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Abstract : A large number of efficient statistical methods have been designed for
a frequent case when the distributions are normal (Gaussian). In practice, many
probability distributions are not normal. In this case, Gaussian-based techniques
cannot be directly applied. In many cases, however, we can apply these tech-
niques indirectly – by first applying an appropriate transformation to the original
variables, after which their distribution becomes close to normal. Empirical anal-
ysis of different transformations has shown that the most successful are the power
transformations X → Xh and their modifications. In this paper, we provide a
symmetry-based explanation for this empirical success.
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1 Formulation of the Problem

Many statistical techniques have been designed for normal distribu-
tions. A significant number of statistical techniques have been designed and
tested for the case when the distributions are normal; see, e.g., [1].

Normal distributions are indeed ubiquitous in applications. Their abundance
comes from the Central Limit Theorem, according to which, if we have many
independent small random variables, then the distribution of their sum is close to
normal. Thus, if the observed phenomenon is the joint effect of many independent
random factors, its distribution is close to normal.

In practice, many distributions are not normal. While many real-life phe-
nomena have close-to-normal distributions, many other distributions are different
from norma. For example, an experimental analysis of measuring instruments
showed that only about 60% have close-to-normal distributions; for others, the
distribution is not normal; see, e.g., [2, 3].

In economics, non-Gaussian distributions are also widely spread; see, e.g.,
[4–11].

Need for transformations to close-to-normal distributions. Since many
statistical methods are based on the assumption that the actual distribution is
normal (or close to normal), but the actual distribution is often not normal, a
natural idea to apply some transformation Y = f(X) to the original random
variable X so that for the new variable Y , the distribution will be close to normal.

Which transformations have been used? In order to describe which trans-
formations have been used, let us take into account in many cases, non-normality
comes from the fact that we consider a function X = g(X1, . . . , Xn) of several in-
dependent variables X1, . . . , Xn each of which is normally distributed. For linear

functions g(X1, . . . , Xn) = a0+
n∑

i=1

ai ·Xi, the distribution is still normal. However,

when we consider the next approximation – quadratic functions g(X1, . . . , Xn), the
distribution of X stops being normal.

The simplest possible case of a quadratic function is X = g(X1) = X2
1 . In this

case, if we take the square root Y = f(X) =
√
X, we get back the normally dis-

tributed variable X1. In view of this example, the very first idea of transformation
to a close-to-normal distribution was to use the function f(X) =

√
X. This idea

was first proposed by R. A. Fisher; see, e.g., [12], pp. 96–97.
In some cases, this transformation works well, but, somewhat surprisingly,

it turned out that other transformations work better that the square root. The
first such transformation f(X) = X1/3, was proposed by Wilson and Hilferty in
1931 [13].
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In 1972, it was shown that a more general transformation f(X) =

(
X

c

)h

for

general c and h results in variables y whose distribution is closer to normal that√
X. This power-law transformation has been efficiently used in statistics; see,

e.g., [14–18].
An even more general transformation was proposed in [15]:

f(X) =

(
X + a

c

)h

.

Main problem: these empirically successful transformations are heuris-
tic. While Fisher’s square root transformation has some justification, all the other
transformations – starting with the cubic root – are pure heuristics: let us try this,
and see what happens.

As a result, it is not clear if these are the transformations that we should use
– or there are some other transformations which are more adequate for our goal.

Bayesian approach. According to decision making theory (see, e.g., [19–22]),
a rational decision maker always maximizes the expected value of the objective
appropriate function called utility. In our case, the utility function u(f, ρ) depends
on how close, for the variable X with the original probability distribution ρ, the
distribution of f(X) is close to Gaussian.

The main idea behind the Bayesian approach is that in situations in which
several different alternatives are consistent with our knowledge, we select a prior
probability distribution on the set of all possible alternatives.

In our problem, alternatives are different probability distributions. Thus, for
our problem, the Bayesian approach means that we select a prior distribution on
the set of all possible probability distributions ρ(z). Then, we find the function
f(X) that maximizes the expected utility

∫
u(f, ρ) dρ.

What we do in this paper. The solution to the above optimization problem
depends on the selection of the prior distribution. A usual way to come up with
such a prior distribution is to require that this distribution is invariant with respect
to some natural symmetries. In this case, if the utility function is also invariant,
the resulting transformation should also be invariant with respect to the same
symmetries.

