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Abstract : This paper extends the threshold model to Markov Switching model
in order to relax a linear function between dependent and independent variables.
The model allows non-linear function using the idea of Threshold model. We con-
ducted both simulation and real data studies to evaluate the performance of the
proposed model and found that the model performs well in both simulation and
application studies. The application study revealed the negative impact of unem-
ployment rate on industry production index when the market stays in recession
and depression period. Conversely, the positive impact of Unemployment rate
to Industry Production index is empirically evident during expansion and boom
period.
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1 Introduction

The classical linear regression model has received considerable attention in
many financial applications. However, the model is poorly suited for capturing
and detecting instability in statistical relationship between the dependent and
independent variables. The economic variables behave differently in various stages
and hence the explanation of the effects that the independent variables have on the
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dependent variables is also different. There are two types of non-linear model have
been applied in many studies and researchers were successful in their attempts to
explain the relationship between the economic variables in different regimes; see
e.g., Tong ([1, 2]), Granger and Teraasvirta [3], Hansen [4] and Chen, So and
Liu [5] for more thorough discussions on Threshold model and Hamilton [6] for
discussion on Markov Switching model.

After the Threshold model was purposed by Tong in 1970s, the threshold
autoregression (TAR) ([7]) has become popular for analyzing a non-linear time
series and has been applied in many nonlinear regression contexts (See, [8]). The
regression model is separated into two or more states of economic or regimes
based on the unknown or known threshold point (w). The model can switch the
regime whenever threshold variable(qt) across. In contrast to Threshold model,
the Markov Switching of Hamilton (1989) is another type of non-linear model that
also has become the most popular in non-linear time series literature. Kuan [9]
highlighted that Threshold model has some limitations. First, nonlinear optimiza-
tion algorithms are not easy to reach the global optimization in the parameter
space and second, the model was design to estimate certain nonlinear patterns of
data. Thus, the Markov switching model is proposed to capture more complex
nonlinear patterns during different time periods. The switching mechanism could
occur any time and regime switching is governed by an unobserved state variable
that follows the first order Markov chain, i.e. St is governed by St−1.

To estimate the parameter set in each regime, the Hamilton filter is used to
split the Markov Switching model into two or more regimes. It is an iterative
algorithm for calculating the distribution of the state variable St by filtering the
density of linear function between dependent and independent variables. We ex-
pected that the assumption of this linear function might not fit to explain the real
economic behaviour. For example, if we conduct two regimes switching model to
analyse the economic data, we will specify one regime as economic upturn and
the other as economic downturn. The problem is if the linear function between
dependent variable and independent variable is hold, the model will consider the
linear relation function in both regimes and thereby failing to explain the non-
linear relationship between variables in each regime. In the real economic cycle,
many economists have suggested that there are four stages of economic cycles
namely, expansion, boom, and recession and depression stage. Thus, it is reason-
able to split the data into two regimes, the economic upturn and the economic
downturn. Thus, it is fruitful to go beyond the conventional Markov Switching
model by extending the Threshold model to Markov Switching model. To the
best of our knowledge, the combination of Markov switching and threshold model
was firstly proposed by Ardia [10]. He extend the Markov Switching model to
Threshold asymmetric GARCH model. This paper generalizes the model of Ardia
[10] by replacing the GARCH by regression model and proposed a Markov Switch-
ing Threshold regression (MS-Treg) to detect and analyze the extreme structural
change in the economic data. From now on, let we call the regime specified in the
Markov Switching model as state in order to make the explanation reasonable and
understandable. In this study, we consider the two states with two regime Markov
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Switching Threshold regression model (MS(2)-T(2)-reg). The model, therefore,
relax the linear function and proposes a non-linear function in each state. To
estimate the parameters in our proposed model, we employ a Bayesian method,
based on Markov chain Monte Carlo (MCMC) method, which is more informative,
flexible, and efficient than a maximum likelihood based approach Harris [11].

