Functions that Share Two Finite Values with Their Derivative

S. Tanaiadchawoot

Abstract

The purpose of this paper is to study a meromorphic functions which share two finite nonzero values with their derivatives, and the result is proved: Let f be a nonconstant meromorphic function, a, b be a nonzero distinct finite complex constant. If f and f^{\prime} share $a \mathrm{CM}$, and share b IM and $\bar{N}(r, f)=S(r, f)$ then $f=f^{\prime}$.

Keywords: Meromorphic function; Shared value.

1 Introduction

Let f be a nonconstant meromorphic function in the complex plane \mathbb{C}. We use the standard notations in Nevanlinna theory of meromorphic functions such as the characteristic function $T(r, f)$, the counting function of the poles $N(r, f)$, and the proximity function $m(r, f)$ (see, e.g., [1]).

The notation $S(r, f)$ is used to define any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$ possibly outside a set of r of finite linear measure.

Two meromorphic functions f and g share the value $a \in \widehat{\mathbb{C}}$ if $f^{-1}\{a\}=g^{-1}\{a\}$. And one says that f and g share the value a CM if the value a is shared by f and by g and moreover if $f\left(z_{0}\right)=a$ with multiplicity p implies that $g\left(z_{0}\right)=a$ with multiplicity p, here $p=p\left(z_{0}\right)$.

The usual sharing is also denoted by sharing IM (IM =ignoring multiplicity). In sharing CM the abbreviation CM stands for counting multiplicities. Obviously, sharing $\mathrm{CM} \Longrightarrow$ sharing IM. But the converse must not be true.

In 1976, Rubel and Yang [2] proved that if f is an entire function and shares two finite values CM with f^{\prime}, then $f=f^{\prime}$.
E. Mues and N. Steinmetz [3] have shown that "CM" can be replaced by "IM". (another proof of this result for nonzero shared values is in [4]). On the other hand, the meromorhic function [3]

$$
\begin{equation*}
f(z)=\left(\frac{1}{2}-\frac{\sqrt{5}}{2} i \tan \left(\frac{\sqrt{5}}{4} i z\right)\right)^{2} \tag{1.1}
\end{equation*}
$$

shares 0 by DM and 1 by DM with f^{\prime}; while the meromorhic function [4]

$$
\begin{equation*}
f(z)=\frac{2 A}{1-B e^{-2 z}}, A \neq 0, B \neq 0 \tag{1.2}
\end{equation*}
$$

shares 0 (picard value) and A by DM with f^{\prime}; and $f \neq f^{\prime}$ in both (1.1) and (1.2).
Mues and Steinmetz [6], and Gundersen [5] improved this result and proved the following theorem.

Theorem 1.1 Let f be a nonconstant meromorphic function, a and b be two distinct finite values. If f and f^{\prime} share the values a and $b C M$, then $f=f^{\prime}$.
Q. C. Zhang [7], results that (1.2) is unique in some sense.

Theorem 1.2 Let f be a nonconstant meromorphic function, b be a nonzero finite complex constant. If f and f^{\prime} share $0 C M$, and share $b I M$, then $f=f^{\prime}$ or $f=\frac{2 b}{1-c e^{-2 z}}$, where c is a nonzero finite complex constant.

2 Preliminaries

Theorem 2.1 (First fundamental theorem of value distribution theory) Let $0<R_{0} \leq \infty$ and let $a \in \mathbb{C}$. Let f be meromorphic in the disk $\{z \in \mathbb{C}:|z|<$ $\left.R_{0}\right\}$. Assume that at the point $z=0$ the function $f-a$ has the expansion

$$
f(z)-a=c_{k}(a) z^{k}+\cdots, c_{k}(a) \neq 0
$$

Then we have for $0<r<R_{0}, m\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{f-a}\right)=T(r, f)+\eta(r, a)$ with the estimate. We can write the first fundamental theorem in the form

$$
m\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{f-a}\right)=T(r, f)+O(1) \quad \text { if } \quad r \rightarrow R_{0}
$$

Theorem 2.2 If f is meromorphic in $\mathbb{C}, f \not \equiv$ constant, then

$$
m\left(r, \frac{f^{\prime}}{f}\right)=S(r, f)
$$

Theorem 2.3 (Left main-inequality)
Let f be meromorphic in \mathbb{C} and not constant. Let $a_{1}, a_{2}, \ldots, a_{q}$ be $q \geq 1$ pairwise different complex numbers. Then we have

$$
\sum_{\nu=1}^{q} m\left(r, \frac{1}{f-a_{\nu}}\right) \leq m\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) .
$$