This is what we do in this paper. The symmetries that we use in this paper
come from the fact that the numerical values of real-life quantities are not absolute:
they depend on the choice of the measuring unit and on the choice of the starting
point (see, e.g., [23, 24]).

It is therefore reasonable to consider transformations that do not depend on
these choices. It turns out that, as a result, we get exactly the empirical transfor-
mations listed above.

Comment. In our theoretical explanation, we will use symmetry ideas and deriva-
tions which are mathematically similar to ideas and derivations that we used in
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a different problem: the problem of estimating stiffness for unbound aggregate
materials (e.g., for the road’s subbase); see [25].

2 Symmetries: General Idea

Symmetry idea: general case. Computers process numerical values of different
quantities. A numerical value of a quantity depends on the choice of a measuring
unit and – in many cases – also on the choice of the starting point.

For example, depending on the choice of a measuring unit, we can describe
the height of the same person as 1.7 m or 170 cm. Similarly, we can describe the
same moment of time as 2 pm (14.00) if we use El Paso time or 3 pm (15.00) if
we use Austin time – the difference is caused by the fact that the starting points
for these two times – namely midnight (00.00) in El Paso and midnight (00.00) in
Austin – differ by one hour.

The choice of a measuring unit is rather arbitrary. For example, we can mea-
sure length in meters or in centimeters or in feet. Similarly, the choice of the
starting point is arbitrary: when we analyze a cosmic event, it does not matter
the time of what location we use to describe it. It is therefore reasonable to require
that the fundamental physical formulas not depend on the choice of a measuring
unit and – if appropriate – on the choice of the starting point. We do not expect
that, e.g., Newton’s laws look differently if we use meters or feet.

Of course, if we change the units in which we measure one of the quantities,
then we may need to adjust units of related quantities. For example, if we replace
meters with centimeters, then for the formula v = d/t (that describes velocity v
as a ratio of distance d and time t) to remain valid, we need to replace meters per
second with centimeters per second when measuring velocity. However, once the
appropriate adjustments are made, we expect the formulas to remain the same.

Symmetry idea: economic case. We can measure income in US dollars or in
Euros or in Thai Bahts. If we change the measuring unit, the amount of income
remains the same, but its numerical value changes.

It is reasonable to require that all relationships – in particular, the transfor-
mation that transforms the original variable into a close-to-Gaussian one – should
not depend on what exactly unit we use.

Change of a starting point also makes perfect sense for some economic quan-
tities. For example, we can measure unemployment in absolute units, or we can
measure it by considering the difference X − X0 between the actual unemploy-
ment level X and the ideal level X0 > 0 which, in the opinion of the economists,
corresponds to full employment; see, e.g., [24] and references therein.

How to describe the corresponding symmetries in precise terms. If we
replace the original measuring unit with a new unit which is a times smaller, then
all numerical values of the measured quantity get multiplied by a: x′ = a · x.

For example, if we replace dollars with cents – which are a = 100 times smaller
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– then the original amount of X = $1.7 becomes

X ′ = a ·X = 100 · 1.7 = 170 cents.

Similarly, if we replace the original starting point by a new one which is b
earlier (or smaller), then to all numerical values of the measured quantity the
value b is added: X ′ = X + b. For example, if the current unemployment level
is X = 8%, and the ideal unemployment level is X0 = 3% (which corresponds to
b = −3), then the re-scaled value of unemployment is X + b = 8 + (−3) = 5%.

In general, we can change both the measuring unit and the starting point. If
we first change the measuring unit and the starting point, then:

• first, the original value X first gets multiplied by a, resulting in X ′ = a ·X,
and

• then the value b is added to the new value X ′, resulting in

X ′′ = X ′ + b = a ·X + b.

Thus, in general, when we change both the measuring unit and the starting point,
we get a linear transformation x→ a · x+ b.

3 Using Symmetries: First Try

Idea. We want a transformation Y = f(X) to be independent on the scale used
to describe X. In other words, if we re-scale X, then after appropriately re-scaling
Y , we should get the exact same transformation.