The objective of this paper is to develop a Markov Switching model for al-
lowing the non-linear function between dependent and independent variables in
each state. To accomplish this goal, we extend the idea of Threshold model to
Markov Switching regression and proposed a Markov Switching Threshold regres-
sion model. However, our proposed model has to be proven that it will work in the
real data analysis thus we conduct both simulation and real data studies to con-
firm that our proposed model can perform well and accurately. In addition, we use
Kullback Leibler divergence (KLD) (also relative entropy) to measure the distance
between the true and candidate models to check the robustness of our model. We
took the idea of robustness check following what introduced by Glasserman and
Xu [12]. They suggested that the model cannot avoid the imperfect assumption
and estimation. Error in these assumption and estimation will bring about the
in the model. To overcome these problems, we employ the KLD to measure the
distance between the true model and alternative models in order to check the ro-
bustness of our purposed model. This robust approach starts from a true model
and finds the worst case error in risk measurement that would present through a
deviation from the true model.

The remainder of this study proceeds as follows. Section 2 presents a brief
review of the non-linear models. In Section 3 we describe the MS-Treg model.
The simulation study and the robustness check provided in Section 4. Section 5
presents empirical applications to the impact of Industry Production index on US.
Civilian unemployment rate. Section 6 concludes the paper and provides a future
research recomendation.

2 Review of Markov Switching and Threshold Re-
gression Model

2.1 Markov Switching Regression Model

Consider the following Gaussian Regime Switching regression model

yt = β0,St
+ βSt

Xt + εt,St
(2.1)

where εt,St
ĩ.i.d.N(0, σ2

St
), yi,t is dependent variable, Xt is (k × 1) vector of in-

dependent variables and state variable St = i, i = 1, ...., k. The state variable
is unobserved and is assumed to evolve following a first order Markov chain with
probability of transition from state i to state j thus

Pr(St = j |St−1 = i) = pij ,

k∑
j=1

pij = 1, for i = 1, ...., k (2.2)
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The specification in Eq. (2.1) assumes that the probability of a change in state
depends on the previous state. We do not know which state the process is in but
can only estimate the probabilities of switching or staying in its own state. Thus,
for k states, the transition matrix Q can be written as

Q =


p11 · · · · · · p1k

...
. . .

...
...

. . .
...

pk1 · · · · · · pkk

. (2.3)

2.2 Threshold Regression Model

We consider a two regimes parametric threshold regression model of the form

yt = α1It[Xt ∈ Lt] + α2It[Xt ∈ Ut] + et (2.4)

where Lt and Ut are a subset of lower and upper regime, respectively. I is an
indicator function such as

It = 1 if qt > w and It = 0 if qt ≤ w (2.5)

where α and w are the estimated coefficients and threshold parameter, respectively,
and e ∼ N(0, σ2) is an n 1 vector of independent and identically distributed
(iid) errors with normal distribution. The movement of Xt between the regimes
is controlled by qt, If qt are greater or lower than w, the separated Xt can be
estimated as regressions. In Eq. (2.4) the slope with respect to Xt is equal to α1

when the qt ≤ w, and equals α2 when the qt > w. For example if we consider a
single covariate, we can rewrite Eq. (2.6) as

yt = α1 [Xt ≤ w] + α2 [Xt > w] + et. (2.6)

3 Definition and Posterior of Markov Switching-
Threshold Regression Model

3.1 Markov-Switching Threshold Regression (MSTreg)

To construct our proposed model, the non-linear function in each state is
proposed in the model. The typical setup of our model is

yt = α1,St
It[Xt ∈ Lt] + α2,St

It[Xt ∈ Ut] + et,St (3.1)

whereas et,St
∼ N(0, σ2

St
), and αSt

and σ2
St

are regime-dependent parameters.
In the model (3.1) there is after a change in the regime an immediate one-time
jump in the process mean. Occasionally, it may be more plausible to assume that
the mean smoothly approaches a new level after the transition from one state to
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another. In such a situation the following model with regime-dependent intercept
term α0,St

may be used:

yt = α0,St + α1,StIt[Xt ∈ Lt] + α2,StIt[Xt ∈ Ut] + et,St . (3.2)

