the model.

2.5 Prior Distributions

In the Bayesian approach we need to specify the prior distribution for all pa-
rameters sets in the model consisting of transition matrix parameters and depen-
dence parameters to obtain the posterior distribution. We define the distribution of
our parameters following Smith [10] and Smith, Gan and Kohn [16]. The uniform
prior Unif(−1, 1) is given for the dependence parameters RSt

c,t while the Dirichlet
distribution with the hyper-parameters (α1, α2) is assumed to be our prior since
the transition matrix parameter is the probability [0,1] and suitable for make the
persistence of the probability of staying in their own regime. For v , we use a
uniform prior on [2, 50]. Since the marginal models are application specific, so
are the priors on the marginal parameters, we adopt non-informative priors in our
empirical work. Thus, the log posterior distribution of Markov Switching copula
becomes

Pr (Θ, P |u1, ..., un) =

2∑
k=1

logL(N)Pr [St|Θt−1] + log (Pr (Θ, S (t))) Gaussian

(2.19)

Pr (Ψ, P |u1, ..., un) =

2∑
k=1

logL(T )Pr [St|Ψt−1] + log (Pr (Ψ, S (t))) Student− t

(2.20)

where log (Pr (Θ, S (t))) and log (Pr (Ψ, S (t))) are the log prior distribution for
Gaussian and Student-t copulas respectively.

To sample all of these parameters based conditional posterior distribution, we
employ the Markov chain Monte Carlo, Metropolis Hasting algorithm. To draws
these parameters, first of all, the target distribution function is set as a truncated
normal [-1,1] for dependence parameters and truncated normal [0,1] for transition
matrix. We run the Metropolis Hasting sampler for 10,000 iterations where the
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first 2,000 iterations serve as a burn-in period. For Metropolis Hasting algorithm,
we apply it to find all parameter sets together where the acceptance ratio is

r =
Pr (θ∗|u1, ..., un)Pr (θi−1|θ∗)
Pr (θi−1|u1, ..., un)Pr (θ∗|θi−1)

(2.21)

where θ is Θ =
{
θn,St−1

, Rn,St−1
, P
}

or Ψ =
{
θt,St−1

, Rt,St−1
, vSt−1

, P
}

.
If r ≥ 1⇒ θ = θ∗.
if r < 1⇒ draw Uniform [0,1].
if U ≤ 1⇒ θi = θ∗ else θi = θi−1.

3 Dataset and Estimation

In this study, we use the data set comprising the Stock Exchange of Thailand
index (SET), Hang Seng Index (HSI), Brent oil spot price (OIL), rubber commod-
ity price (Rubber), and rice commodity price (RICE). For the period July, 2008
to April, 2015 , totally 1766 observations. The data are collected from Thomson
and Reuter DataStream, Chiang Mai, University. All the series have been trans-
formed into the difference of the logarithm. We would like to focus on Thailand
market and to mix stock market and commodity market. We choose oil, rubber
and rice as representation of commodity market. There are several reasons. First,
the rice price has a significant effect on quantity of rubber production in Thailand
with an estimated elasticity of -2.6 (see [17]). Second, Li and Yang [18] using A
Copula-based GARCH model approach found that the rubber price is affected by
the price of oil. Thailand has become the largest rubber exporter in the world.
Thai rubber rank second in value of agricultural export after rice.

Table 1 provides the summary statistics for each rate of returns. As previously
found in other studies, these return rates demonstrate excess kurtosis and negative
skewness except HSI. In addition, from the results of Jarque-Bera test, we may
state that they do not exhibit Gaussian distribution.

In the estimation of copula with Markov switching, the method consists of
three steps. The first step is the estimation of the ARMA-GARCH to obtain the
standardized residual for each stock and transform it into uniform[0,1]; the second
step involves maximizing the Markov Switching copula log-likelihood in order to
get the starting value of dependence parameters. Finally, the Bayesian estimation
is conducted to estimate the posterior mean of the parameter sets in the model.
Note that Gaussian and Student-t copulas are two families that we employ to join
the marginal distribution in this study.

