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Abstract : Ordinal outcomes are often observed in the social and economic sciences. It
is frequently that the scale or magnitude of the outcomes is not available. The common
average treatment effect is not well-defined for causal inference. We define a useful
causal estimands for ordinal outcomes in this research. To consistently estimate the
causal estimands, the data has to satisfy the ignorable treatment assignment assumption.
This condition ensures that the outcome of interest is independent of the treatment
assignment mechanism. We discuss and propose the models for correcting self-selection
bias from this type of observed data using copula approach. Copula can capture the
dependence between treatment assignment and outcomes of interest. Bayesian estimation
procedures play an important role in causal analysis [1]. Thus, Bayesian estimation
procedure is applied to help estimating the complex model structures. Finally, we discuss
the framework for estimate causal effect of ordinal potential outcomes and apply this
framework to the healthcare survey data from [2] as a case study.
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1 Introduction

One of the main goals of scientific research is mostly to investigate the causal rela-
tionship between treatments and outcomes of interest. In general, it is very complex and
challenging to define cause. However, for empirical research, the definition of causal ef-
fect of treatment is straightforward and useful. [3] defined causal effect through potential
outcomes. Causal estimands are simply to compare the potential outcomes that would
have been observed under different exposures of units to treatment [4]. [3] discussed the
potential outcomes framework for causal inference on the binary outcome. This work
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provided a formal framework for the estimation of causal effects for many types of data.
However, there is no explicit discussion in the recent literatures for ordinal outcomes.

Ordinal outcomes are frequently observed in the social and economic sciences. Some-
times, the scale or magnitude of the ordinal outcomes is not available. For example, level
of education consists of high school, bachelor’s degree, master’s degree, and doctoral de-
gree. This variable can be viewed as an ordinal variable but with no scale or magnitude
between each ordering. If one would like to make a causal statement about how the gov-
ernment program to promote higher education affects the participants’ level of education,
one has to specify a causal estimand for this problem. The common estimand, such as
the average treatment effect, is not well-defined for non-numeric and ordinal data in this
case. The average of more than two ordinal values is difficult to interpret.

If we can observe both the potential outcomes under treatment and control or non-
treatment for each individual or unit, then the causal effect is the difference between
these potential outcomes. However, we can only observe one of the potential outcomes
for each individual or unit. To estimate the causal effect, we need data for inference.
To consistently estimate the treatment effect, we have to satisfy the ignorable treatment
assignment assumption [5]. This condition ensures that the outcome of interest is inde-
pendent of the treatment assignment mechanism [6]. This assumption can be satisfied
when we assign each individual randomly to the treatment and control groups. In other
words, we can only consistently estimate the treatment effect if there is no selection bias
in the treatment assignment.

In some observational studies, the survey participants sometimes self-selected them-
selves into the treatment condition, thus it is hard to believe that the independence
assumption holds in this situation. In this observed data, the treatment assignment is
not ignorable, thus using treatment condition as the dummy variable in statistical models
will lead to the bias estimation of treatment effect. Factors affecting self-selection might
cause the dummy variable of treatment condition to be correlated with random errors in
the outcome model, which leads to biased parameters estimation. Bayesian estimation
procedures play an important role in causal analysis [1]. The objective of this paper
is to propose a model that can treat this self-selection bias by allowing dependence be-
tween random errors of selection and outcome models using copula approach and applied
Bayesian estimation procedure to estimate the parameters of the models.

From the proposed model, we can impute the counterfactual potential outcomes
for each individual. This will give us the full matrix of joint distribution of potential
outcomes. Based on the joint distribution matrix, we can calculate the causal effect
defined as a function of this joint distribution. This procedure for causal inference will
be applied to the healthcare survey data from [2] as a case study.