A variable yt is allowed to be a non-linear function of variables in vector of Xt with
coefficients that depend on the state in period t. There are a discrete number of
states, k. In this study we consider the simple case of two states and two regimes
MS-Treg, therefore the MS(2)-T(2)-reg can be formed as

yt = α0,St=1 + α1,St=1It[Xt ≤ w] + α2,St=1It[Xt > w] + et,St=1

yt = α0,St=2 + α1,St=2It[Xt ≤ w] + α2,St=2It[Xt > w] + et,St=2

(3.3)

where w is an unknown threshold parameter which is assumed to be the same in
both states and state independent. The state St is unobserved and follows first
order Markov process with transition matrix

Q =

[
p11 p12

p21 p22

]
wherep11 + p12 = p21 + p22 = 1. To split the non-linear function into two
state, the Hamilton filter is conducted to estimate the distribution of discrete
state variable Pr(St = j |Γt) . Let Γt denote as all information available at
time t which include the data and parameters set at time t. Then the Hamil-
ton filter comprises two recursive steps: first is the prediction step, defining
Pr(St = j |Γt−1) = Q ·Pr(St−1 = j |Γt−1) and second is the updating step defining
Pr(St = j) = h · (Pr(St = j |Γt−1) ). In this study, the full log likelihood function
of our proposed model is

L = yt |Xt,Γt−1 ) =
T∑
1

f(yt|St = j,X t,Γt−1)(St = j |Γt−1)

=

T∑
1

 1√
2πσ2

St=1

×

[
− (ESt=1 )

2

2(σ2
St=1)

]
((St = 1 |Γt−1)


+

T∑
1

 1√
2πσ2

St=2

×

[
− (ESt=2 )

2

2(σ2
St=2)

]
((St = 2 |Γt−1)


(3.4)

where ESt=1 = yt − α0,St=1 + α1,St=1It[Xt] + α2,St=1It[Xt > w], ESt=2 = yt −
α0,St=2 + α1,St=2It[Xt ≤ w] + α2,St=2It[Xt > w], Pr(St = 1 |Γt−1) and Pr(St =
2 |Γt−1) are derived from the Hamilton Filter algorithm.

3.2 Posterior Estimation

The study conducted a Bayesian estimation for inference. Generally the
conventional methods rely on normality assumptions and asymptotic arguments.
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However, under the MCMC sampling methods which are more complicated and
realistic applications, there is no inherent reliance on asymptotic arguments and
assumptions [13]. Thus, this leads the Bayesian approach to outperform the clas-
sical approach. Given the observation, y = y1, ..., yT and X = X1, ..., XT , the
posterior distribution of Γ =

{
α, σ2, w, p11, p22

}
is given by

P (Γ |y, x)α L(y,X |Γ)P (Γ) (3.5)

where P (Γ) is the prior distribution of Γ and L(y,X |Γ) is the likelihood function
in Eq. (3.4). In this study, we adopt a Metropolis Hasting algorithm which can
work with the multivariate distributions and is easy for estimating the complicated
conditional distribution of our proposed model. Lynch [13] suggested that it is
easier to use a random walk MH algorithm and to let the computer to derive the
complex conditionals and let the computer do the job.In summary, the Bayesian
estimation involves the following steps:

1. To sampler the posterior distribution, Vrontos, Dellaportas, and Politis [14],
suggested to reduction of the computation cost by using simultaneous updating
of the highly correlated parameters group. Thus, the study separates the param-
eters into 4 groups consisting of coefficient parameter (α), variance parameterσ2,
threshold parameter (w) and transition matrix parameter groups (p11, p22).