Then, the obtained final mean posterior parameter of dependence between all
variables will be extended to compute the VaR and the ES in two different regimes,
using the following method. First, the Monte Carlo simulations are used to sim-
ulate the joint-dependent distribution uniform from the fitted Markov Switching
copula model.

We simulate 10,000 replications of the portfolio returns for each regime and,
then we multiply the inverse of the marginal distribution with the random variable
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Table 1: Data Descriptive Statistics

SET HSI OIL RUBBER RICE
Mean 0.0002 0.00006 -0.00021 -0.00012 0.00001
Median 0.0002 0.00002 0 0 0
Maximum 0.03409 0.05821 0.05518 0.02879 0.0266
Minimum -0.05037 -0.05902 -0.04429 -0.03803 -0.06982
Std. Dev. 0.0063 0.00702 0.00917 0.00729 0.00427
Skewness -0.67331 0.12004 -0.0258 -0.41097 -2.79167
Kurtosis 9.86278 13.734 7.09583 5.8445 50.19978
Jarque-Bera 3599.050 8483.831 1234.618 645.086 166224.198
Probability 0 0 0 0 0
Sum 0.35651 0.10509 -0.36391 -0.20691 0.02093
Sum Sq. Dev. 0.06995 0.08694 0.14853 0.09373 0.03223
Observations 1766 1766 1766 1766 1766

to obtain εkit. To find the return of each variable (r
(k)
it ), we perform the estimation

using the following formula:

r
(k)
it = ũit +

√
hit · ε(k)

it

where ũit is the simulated mean form ARMA equation. To compute the portfo-
lio return in each regime, we specify an equally weighted portfolio return, that
is, Xpt = 0.2SET t + 0.2HSIt + 0.2BRENT t + 0.2Rubbert + 0.2Ricet. In this
computation, we compute all the risk measures at 1%, 5%, and 10% levels. Then,
The study conducts two backtesting of Kupiec [19] measure the accuracy of the
obtained VaR and the ES estimates (See [12]).

4 Empirical Result

4.1 ARMA-GARCH Results

We used ARMA-GARCH process to appropriately analyze the volatility and
estimate the marginal. We selected the optimal lag and marginal distribution
assumption for ARMA(p, q)-GARCH(1,1,) by using AIC and found that the re-
turns on SET, HSI , OIL, RUBBER and RICE satisfied ARMA(1,1), ARMA(3,4),
ARMA(5,5), ARMA(1,1), and ARMA(2,1) with GARCH(1,1) respectively. In
addition, we compared various margins assumption and the lowest Akaike Infor-
mation criterion (AIC) is preferred. We found that the margins of SET, HSI and
OIL are GED and the margins of RUBBER and RICE are normal distributed.
The parameters of each are all significant as shown in Table 2. The estimated
ARCH effects equal 0.097, 0.066, 0.054, 0.076 and 0.059. These results indicate
that a shock to the growth rate of return has short-run persistence in all cases.
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Table 2: Estimates of ARMA-GARCH parameters for raw returns

SET HSI OIL RUBBER RICE
C 0.000217 0.00004 0.00001 0.000017 -0.00001

(0.000054) (0.000042) (0.000) (0.00008) (0.00002)
AR(1) 4.889 0.4057 -0.1448 0.5811 0.685

(0.04503) (0.1338) (0.00001) (0.1238) (0.1523)
AR(2) 0.5062 -0.4316 0.08698

(0.1585) (0.00001) (0.0296)
AR(3) -0.3447 0.01003

(0.04722) (0.00001)
AR(4) 0.09061

(0.00001)
AR(5) -0.5544

(0.00001)
MA(1) -0.4821 -0.3981 0.09564 -0.4294 -0.7283

-0.05096 -0.1321 (0.00002) (0.1380) (0.1519)
MA(2) -0.5066 0.4451

(0.1580) (0.00002)
MA(3) 0.3334 -0.06321

(0.05054) (0.00002)
MA(4) -0.00263 -0.0685

(0.01808) (0.00002)
MA(5) 0.5581

(0.00002)
α0 0 0 0 0.000002 0

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
ARCH(1) 0.09768 0.06619 0.05497 0.07657 0.05904