Theorem 2.4 (Second fundamental theorem of value distribution theory)
Let f be meromorphic in \mathbb{C} and not constant. Let $a_{1}, a_{2}, \ldots, a_{q}$ be $q \geq 1$ pairwise different complex numbers. Then we have

$$
(q-1) T(r, f) \leq \bar{N}(r, f)+\sum_{\nu=1}^{q} \bar{N}\left(r, \frac{1}{f-a_{\nu}}\right)+S(r, f)
$$

3 Main Results

Theorem 3.1 Let f be a nonconstant meromorphic function, a, b be a nonzero distinct finite complex constant. If f and f^{\prime} share a $C M$, and share $b I M$ and $\bar{N}(r, f)=S(r, f)$ then $f=f^{\prime}$.

Proof. Suppose $f \neq f^{\prime}$. By Nevanlinna's second fundamental theorem, we have

$$
\begin{aligned}
T(r, f) & \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}\left(r, \frac{1}{f-b}\right)+S(r, f) \\
& =\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}\left(r, \frac{1}{f-b}\right)+S(r, f) \\
& =\bar{N}\left(r, \frac{1}{f^{\prime}-a}\right)+\bar{N}\left(r, \frac{1}{f^{\prime}-b}\right)+S(r, f) \\
& \leq N\left(r, \frac{1}{\frac{f^{\prime}}{f-1}}\right)+S(r, f) \\
& \leq T\left(r, \frac{1}{\frac{f^{\prime}}{f}-1}\right)+S(r, f) \\
& =N\left(r, \frac{f^{\prime}}{f}\right)+S(r, f) \\
& =\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}(r, f)+S(r, f) \\
& =\bar{N}\left(r, \frac{1}{f}\right)+S(r, f) \\
& \leq T(r, f)+S(r, f) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
T(r, f) & =\bar{N}\left(r, \frac{1}{f}\right)+S(r, f) \\
& =\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}\left(r, \frac{1}{f-b}\right)+S(r, f)
\end{aligned}
$$

Let $\phi=\frac{f^{\prime}}{f-a}-\frac{f^{\prime \prime}}{f^{\prime}-a}$. Using the theorem on the logarithmic derivative, we
obtain

$$
\begin{gathered}
m(r, \phi) \leq m\left(r, \frac{f^{\prime}}{f-a}\right)+m\left(r, \frac{f^{\prime \prime}}{f^{\prime}-a}\right)+O(1) \\
=S(r, f)+S\left(r, f^{\prime}\right)
\end{gathered}
$$

Since, generally $T\left(r, f^{\prime}\right) \leq 2 T(r, f)+S(r, f)$ this gives $m(r, \phi)=S(r, f)$. And since ϕ is the logarithmic derivative $\frac{f-a}{f^{\prime}-a}$ and f, f^{\prime} share the value $a \mathrm{CM}$, it follows that

$$
N(r, \phi)=\bar{N}(r, f)=S(r, f)
$$

Hence $T(r, \phi)=S(r, f)$.
Suppose that $\phi \not \equiv 0$. Then from

$$
\frac{\phi}{f-b}=\frac{f^{\prime}}{(f-a)(f-b)}-\frac{f^{\prime \prime}}{f^{\prime}\left(f^{\prime}-a\right)} \cdot \frac{f^{\prime}}{(f-b)}
$$

it follows that

$$
\begin{aligned}
m\left(r, \frac{1}{f-b}\right) \leq & m\left(r, \frac{1}{\phi}\right)+m\left(r, \frac{f^{\prime}}{(f-b)(f-a)}\right)+m\left(r, \frac{f^{\prime \prime}}{f^{\prime}\left(f^{\prime}-a\right)}\right) \\
& +m\left(r, \frac{f^{\prime}}{f-b}\right)+O(1) \\
\leq & T(r, \phi)+S(r, f)+S\left(r, f^{\prime}\right)+S(r, f) \\
& =S(r, f)
\end{aligned}
$$

we have $m\left(r, \frac{1}{f-b}\right)=S(r, f)$. By the first fundamental theorem we have

$$
T(r, f)=N\left(r, \frac{1}{f-b}\right)+S(r, f)
$$

Since

$$
T(r, f)=N\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{f-b}\right)+S(r, f)
$$

so

$$
N\left(r, \frac{1}{f-a}\right)=S(r, f)
$$

But from the assumption, we have $N\left(r, \frac{1}{f^{\prime}-a}\right)=N\left(r, \frac{1}{f-a}\right)$. Hence

$$
N\left(r, \frac{1}{f^{\prime}-a}\right)=S(r, f)
$$

Putting all together one has

$$
\begin{aligned}
m\left(r, \frac{1}{f^{\prime}-b}\right)+N\left(r, \frac{1}{f^{\prime}-b}\right) & =T\left(r, f^{\prime}\right)+O(1) \\
& \leq T(r, f)+S(r, f) \\
& =\bar{N}\left(r, \frac{1}{f-b}\right)+S(r, f) \\
& =\bar{N}\left(r, \frac{1}{f^{\prime}-b}\right)+S(r, f) \\
& \leq N\left(r, \frac{1}{f^{\prime}-b}\right)+S(r, f)
\end{aligned}
$$