2. To estimate the posterior distribution in the model, we need to specify the
prior for unknown parameters. In this study, we choose the priors as follows.

1) The conditional posterior for coefficient group is p(αj
∣∣αj−1, σ

2, w,Q, y,X)
where αparameter are assumed to be normal density,

α̃˜N(αj
∣∣αj−1, σ

2, w,Q, y,X ,Σα)
where Σα is the variance of α̃.

2) The conditional posterior for variance-covariance group is

p(σ2
j

∣∣α, σ2
j−1, w,Q, y,X)

where σ2 parameters are assumed to be Inverse Gamma( v+n
2 , vψ+ns2

2 ) where v
and ψ are hyper-parameter for shape and rate parameters and s2 = e′e/n

3) The conditional posterior for transition matrix group is

p(Qj
∣∣β, σ2, w,Qj−1, y,X),

the diffuse prior for the transition probabilities is Dirichlet. Q̃j˜Dirichlet(q)
where q is the vector of scale parameters.

4) Finally, we can write the conditional posterior distribution for was

p(w |Γ, Yc, Xc ) =

n∏
t=1


2∑
j=1

 1√
2πσ2

j

× exp

[
−
(
E(St=j)

)2
2(σ2

j )

]
3. Draw a candidate parameter, Γ1 =

{
α1, σ2,1, w1, p1

11, p
1
22

}
from a proposal

function density . These candidate parameters can be sampled from
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Γj+1 = Γj + Γ̃j˜N(0, ς)
where ς is a standard deviation which is obtained from Maximum Likelihood es-
timated standard errors of the parameters multiplied by a fraction (0.5) in order
to produce a reasonable acceptance rate.

4. Each group of parameters is updated in sequence by a Metropolis-Hastings
step and the parameters of each group is simultaneously updated conditional on
the remaining blocks. MH-sampler is carried out by cycling repeatedly through
draws of each parameter block conditional on the remaining parameter blocks.
Then we simulate u from U(0, 1) and compare it with ratio R:

R =
P (Γj+1

c |y,x)
P (Γj |y,x)

In each group, if R > u, we accept the candidate parameters otherwise, we reject
then and retain the previous parameters values in this iteration. Set j = j+1 and
return to step 3 until enough draws are obtained.

4 Simulation Study

4.1 Simulation Result

In this section, we provide a simulation study to check whether our proposed
model works or not. In this simulation study, we set the true parameter values
of MS(2)-T(2)-reg as specified in Table 1. T=300 and 500 observations were
generated. The model errors are assumed to follow a Normal distribution with
e1 ∼ NN(0, 1) and e2 ∼ N(0, 2). The independent variables Xt are randomly
simulated from Normal (w,10) to ensure the structural change in the data.

Figure 1: Scatter Plot of simulated Independent data (X) and dependent data
(Y).
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Table 1: Simulation Results

MS(2)-T(2)-reg

N Parameter True Value Estimated Value Acceptance rate

α0,St=1 -2 -2.2271(0.1402) 40.53%
α1,St=1 3 3.0081(0.0019)
α2,St=1 1 1.0181(0.0001)
α0,St=2 1.5 0.9155(0.3985)
α1,St=2 3 2.9831(0.0075)
α2,St=2 2 2.0513(0.0050)
σ2St=1 1 1.0181(0.0002) 75.25%

σ2St=2 2 1.8562(0.0011)

w 20 19.8743(0.0295) 35.57%
p11 0.95 0.9237(0.0173) 19.06%
p22 0.95 0.9237(0.0173)

500 α0,St=1 -2 -2.0952(0.0380) 47.15%
α1,St=1 3 3.0121(0.0018)
α2,St=1 1 1.0008(0.0048)
α0,St=2 1.5 1.4084 (0.0724)
α1,St=2 3 3.0149(0.0022)
α2,St=2 2 1.9772(0.0048)
σ2St=1 1 1.0008(0.0002) 73.37%