2 Model Formulation

In this section, we develop a parametric model to investigate the effect of a binary
treatment variable on an ordinal outcome of interest. Let Di indicate a binary treatment
variable (or assignment) for unit i, where Di = 1 implies the receipt of treatment and
Di = 0 implies the non-receipt or control. The ordinal outcome of interest is denoted
Yi ∈ {1, 2, ..., J} for unit i. We use superscript to separate the potential outcomes received

by the unit in the treatment and the control states, where Y
(1)
i is the outcome of the

unit under treatment and Y
(0)
i is the outcome of the unit without treatment. We only

observe one outcome Yi for each unit and never observe both, and thus
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Yi = DiY
(1)
i + (1−Di)Y

(0)
i . (2.1)

We model the observed treatment assignment Di and the potential ordinal outcomes
Y

(1)
i and Y

(0)
i by a latent variable framework as follows:

D∗
i = Wiβ

(D) + ui, (2.2a)

Z
(1)
i = Xiβ

(1) + ε
(1)
i , (2.2b)

Z
(0)
i = Xiβ

(0) + ε
(0)
i , (2.2c)

where Wi and Xi are the vectors of covariate; β(D), β(1), and β(0) are the vectors of
parameter; and ui, ε

(1)
i , and ε

(0)
i are the error terms. We assume an exclusion restriction

for Wi and Xi, where some covariates in Wi are not contained in Xi [7].

The binary treatment variable Di and the latent variable D∗
i are related as follows:

Di =

{
1 if D∗

i > 0

0 if D∗
i ≤ 0.

Similarly, the potential outcomes Y
(1)
i and Y

(0)
i are related to the latent variables Z

(1)
i

and Z
(0)
i as follows:

Y
(k)
i = j iff τ

(k)
j < Z

(k)
i ≤ τ (k)j+1, k = 0, 1, j = 1, 2, ..., J, (2.3)

where τ
(k)
j , k = 0, 1, j = 1, 2, ..., J are the threshold values, forming a partition of the real

line, that will enable us to map the continuous latent values into discrete values of ordinal
outcomes in both states. For the model identification purpose, we set τ

(1)
1 = τ

(0)
1 = −∞,

τ
(1)
2 = τ

(0)
2 = 0, and τ

(1)
J+1 = τ

(0)
J+1 =∞.

Finally, the joint distribution of the error terms is modelled by copula function. A
bivariate copula function with parameter θ, C(v1, v2|θ) is a distribution function over the
interval [0, 1]× [0, 1] with uniform marginal distribution function [8]. For a bivariate joint
distribution H with marginal distributions F1 and F2 , the copula C : [0, 1]2 → [0, 1] ,
which combines these two marginal distributions, can be expressed as follows:

H(x1, x2) = C (F1(x1), F2(x2)|θ) , (x1, x2) ∈ R2. (2.4)

Given the assumed conditional independence across observations, the likelihood func-
tion for these models can be written as:

p(Y,D|Γ) ≡ L(Γ;Y,D) =

 ∏
i:Di=1

Pr(Y
(1)
i = j,Di = 1|Γ)

 ∏
i:Di=0

Pr(Y
(0)
i = j,Di = 0|Γ)

 ,

(2.5)

where Γ = {β(D), β(1), β(0), τ (0), τ (1), θ(1), θ(0)} is the vector of parameters to be esti-
mated. Bivariate copula can be applied to calculate this likelihood as follows:

Pr(Y
(0)
i = j,Di = 0|Γ) = Pr(τ

(0)
j −Xiβ

(0) < ε
(0)
i ≤ τ (0)j+1 −Xiβ

(0), ui ≤Wiβ
(D)|Wi, Xi,Γ)

= Pr(ε
(0)
i ≤ τ (0)j+1 −Xiβ

(0), ui ≤Wiβ
(D)|Wi, Xi,Γ)

− Pr(ε(0)i ≤ τ (0)j −Xiβ
(0), ui ≤Wiβ

(D)|Wi, Xi,Γ),
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Pr(Y
(1)
i = j,Di = 1|Γ) = Pr(τ