(0.01709) (0.01189) (0.0106) (0.01038) (0.00692)
GARCH(1) 0.894 0.9287 0.9446 0.8849 0.927

(0.01692) (0.01212) (0.0102) (0.01616) (0.00683)
SHAPE 1.197 1.212 1.325

(0.05665) (0.06707) (0.06127)
LogL 6784.036 6741.797 6230.19 6364.204 7274.951
normalized 3.84147 3.8176 3.527854 3.603739 4.119452
BERK-test 0.8249 0.9882 0.5459 0.9989 0.9987
ARCH-LM 0.4467 0.5332 0.1002 0.2778 0.9975

Source: Calculation

The values of the GARCH coefficient are 0.894, 0.928, 0.944, 0.884, and 0.927
that illustrate each growth rate of return has a long-run persistence of volatility.
Testing for marginal distribution that satisfies the two preconditions: uniformity
and serial independence is a critical step in constructing multivariate models using
copula. We used the Berkowitz test to confirm the marginal has uniform distri-
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bution and ARCH-LM Test to ensure residuals are i.i.d random variables and no
autocorrelation.

4.2 Model Selection

In this section, we compare two copula functions, namely Gaussian and Student-
t copulas. The Deviance Information criterion (DIC) is employed to compare the
performance of our purposed models. Table 3 provides an evidence that MS-copula
with Student-t function presents a lower DIC than Gaussian copula. Thus, we
adopt MS-copula with Student-t function to be inference in our study. Moreover,
the acceptance rate is considered here about how often was a proposal rejected
by the Metropolis Hastings acceptance criterion. In the general, acceptance rates
between 20% and 40% are optimal since these will confirm the good mixing be-
tween the proposal function and the target distribution. In the present study the
acceptance is 40.27% for marginal parameters in our Markov Switching Student-t
copula model.

Table 3: My caption

Acceptance DIC

Gaussian 0.4456 -2423.259
Student-t 0.4027 -2761.691

Source: Calculation

4.3 Markov Switching Student-t Copula

Table 4 shows the solutions of multivariate Student-t copula parameters with
regime switching. We can use these values to construct efficient portfolio and
find optimal plans for best expected returns with minimum loss which will be
reported in the last section. Table 4 reports the estimated parameters of the
Markov Switching Student-t copula. The results show that the value of the matrix
dependence parameter in regime 1 is higher than regime 2. Thus, we can interpret
regime 1 to be the high dependence regime, while regime 2 is the low dependence
regime. Moreover, recently, the studies of Karimalis and Nimokis [20], found an
evidence that the dependence among assets during market upturns is less than that
during market downturns. Thus, this confirms the high dependence regime as the
market downturn regime and the low dependence regime as the market upturn
regime. Next, we take into consideration the estimated dependence parameters
for 2 regimes, we observe that all of pair copula parameters present a positive
dependence in both regimes except for RICE-OIL pair in regime 2. The presence
of a positive dependence among these commodity prices gives us some economic
inference that these prices are moving in the same direction and that the scope
for the diversification of these commodity prices to reduce risk is more limited.
In addition, the transition probability matrix of these commodity prices are also
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reported in Table 4. The Pr (St = 1) is 91.09% and Pr (St =) is 94.5% while the
probabilities of regime switching between these two regimes are less than 10%.

Table 4: Empirical copula parameters

Regime 1
SET HSI OIL RUBBER RICE

SET 1 0.6804 0.4722 0.3267 0.1359
(0.0013) (0.005) (0.0023) (0.0023)

HSI 0.6804 1 0.5349 0.422 0.0821
(0.0013) (0.0033) (0.0023) (0.0023)

OIL 0.4722 0.5349 1 0.309 0.0166
(0.005) (0.0033) (0.0033) (0.004)

RUBBE 0.3267 0.422 0.309 1 0.0437
(0.0023) (0.0023) (0.0033) (0.0035)

RICE 0.1359 0.0821 0.0166 0.0437 1
(0.0023) (0.0023) (0.004) (0.0035)

Regime2
SET HSI OIL RUBBER RICE

SET 1 0.4519 0.0539 0.2986 0.1301
(0.0017) (0.0015) (0.0014) (0.0015)

HSI 0.4519 1 0.0566 0.3103 0.0929
(0.0017) (0.0018) (0.0017) (0.0013)