σ2St=2 2 1.9767(0.0001)

w 20 19.904(0.0288) 29.68%
p11 0.95 0.9421 (0.0156) 15.43%
p22 0.95 0.9374(0.0157)

Source: Calculation

The model is tested against a number of simulated data sets. The posterior
mean parameter estimates are found to converge to the true parameters. The pa-
rameter means are close to the true values with the reasonable standard deviations.
The acceptance rate for each block is around 30%-50%. Table 1 also demonstrates
the estimation of parameter set of the model, the estimated posterior means are
close to their true values. Figure 2. compares the estimated regime (line) with
true regime (dot line). Our model successfully differentiated between state 1 and
2. Finally, we plot the fitted MS(2)-T(2)-reg lines in Figure 3. We can observe
that the two fitted lines show a large positive slope with threshold value around
20 (green dot) for both states and their switching to small positive slope for both
states when X exceed the threshold value. Overall, the simulation study suggests
that MS(2)-T(2)-reg is quite accurate with the simulation data when T=200 and
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500 observations.In this paper, we take 10,000 iterations for an MCMC algorithm
where the first 2,000 iterations serve as a burn-in period in order to discard the un-
certainty of the algorithm. The acceptance rate also computed while the iteration
draw to check how well the algorithm jumps around in the parameter space.

Figure 2: Simulated Filtered Probabilities Plot

Figure 3: Estimated Markov Switching Threshold regression with break point
(green dot)
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4.2 Model Accuracy and Comparison with Other Models

In the financial analysis, the models for this purpose inevitably rely on im-
perfect assumptions and estimations and thereby creating the model risk. The
model risk is a loss consequential to using the wrong model specification such as
distribution assumption, the structure of the model and estimation Glasserman
and Xu [12]. Thus if we adopt a wrong model, we might face the wrong result.
To overcome these problem, we conducted the Kullback Leibler divergence (KLD)
(also relative entropy) that as introduced in Glasserman and Xu [12] to check the
robustness of the model. In this subsection we focus only on the model structure
thus we compare our proposed model with three conventional models.

1) Linear regression model (reg)

2) Threshold regression with two regimes (T-reg)

3) Markov switching regression model with four states (MS-reg)

Note that the study employ a Bayesian method was employed to estimate the
parameters in our model. If the true posterior is known, thus the proposed model
is accurate. However, it will be true only in the simulation study. In practice, we
conduct the Kullback-Leiber divergence (KLD) which is a measure of the difference
between two probabilities distribution [15]. Thus we take this approach to measure
the distance between the true model and alternative model through their posterior

distribution. Consider the continuous probability distribution, let
_

f and f be

denoted as the density of
_

Fand F thus we define the relative entropy of
_

f with
respect to f to be]

R(f,
_

f ) =
∫∞
−∞ f(x) log f(x)

_

f (x)
dx

where R(f,
_

f ) > 0 otherwise equals zero only if
_

f=f . In this study, we define
_

f as an alternative or approximated posterior distribution and define f as a true
posterior function when all parameters are known.

In this section, we aim to check the robustness of MSTreg by measuring the
distance between true model posterior function and its approximation, when the
parameter and model are correctly specified and when the model is misspecified.
The study conducts Monte Carlo simulation to simulate the true model explained
in section 4.1. We compare the true MSTreg function (by simulation) with its best
approximations, reg, T-reg, and MS-reg (in terms of posterior function).

Figure 1 illustrates two panels of each simulation data, we can observe its best
approximation (approximate MSTreg) achieve its minimum and is the closest to
true function line (red dashed line) when compare with the other three models.
According to the results, we can claim that our proposed model is a robust model.
Adopting a wrong model makes the distance between the true model and alterna-
tive model larger and it will lead to the low accuracy of the model.Furthermore, we
investigate the performance of our model under specific parameter perturbations.
The Monte Carlo simulation is conducted here to generate the relative entropy
for each error variance (σ2). We vary σ2 from 0.5 to 5 (which produces the worst
case): the relative entropy between the true simulated posterior (Grey shade) and
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MS-treg (dashed red), reg (dashed blue), T-reg (deep blue), and MS-reg (dashed
green) are shown in Figure 5.