(1)
j −Xiβ

(1) < ε
(1)
i ≤ τ (1)j+1 −Xiβ

(1), ui > Wiβ
(D)|Wi, Xi,Γ)

= Pr(ε
(1)
i ≤ τ (1)j+1 −Xiβ

(1)|Wi, Xi,Γ)− Pr(ε
(1)
i ≤ τ (1)j −Xiβ

(1)|Wi, Xi,Γ)

− Pr(ε(1)i ≤ τ (1)j+1 −Xiβ
(1), ui ≤Wiβ

(D)|Wi, Xi,Γ)

+ Pr(ε
(1)
i ≤ τ (1)j −Xiβ

(1), ui ≤Wiβ
(D)|Wi, Xi,Γ).

For any given copula, the two required joint distributions, Pr(Y
(1)
i = j,Di = 1|Γ)

and Pr(Y
(0)
i = j,Di = 0|Γ) are fully determined. Therefore,

Pr(Y
(0)
i = j,Di = 0|Γ) = C0(F

(0)
1 (τ

(0)
j+1 −Xiβ

(0)), F2(−Wiβ
(D))|θ(0))

− C0(F
(0)
1 (τ

(0)
j −Xiβ

(0)), F2(−Wiβ
(D))|θ(0)),

and

Pr(Y
(1)
i = j,Di = 1|Γ) = C1(F

(1)
1 (τ

(1)
j+1 −Xiβ

(1)), 1|θ(1))− C1(F
(1)
1 (τ

(1)
j −Xiβ

(1)), 1|θ(1))

− C1(F
(1)
1 (τ

(1)
j+1 −Xiβ

(1)), F2(−Wiβ
(D))|θ(1))

+ C1(F
(1)
1 (τ

(1)
j −Xiβ

(1)), F2(−Wiβ
(D))|θ(1)),

where C0(v1, v2) and C1(v1, v2) are copula functions and F
(0)
1 , F

(1)
1 and F2 are marginal

distribution functions.

3 Bayesian Estimation

To start a Bayesian estimation, we first specify the likelihood function for our ordinal
outcome models discussed in the previous section. The likelihood function can be fully
specified by assuming parametric models for the marginal distributions, F

(0)
1 , F

(1)
1 , F2,

and copula functions, C0, C1, for bivariate distribution models. We then add a prior
density, p(Γ), where Γ is the vector of parameters previously defined in Section 2. This
prior represents a subjective belief about values of the parameters. If the researcher does
not have a sufficient information on the parameters, this prior can be selected to be vague
so that information contained in the data will dominate the vague information from the
prior. By combining the prior density p(Γ) with the likelihood p(Y,D|Γ), we can obtain
the joint posterior density p(Γ|Y,D) from Bayes theorem. The joint posterior completely
gives the full information for point and interval estimations of parameters including other
quantities of interest, for instance, quantiles.

In practice, the direct evaluation of this posterior can be difficult involving a high-
dimensional integration problem. The high-dimensional integration derived from our
model formulation has no analytical solutions. To extract information from the posterior,
we utilized a recent advances technology in simulation methods, namely, Gibbs sampler
and Metropolis-Hastings algorithm. These algorithms make us tractable to generate a
sequence of draws that converge to the posterior p(Γ|Y,D). After achieving convergence,
the set of simulated parameter values will be used to calculate the quantities of interest,
for instance, posterior means. Gibbs sampler is performed by producing a Markov chain
whose limiting distribution is p(Γ|Y,D). This can be done by iteratively sampling from
the complete posterior conditionals of the model. The Metropolis Hastings algorithm
is a generalization of the Gibbs sampler. It can be viewed as a multivariate accept-
reject algorithm. The readers are referred to [9] and [10] for a detailed reviews of these
simulation methods.
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In this paper, we perform the algorithms above with the use of data augmentation
[11]. We first expand the posterior distribution by augmenting with the latent data

D∗
i , Z

(1)
i , and Z

(0)
i . The use of data augmentations will simplify the required posterior

calculation when used in conjunction with the Gibbs sampler [12]. For our model, the
augmented posterior can be written as:

p(Γ, D∗, Z
(1)
i , Z(0)|Y,D) = p(Y,D|Γ, D∗, Z

(1)
i , Z(0))× p(D∗, Z

(1)
i , Z(0)|Γ)× p(Γ). (3.1)

The middle term p(D∗, Z
(1)
i , Z(0)|Γ) is just the bivariate distributions of

(D∗, Z(1)) and (D∗, Z(0)), when we assume the independence between Z(1) and Z(0).