Hence $m\left(r, \frac{1}{f^{\prime}-b}\right)=S(r, f)$. Using the left main inequality we have

$$
\begin{align*}
m\left(r, \frac{1}{f^{\prime}}\right)+m\left(r, \frac{1}{f^{\prime}-a}\right)+m\left(r, \frac{1}{f^{\prime}-b}\right) & \leq m\left(r, \frac{1}{f^{\prime \prime}}\right)+S(r, f) \tag{3.1}\\
m\left(r, \frac{1}{f-a}\right)+m\left(r, \frac{1}{f-b}\right) & \leq m\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \tag{3.2}
\end{align*}
$$

By the previous equalities for the counting functions

$$
\begin{align*}
N\left(r, \frac{1}{f^{\prime}-a}\right)+N\left(r, \frac{1}{f^{\prime}-b}\right) & =N\left(r, \frac{1}{f^{\prime}-b}\right)+S(r, f) \tag{3.3}\\
N\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{f-b}\right) & =T(r, f)+S(r, f) \tag{3.4}
\end{align*}
$$

Sum four inequality above we have

$$
\begin{aligned}
T\left(r, \frac{1}{f^{\prime}-a}\right) & +T\left(r, \frac{1}{f-a}\right)+T\left(r, \frac{1}{f-b}\right)+T\left(r, \frac{1}{f^{\prime}-b}\right) \\
& \leq m\left(r, \frac{1}{f^{\prime \prime}}\right)+N\left(r, \frac{1}{f^{\prime}-b}\right)+T(r, f)+S(r, f) \\
& \leq T\left(r, f^{\prime \prime}\right)+N\left(r, \frac{1}{f^{\prime}-b}\right)+T(r, f)+S(r, f) \\
& \leq T\left(r, f^{\prime}\right)+N\left(r, \frac{1}{f^{\prime}-b}\right)+T(r, f)+S(r, f)
\end{aligned}
$$

Since $T\left(r, \frac{1}{f^{\prime}-b}\right)=N\left(r, \frac{1}{f^{\prime}-b}\right)+S(r, f)$. By above, we have $T(r, f)=S(r, f)$ a contradiction.

And so our assumption $\phi \not \equiv 0$ cannot be true. Therefore $\phi \equiv 0$. Then from integration we get

$$
\frac{f-a}{f^{\prime}-a}=C
$$

where C is some nonzero constant. If $C \neq 1$, then b is a Picard value for both f and f^{\prime}. This is impossible because $b \neq 0$. Therefore $f=f^{\prime}$.

Acknowledgement : We wish to thank Prof.Dr. Erwin Mues for helpful suggestions.

References

[1] W. Hayman, Meromorphic Functions, Clarendon, Oxford, 1964.
[2] L. A. Rubel and C. C. Yang, Values Shared by an Entire Function and Its Derivative, in Lecture Notes in Math., Vol.599, Springer-Verlag, New York, 1977, pp. 101-103.
[3] E. Mues and N. Steinmetz, Meromorphe Funktionen, die mit ihrer ableitung werte teilen, Manuscripta Math., 29(1979), 195-206.
[4] G. G. Gundersen, Meromorphic functions that share finite values with their derivative, J. Math. Anal. Appl., 75(1980), 441-446.
[5] G. G.Gundersen, Meromorphic functions that fhare two finite values with their derivative, Pacific J. Math., 105(1983), 299-309.
[6] E. Mues and N. Steinmetz, Meromorphe Funktionen, die mit ihrer ableitung zwei werte teilen, Resultate Math., 6(1983), 48-55.
[7] Q. C. Zhang, Uniqueness of meromorphic functions with their derivatives, Acta Mathematica Sinica, 45(5)(2002), 871-876.
(Received 20 March 2006)
S. Tanaiadchawoot

Department of Mathematics
Kasetsart University
Bangkok 10900, Thailand.
e-mail : fscisut@ku.ac.th