Figure 4: Estimated Markov Switching Threshold regression with break point(red
dot)

(a) (b)

Figure 5: The distance between true model and alternative model under pertur-
bations in sigma parameter

The results show that the relative between the true model and other models
decreases when σ2 increases. Increasing the error variance makes the relative
entropy smaller for all the models. This indicates that a large error variance will
make all model not different. However, our model does not seem to be more
affected by the increase in the error variance since the lines between the MST-reg
(dased red) and true model (Grey shade) are very close together. We can confirm
that our model performs well in this simulation study.
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5 Application on the Impact of US. Civilian Un-
employment Rate to Industry Production In-
dex

The data set considered, derived from the Thomson Reuter Data stream, Fac-
ulty of Economics, Chiang Mai University, consisted of monthly data, form the
ending of December 1962 to November 2015, of the Industry Production index
(IPI) and Unemployment rate of United States (UNP). The data series examined
are transformed in to growth rate. In this study, we setup the model specification
as follows:

IPIt = α0,St=1 + α1,St=1It[UNPt−1 ≤ w] + α2,St=1It[UNPt−1 > w] + et,St=1

IPIt = α0,St=2 + α1,St=2It[UNPt−1 ≤ w] + α2,St=2It[UNPt−1 > w] + et,St=2.

The results reported in this section are related to the fitting of an MS(2)-
T(2)-reg to analyse the impact of US. Civilian Unemployment rate on Industry
Production index. We plot a scatter plot of IPI and Unemployment rate in Figure
6.

Figure 6: Scatter Plot of IPI and Unemployment rate

The estimated parameters for MS(2)-T(2)-reg, which are obtained from the
Bayesian estimation, are shown in Table 2. The results provide two states where
each state has two regimes. The intercept term α0 of state 1 (St = 1)and state
2 (St = 2) seem to have an economic interpretation. α0,St=1 appears to have a
lower value when compared with α0,St=2, hence we can indicate state 1 and state
2 as low economic state and high economic state, respectively. For each state, the
same threshold value for both states is assumed in this study.
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Table 2: Estimates Results

MS(2)-T(2)-reg

N Parameter True Value Estimated Value Acceptance rate

α0,St=1 -2 -0.0010(0.0048) 52.53%
α1,St=1 3 -0.0033(0.0043)
α2,St=1 1 -0.0001079
α0,St=2 1.5 0.0003(0.0016)
α1,St=2 3 0.0300(0.0201)
α2,St=2 2 0.0083*(0.0039)
σ2St=1 1 0.0003(0.0020) 65.81%

σ2St=2 2 0.0150*(0.0075)

w 20 6.0864(0.0020) 65.81%

p11 0.95
0.8761*
(0.0432)

53.18%

p22 0.95 0.8597*(0.0514)