For the first term p(Y,D|Γ, D∗, Z
(1)
i , Z(0)), by conditioning on the latent variables and

parameters, the joint distribution for Y and D is degenerated, since we know the observed
responses with certainty. Finally, the augmented posterior can be written as:

p(Γ, D∗, Z
(1)
i , Z(0)|Y,D) = p(Γ)(

∏
i:Di=1

Pr(Y
(1)
i = j,Di = 1|Γ)× [I(D∗

i > 0)I(τ
(1)
j < Z

(1)
i ≤ τ (1)j+1)]

+
∏

i:Di=0

Pr(Y
(0)
i = j,Di = 0|Γ)× [I(D∗

i ≤ 0)I(τ
(0)
j < Z

(0)
i ≤ τ (0)j+1)]).

[12] gives the step-by-step algorithm on how to simulate the augmented posteriors from
the above model settings.

4 Causal Effect for Ordinal Outcome

The causal inference using potential outcomes framework was proposed by [3]. This
model is frequently referred to as Rubin Causal Model [1] . Rubin himself described
the motivation and the history details of his model in [13]. The choice of estimand or
the object of interest when the outcomes are continuous is the average treatment effect
[3]. This quantity can be estimated in both randomized experiment and observational
studies. For the valid causal inference from observed data, [14] reviewed various methods
for causal inference from observational studies. These methods include propensity score,
marginal structural models, and instrumental variables. The main idea for these methods
is to control for the confounding effects.

However, in the ordinal outcomes, the average treatment effect is not well-defined due
to the lack of scale or magnitude of the outcomes. The only information about the two
consecutive outcomes is that the higher orders or categories are greater than the lower
orders or categories. There are several researchers who have proposed the estimands
regarding the ordinal outcomes. [15] proposed the difference in the distribution under
the control and treatment. [16] proposed the conditional median under the monotonic
treatment effects assumption as an estimand for causal inference of ordinal outcomes.
The former estimand carries little information in some cases. The latter is more general
and useful in practice.

To perform causal inference under potential outcomes framework, we assume the
stable unit treatment value assumption [17]. Under this assumption, there will be only

one version of the treatment and no interference among units. The pair (Y
(1)
i , Y

(0)
i ) is

defined as the potential outcomes of unit i under treatment and control, respectively.
Let pkl be the joint distribution of units whose potential outcome is k under treatment
and l under control. Thus,

pkl = Pr(Y
(1)
i = k, Y

(0)
i = l), k, l,= 1, 2, ..., J. (4.1)
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The J×J probability matrix P = [pkl] characterize the joint distribution of the potential
outcomes. The row and column sums of matrix P can be interpreted as elements in
marginal distributions of potential outcomes under treatment and control, respectively.
Let pk+ =

∑J
l′=1 pkl′ and p+l =

∑J
k′=1 pk′l be the column and row sums. Thus, the

vectors p1 = (p1+, ..., pJ+) and p0 = (p+1, ..., p+J) characterize marginal distribution of
the potential outcomes under treatment and control, respectively.