OIL 0.0539 0.0566 1 0.0501 -0.0124
(0.0015) (0.0018) (0.0014) (0.0018)

RUBBE 0.2986 0.3103 0.0501 1 0.1623
(0.0014) (0.0017) (0.0014) (0.0017)

RICE 0.1301 0.0929 -0.0124 0.1623 1
(0.0015) (0.0013) (0.0018) (0.0017)
Regime1 Duration Regime2 Duration

Regime1 0.9109 11.224 0.0891 1.0978
Regime2 0.055 1.0583 0.945 18.1669

Source: Calculation

The results indicate that both regimes are persistent because of the high values
obtained from the probabilities. Moreover, the duration of stay is short for both
the regimes, with the duration equal to 11.24 days for the high dependence regime
and 18.16 days for the low dependence regime. This result, apparently, indicates
that the dependence between these returns has high fluctuation.

4.4 Regime Probabilities

As, we mentioned before, regime 1 can be interpreted as high dependence
regime while regime 2 is interpreted as low dependence regime.
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Figure 1: Filtered Probabilities of Market upturn regime.

Figure 1 plots the posterior mean regime at each time point for low dependence
regime or market upturn. In this section, we analyse the evolution of the regime
probabilities at each time period and find two interesting periods. First, we can
observe that the 2 main sub periods (box plot line) consist of the July 2008 to April
2009 and June 2013 to April 2014 mostly take place in market downturn. These
periods correspond to the US. Financial crisis in 2008 and the European Crisis in
2013-2014. We found that these two periods created a large negative effect on the
world economy. The demand in commodity market shrunk and thereby lowering
price of the commodities. The model seems to capture the financial behaviour well
since it could detect the two great crises in our samples.

4.5 Value at Risk and Expected Shortfall Estimation

Table 5: Risk Measurement

Regime 1
VaR% ES%

1% -4.51 -5.57
5% -2.91 -3.95
10% -2.09 -3.21
Regime 2

VaR% ES %
1% -4.62 -5.58
5% -3.02 -4.02
10% -2.11 -3.28

Source: Calculation

Further estimation results on the expected VaR and ES are reported in Table
5. We calculated the expected values of 1%, 5%, and 10% VaR and ES on an
equally weighted portfolio based on the Markov Switching Student-t copula.
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Table 6: Result of Kupiec and Christoffersen Tests for VaR and ES

Regime1 Regime2
Copula α Kupiec
Student-t VaR 1% -14.9126 -14.95024

5% -9.2124 -4.0825
10% -5.6669 -1.5461

ES 1% -0.1081 -0.5694
5% -1.7473 -4.3055
10% -6.1858 -7.5136

Source: Calculation

Table 7: Optimal Portfolios weight

Regime 1
Port SET HSI OIL RUBBER RICE Ret% Risk%
1 0.4255 0.1608 0.1608 0.3220 0.0151 0 4.57
2 0.4659 0.1464 0.0725 0.3104 0.0046 0.01 4.58
3 0.4304 0.2246 0.044 0.3005 0 0.02 4.62
4 0.4834 0.2308 0.0060 0.2796 0 0.02 4.71
5 0.5642 0.1997 0 0.2360 0 0.03 4.84
6 0.6417 0.1748 0 0.1833 0 0.04 5
7 0.7242 0.1421 0 0.1335 0 0.04 5.18
8 0.8018 0.1171 0 0.0809 0 0.05 5.41
9 0.8603 0.1220 0 0.0175 0 0.06 5.67
10 1 0 0 0 0 0.06 5.96

Regime 2
Port SET HSI OIL RUBBER RICE Ret% Risk%
1 0.3587 0.2227 0.0812 0.3309 0.0063 0 4.6
2 0.3762 0.2185 0.0745 0.3306 0 0 4.6
3 0.4304 0.2246 0.044 0.3005 0 0.01 4.61
4 0.4834 0.2308 0.0060 0.2796 0 0.01 4.67
5 0.5642 0.1997 0 0.2360 0 0.01 4.78
6 0.6417 0.1748 0 0.1833 0 0.02 4.92
7 0.7242 0.1421 0 0.1335 0 0.02 5.12
8 0.8018 0.1171 0 0.0809 0 0.03 5.39
9 0.8603 0.1220 0 0.0175 0 0.03 5.7
10 1 0 0 0 0 0.03 6.13