Source: Calculation

The threshold estimate is 6.0864. The slope with respect to UNP equals α1,St

for UNP less than w, and equals α2,St
for values of UNP greater than w. Thus,

we can split the data into two regimes for each state. Following Makiw (2003)
we interpret regime 1 and 2 of state 1 as recession and depression, respectively.
Mankiw [16] suggested that such periods are called recessions if they are mild and
depressions if they are more severe. In this state, the estimates show negative
coefficients of 0.0033 and 0.0166 for regime 1 and regime 2, respectively. Consider
state 2, we interpret regime 1 and 2 as expansion and boom economy, respectively.
Contrary to state 1, the estimates show positive coefficients of 0.0030 and 0.0083,
respectively. This indicates that the high unemployment rate will produce a neg-
ative effect on IPI in the next month for both recession and depression periods
but positive on IPI for both expansion and boom economy. Surprisingly, for the
expansion period, we find the opposite effect that the more production grows, the
higher the unemployment level. We expect that unemployment increases the sup-
ply of labour available for firms to employ. Thus, it will push a downward pressure
on wages as labour is less scarce and more labour are willing to get a job at a lower
wage. This will have a positive effect on industry as their labour costs will fall.
Moreover, Table 2 also provides an estimated probabilities of staying in regime 1
(p11) and regime 2 (p22). This results indicate that both regimes are persistent.
The mean regime at time t is shown in Figure 7. The results illustrate a filtered
probabilities along our sample sizes. We can observe that the economic environ-
ment is identified to stay in high economic state more than the other. The model
can capture the turbulent economic crisis during 1982-1984 which coincided with
the peak of the depression when the nationwide unemployment rate was 10.8%,
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highest since the Great Depression in 1930; and during 2007-2009, which coincided
with the Hamburger Crisis in US.

Figure 7: Filtered Probabilities in High Growth Economic

Figure 8: Scatter Plot of IPI and Unemployment rate with Estimated MS(2)-
T(2)-reg model

Figure 9: Scatter Plot of IPI and Unemployment rate with Estimated MS(4)-reg
model
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Furthermore, in this section, we plot the scatter plot of IPI and Unemployment
rate with estimated Markov Switching Threshold regression with two states and
two regimes (MS(2)-T(2)-reg) and a Markov Switching regression with four regimes
(MS(4)-reg model). Though the Hamilton filter is conducted as a tool for split the
Markov Switching model into two or more regimes, we expect the linear function
assumption between independent and dependent variables is not convenient in the
real economic data. To confirm our expectation, we compare the potential between
MS(2)-T(2)-reg and MS(4)-reg model by plotting the model regression fitted line
against scatter plot between IPI and UNP. Figure 8 and 9 illustrate MS(2)-T(2)-reg
and MS(4)-reg fitted lines against scatter plot, respectively. Consider our proposed
model, Figure 7 shows two different fitted lines consisting of state 1 line (red line)
and state 2 line (blue line). We can see that the fitted regression in state 2 shows
a small positive slope with threshold value around 6 (green dot), with switching
to large positive slope above this value. Conversely, state 2 shows a small negative
slope and switches to large negative slope when UNP exceeds the threshold value.
Comparing to MS(4)-reg, we can observe that both model fitted lines perform
well to explain the relationship between UNP and IPI. However, we compared the

models in terms of a root mean square error RMSE =

√
1/(N − q)

N∑
i=1

ε2
i . We

found that the RMSE of MS(2)-T(2)-reg = 0.6268% and MS(4)-reg =0.7163%.
Thus, our proposed model is slightly better than the conventional MS(4)-reg for
this real data analysis.

6 Conclusion and Future Work

The study extends the Threshold model to a Markov Switching regression
model and introduced a Markov Switching threshold regression model. Both sim-
ulation and real data studies are conducted to evaluate the performance of our
model. The Bayesian method is adopted as an estimation tool for estimating our
model. Robustness check through KLD or relative entropy confirms our model is
robust. We measure the distance between true model and alternative models in
terms of their distributions and found that our proposed model is closest to the
true distribution. In addition, the study applied the proposed model to study the
impact of unemployment rate to the industry production index and found that
the model provides a particularly good description for this real data study. The
model can capture and identify the structural change in this data with two states
and two regimes. Finally, we conducted RMSE to measure the performance of our
model against Markov Switching regression with four regimes and found that our
model show a lower value of RMSE. For future study, as we do not consider the
prior sensitivity here, we suggest that prior sensitivity check should be taken into
account when the model is employed in real data analysis. Moreover, the model
can be extend to Markov Switching Smooth Threshold regression in order to allow
for higher degree of flexibility in model parameters through smooth transition.
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