From the marginal distributions defined above, we can define the distributional causal
effects [18] for ordinal outcomes as:

δj = Pr(Y
(1)
i ≥ j)− Pr(Y

(0)
i ≥ j) =

∑
k≥j

pk+ −
∑
l≥j

p+l. (4.2)

δj can be used to measure the difference between the marginal distributions of ordinal
potential outcomes at each order j. [19] discussed the situation where δj have different
signs for each order j. This situation led to the difficulty to decide whether the treatment
or the control is preferable. [19] also proposed two causal effects that can be used to
measure the beneficiary and strictly beneficiary of treatments for all units as follows:

τ = Pr(Y
(1)
i ≥ Y (0)

i ) =
∑∑

k≥j

pkl, (4.3)

and
η = Pr(Y

(1)
i > Y

(0)
i ) =

∑∑
k>j

pkl. (4.4)

The causal effect parameters proposed by [19] involve the association between ordinal
potential outcomes of treatment and control. However, from the fundamental problem
of causal effect estimation, we can never jointly observe both of them. Thus, the causal
effects defined as τ and η are not identifiable. We propose the following procedure for
causal inference:

1. Specify the parametric model discussed in Section 2 by selecting copula and marginal
distribution functions. The model selection can be performed by using Bayesian
model selection criteria such as BIC (Bayesian Information Criteria).

2. Estimate the parametric models specified in the first step by using Bayesian es-
timation discussed in Section 3 from observational data. Our model formulation
can be used to correct the self-selection bias from the observational data. Thus,
we can use the causal effect parameters discussed above under the assumption of
the stable unit treatment value.

3. From the best model according to the BIC, use this model to impute the missing
potential outcomes.

4. Estimate causal effect on the observed scale using the imputed data and observed
data.

5 Case Study

In this section, we consider data from the Thai National Health Examination Survey,
No.4 (NHES IV) data of 2009 as a case study [2]. Each of 19,948 individuals were
classified into two groups based on their alcohol consumption behaviour. We considered
these two groups: alcohol consumption and non-alcohol consumption as the treatment
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and control groups, respectively. The ordinal outcomes of interest were blood pressure
levels. The possible level of blood pressure were ”normal level”, ”pre-hypertension level”,
and ”hypertension level”. The data are presented in Table 1.

The marginal distribution for each potential outcome model is specified as standard
normal distribution. For the copula function, three models were estimated using the
Independence copula, the Normal copula, and the Frank copula. We selected the best
fitted model based on BIC, which is the Frank copula model. The covariates used in the
model were individuals’ characteristics such as gender, age, income, number of chronic
diseases, indicators for occupations, and body-mass index.

For the choice of prior, we employed the independent prior for p(Γ). In this paper,
the model for marginal distributions is normal distribution. A natural prior p(β) is
independent normal distribution with means zero and large variances (1000IK), where
K is the number of covariates and IK is K-dimensional identity matrix. The more
complicated prior choices are for the threshold α and copula dependence parameter θ.
Notice that the threshold parameters are critical for model identifications, however, a
default prior for the threshold parameter does not exist. Thus, we employed a “flat”
prior by using a product of mean zero normal distribution with large variance.

We used the Bayesian approach that employ the data augmented as discussed in Sec-
tion 3 to obtain the augmented posterior. We draw 10,000 posterior predictive samples
and discard the first 2,000 draws as burn-in period. According to the lagged autocorre-
lation plots (results are not shown here) for all parameters, the results suggested that
posterior distribution can be approximated reasonably by a moderate number of simula-
tions.

From the best fitted model, we impute the missing potential outcomes and calculate
the 3× 3 joint probability matrix P of potential outcomes as discussed in Section 4 as

PPP =

 0.302 0.146 0.036
0.154 0.145 0.049
0.066 0.102 0.000


In our case study, we have τ = 0.769 and η = 0.322. These can be interpreted as 76.9%
of the population would induce higher or maintain their blood pressure levels, and 32.2%
of the population would induce higher blood pressure levels if they consume alcohol.

Table 1: The distributions of individual blood pressure according to alcohol consumption
status

Group “Normal blood pressure” “Prehypertension level” “Having hypertension”
Control 5,151 4,236 3,342

Treatment 3,075 2,451 1,693
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