Source: Calculation

For regime 1 or market downturn, the estimated VaR values are 4.51%, 2.91%,
and 2.09%, respectively, while the estimated ES values are, respectively, 5.57%,
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3.95%, and 3.21%. In the case of VaR, we can indicate that it might be 1%, 5%,
and 10% sure that this portfolio will fall more than 4.51%, 2.91%, and 2.09%. If
we take ES into account, it might be 1%, 5%, and 10% sure that this portfolio
will fall more than 5.57%, 3.95%, and 3.21%. For regime 2 or market upturn, the
result from VaR shows that it might be 1%, 5%, and 10% sure that this portfolios
will fall more than 4.62%, 3.02%, and 2.11% while ES shows that it might be 1%,
5%, and 10% sure that this portfolio will fall more than 5.58%, 4.02%, and 3.28%.
We observe that the probability of loss in regime 2 is higher than regime 1. This
result confirms that the investor will face higher risk during the market upturn.

The study conducts two backtesting of Kupiec [11] measure the accuracy of
the obtained VaR and the ES estimates (See [12]). The backtest at 99%, 95%, and
90% confidence levels are shown in Table 6. We can observe that our portfolio, at
1%, 5%, and 10% levels, are not statistically significant at 10% level.Thus, it is not
possible to reject the null hypothesis that the expected proportion of violation is
equal to the VaR confidence level (α ). Therefore, the Markov Switching Student-t
copula was concluded as the appropriate model to estimate the VaR and the ES
in both two regimes.

Figure 2 illustrates the efficiency frontier for two regimes embracing the 10
portfolios in the Table 7. In this section, we also provide the optimal weight in-
vestment for these stock and commodities price in the market upturn and market
downturn. The results can be interpreted separately for the two regimes. For ex-
ample, in regime 1 or market downturn, these investors who are risk lover and want
to gain high returns can allocate their investment in SET 86.04%, HSI 12.21%,
and Rubber 1.75% in order to get the highest return at 0.06% and risk at5.67%.
In contrast the investors who are risk averse and afraid of risk, they can invest
in SET 46.60%, HSI 14.64%, OIL 7.26% and Rubber 31.04% rice 0.46% to face
with the lowest risk (4.57%). Similar investors response are advised for to regime
2 or market upturn. In addition, we observed that SET index presents the best
choice of investing when compare with other stock and commodity prices while
rice presents the worse choice.

5 Conclusion and Future Works

This paper offers portfolio risk structure for multi-asset allocation issue using
a Markov Switching copula-based approach. We intendedly deal with two different
regimes to improve the performance of portfolios. We focus on Thai market and
use the data set comprising the stock index of SET, HIS, and commodity price
of OIL, Rubber and RICE for the period 2008:07-2015:04. There are three main
findings. The first is that we found evidence that MS-copula with Student-t func-
tion present lower DIC than Gaussian copula. Thus, we adopt MS-copula with
Student-t function to be inference in our study. The second finding is that the
results of multivariate Student-t copula parameters with regime switching confirm
the high dependence regime as the market downturn regime and the low depen-
dence regime as the market upturn regime. This model also could capture the
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Figure 2: Efficient frontier for two regimes.
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financial behavior well since it could detect the two great crises in our samples.
Finally, the estimation of Expected Shortfall (ES) confirms that the investors will
face higher risk with markets upturn. We also obtained the optimal weight for the
portfolios which varies with the ES in the market upturn and market downturn.
Further researches on this work can be pursued from different angles. Since there
are two main classes of copula functions, namely Elliptical and Archimedean, our
study only focuses on the Elliptical class which has symmetrical tail dependence.
It would be interesting to see whether Archimedean copulas benefit from these ad-
vantages in multi-asset allocation issue using a Markov Switching approach when
the data set has asymmetrical tail dependence. Additionally, in our paper, we
assume that the dependence of copula parameters does not change over time. It
would be interesting to extend dynamic portfolio risk for multi-asset allocation
issue using a Markov Switching with time-varying copulas.
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