In the original scale, we had values X for which the transformation leads to
Y = f(X). A general re-scaling has the form X → a ·X + b, for some a > 0. So,
what was X in the original units becomes X ′ = a ·X + b in the new units. If we
now apply the same transformation f to the new numerical value X ′, we get a
new value Y = f(X ′) = f(a ·X + b).

The desired invariance means that this new dependence Y = f(a·X+b) should
have exactly the same form as Y = f(X) – if we also appropriately re-scale Y , i.e,
if we apply a transformation Y ′ = c · Y + d for some c > 0 and d.

Thus, we arrive at the following definition.

From the idea to its precise description. We would like to find all functions
f(X) for which, for every pair (a, b) with a > 0, there exists a pair (c, d) with
c > 0 for which, for all X, we have

f(a ·X + b) = c(a, b) · f(X) + d(a, b). (1)

What we show in this section: that such a requirement is not possible.

Continuity and smoothness of the transformation f(X). It is reasonable
to require that the transformation f(X) preserve continuity, i.e., that the function
f(X) be continuous.
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It is well known that on any interval, every continuous function can be ap-
proximated, with any given accuracy, by a smooth (differentiable) function – it
can even be approximated by a polynomial. Thus, without losing generality, we
can assume that the transformation f(X) is differentiable.

Now, we are ready to start the mathematical analysis of the above problem.

From smoothness of the transformation f(X), it follows that the aux-
iliary functions c(a, b) and d(a, b) are also differentiable. Let us fix two
different values X1 6= X2 for which f(X1) 6= f(X2). Then, for every a and b, by
applying the formula (1) with X = X1 and X = X2, we have a system of two
linear equations with two unknowns c(a, b) and d(a, b):

f(a ·X1 + b) = c(a, b) · f(X1) + d(a, b); (2)

f(a ·X + b) = c(a, b) · f(X2) + d(a, b). (3)

Subtracting equation (3) from equation (2) and dividing both sides of the resulting
equality by f(X1)− f(X2), we conclude that

c(a, b) =
f(a ·X1 + b)− f(a ·X2 + b)

f(X1)− f(X2)
. (4)

Similarly, if we first multiply the equation (2) by f(X2) and the equation (3) by
f(X1) and then subtract the results, we get

d(a, b) =
f(X2) · f(a ·X1 + b)− f(X1) · f(a ·X2 + b)

f(X2)− f(X1)
. (5)

The function f(X) is smooth. Thus, the right-hand sides of the formulas (4)
and (5) are also smooth – as compositions of smooth functions. Thus, the auxiliary
functions c(a, b) and d(a, b) are indeed smooth.

Since all the functions are differentiable, let us differentiate the above
equality. Since all the functions f(X), c(a, b), and d(a, b) involved in the equality
(1) are differentiable, we can differentiate both sides of this equality.

Let us first differentiate both sides with respect to b, and take a = 1 and b = 0.
As a result, we get the following equality:

f ′(X) = c2 · f(X) + d2, (6)

where:

• f ′(X) denotes the derivative of the function f(X),

• c2 denotes the value of the derivative of the functions c(a, b) with respect to

its second argument b when a = 1 and b = 0: c2 =
∂c

∂b
(1, 0); and

• d2 denotes the value of the derivative of the functions d(a, b) with respect

to its second argument b when a = 1 and b = 0: d2 =
∂d

∂b
(1, 0).
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Similarly, by differentiating with respect to a, we get the equality

X · f ′(X) = c1 · f(X) + d1, (7)

where c1 =
∂c

∂a
(1, 0) and d1 =

∂c

∂a
(1, 0).

Dividing both sides of (7) by both sides of (6), we conclude that

X =
c1 · f(X) + d1
c2 · f(X) + d2

, (8)

i.e., we conclude that X can be obtained from f(X) by a fractional-linear trans-
formation. Thus, f(X) can be obtained from X by an inverse to a fractional-
linear transformation – and we know that such inverse transformations are also
fractional-linear. So,

f(X) =
p ·X + q

r ·X + s
, (9)

for some values p, q, r, and s.
If r = 0, then we simply get a linear function f(X). It is well known, however,

that a linear transformation of a Gaussian distribution is still Gaussian, so such
a transformation will not help us transform a non-Gaussian distribution into a
close-to-Gaussian one. Thus, for our purposes, we can safely assume that r 6= 0.
In this case, we can divide both numerator and denominator of the expression (8)
by r 6= 0, and get a simplified formula

f(X) =
P ·X +Q

X + S
, (10)

where we denoted P =
p

r
, Q =

q

r
, and S =

s

r
.

Substituting the expression (10) into the formula (6), we get

P · (X + S)− (P ·X +Q)

(X + S)2
= c2 ·

P ·X +Q

X + S
+ d2. (11)

Multiplying both sides of this formula by (X + S)2, we get

P · (X + S)− (P ·X +Q) = c2 · (P ·X +Q) · (X + S) + d2 · (X + S)2. (12)

For X = −S, this formula leads to P · (−S) +Q = 0, hence Q = P · S,

P ·X +Q = P ·X + P · S = P · (X + S), (13)

and thus,

f(X) =
P ·X +Q

X + S
= P = const. (14)

So, only constant functions f(X) are invariant with respect to all possible trans-
formations.
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4 Using Symmetries: Final Result

Main idea: since we cannot require all the invariances, let us require
only some of them. Since we cannot require invariance with respect to all
possible re-scalings, we should require invariance with respect to some family of
re-scalings.

It is sufficient to consider infinitesimal transformations. If a formula does
not change when we apply each transformation, it will also not change if we apply
them one after another, i.e., if we consider a composition of transformations. Each
shift can be represented as a superposition of many small (infinitesimal) shifts, i.e.,
shifts of the type X → X +B · dt for some B.

Similarly, each re-scaling can be represented as a superposition of many small
(infinitesimal) re-scalings, i.e., re-scalings of the type X → (1 +A · dt) ·X.

Thus, it is sufficient to consider invariance with respect to an infinitesimal
transformation, i.e., a linear transformation of the type

X → X ′ = (1 +A · dt) ·X +B · dt.

From the idea to exact formulas. Invariance means that the value f(X ′) has
the same form as f(X), i.e., that f(X ′) is obtained from f(X) by an appropriate
(infinitesimal) re-scaling Y → (1 + C · dt) · Y +D · dt. In other words, we require
that

f((1 +A · dt) ·X +B · dt) = (1 + C · dt) · f(X) +D · dt, (14)

i.e., that

f(X + (A ·X +B) · dt) = f(X) + C · f(X) · dt+D · dt. (14a)

Here, by definition of the derivative, f(X + q · dt) = f(X) + f ′(X) · q · dt. Thus,
from (14a), we conclude that

f(X) + (A ·X +B) · f ′(X) · dt = f(X) + C · f(X) · dt+D · dt. (15)

Subtracting f(X) from both sides of this formula and dividing the resulting equal-
ity by dt, we conclude that

(A ·X +B) · f ′(X) = C · f(X) +D. (16)

Since f ′(X) =
df

dX
, we can separate the variables by moving all the terms related

to f to one side and all the terms related to X to another side. As a result, we get

df

C · f +D
=

dX

A ·X +B
. (17)

Degenerate cases when A = 0 and/or C = 0 can be approximated, with any
given accuracy, by cases when A or C is small but non-zero. So, without losing
generality, we can safely assume that A 6= 0 and C 6= 0.
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In this case, for x
def
= X + a and y

def
= f + `, where a

def
=

B

A
and `

def
=

D

C
, we

have
dy

y
= h · dx

x
, (18)

where h
def
=

C

A
. Integration leads to ln(y) = h · ln(x) + C0 for some constant C0,

thus y = C1 · xh for C1
def
= exp(C0), hence y = C1 · (X + a)h and

f(X) = y − ` = C1 · (X + a)h − `. (19)

Our objective is to transform a distribution into a close-to-Gaussian form.
Adding or subtracting a constant ` does not change the Gaussian character or a
random variable, so the use of the transformation (19) is equivalent to using a
simpler transformation f(X) = C1 · (X + a)h. By representing C1 as c−h for an

appropriate c = C
−1/h
1 , we arrive at the following conclusion.

Conclusion. If we want to transform a non-Gaussian distribution into a close-
to-Gaussian one, then the only invariant transformations are exactly the transfor-
mations

f(X) =

(
X + a

c

)h

that have been empirically shown to be most efficient.
So, we have come up with the desired theoretical justification for the empiri-

cally successful transformations.
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