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Abstract : In many application areas including economics, experts describe their
knowledge by using imprecise (“fuzzy”) words from natural language. To design
an automatic control system, it is therefore necessary to translate this knowledge
into precise computer-understandable terms. To perform such a translation, a spe-
cial semi-heuristic fuzzy methodology was designed. This methodology has been
successfully applied to many practical problem, but its semi-heuristic character is
a big obstacle to its use: without a theoretical justification, we are never 100%
sure that this methodology will be successful in other applications as well. It is
therefore desirable to come up with either a theoretical justification of exactly this
methodology, or with a theoretically justified modification of this methodology. In
this paper, we apply the Bayesian techniques to the above translation problem,
and we analyze when the resulting methodology is identical to fuzzy techniques –
and when it is different.
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1 Formulation of the Problem

Need for expert systems and intelligent control. In many application areas
ranging from medicine to economics, there are experts who consistently make very
good decision. In the ideal world, we should all be helped by these experts:

• every patient should be seen by the world’s best specialist in treating the
corresponding disease,

• everyone’s investment strategy should be advised by the world’s best finan-
cial advisors, etc.

Realistically, however, this is not possible: there are very few best experts, and it
is not possible to use them for every single decision making process.

It is therefore desirable to incorporate the knowledge of the best experts into
a computer-based system so that it will be possible for many people to utilize
this knowledge. The resulting computer-based expert systems should be able to
provide us with intelligent decision-making and intelligent control.

Challenge: expert knowledge is imprecise (fuzzy). Sometimes, the ex-
perts are able to describe their knowledge in precise (and thus, computer-
understandable) terms. For example, a medical expert can say that in the case of
common cold, Advil should be taken only when the body temperature is 38◦ C or
above. Such knowledge is easy to implement in a computer-based system.

In many practical situations, however, experts cannot describe their knowl-
edge in precise terms, they can only describe their knowledge by using imprecise
(“fuzzy”) natural-language words such as “small”, “young”, etc. For example, a
financial expert can say that:

• if the price of a financial instrument start decreasing a little bit, it is better
to stick to it, while

• if this price starts decreasing rapidly, with little hope of this price climbing
back soon, it may be better to sell this instrument as soon as possible – to
recover at least some of the original investment.

This reasonable piece of advice contains many imprecise words: “a little bit”,
“little” (hope), “rapidly”, “may be better”, etc.

Let us denote the inputs based on which we need to make a decision by
x1, . . . , xn, and let us denote the variable that describes the resulting decision
by u.

In general, for each of the variables xi and u, we have several imprecise prop-
erties like “small” used in the expert rules:

• for x1, we have imprecise properties A1,1, A1,2, . . . , A1,R1
;

• for x2, we have imprecise properties A2,1, A2,2, . . . , A2,R2
;

• . . .

• for xn, we have imprecise properties An,1, An,2, . . . , An,Rn
; and
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• for u, we have imprecise properties B1, B2, . . . , BRU
.

An expert knowledge consists of rules that describe what to do under all possible
combinations r = (r1, . . . , rn) of conditions on the inputs:

If A1,r1(x1) and . . .Ai,ri(xi) and . . . and An,rn(xn) then Bf(r)(u),

for an appropriate u-property f(r).
How can we translate such imprecise knowledge into precise computer-

understandable terms?

Fuzzy techniques: a brief reminder. Fuzzy logic was specifically designed to
solve this translation problem – i.e., to translate imprecise expert knowledge into
a precise control strategy; see, e.g., [1–3].

Fuzzy control methodology starts with an observation that in the above rules,
a control u is reasonable for the input tuple x = (x1, . . . , xn) if and only if one of
the expert rules is applicable, i.e.,

either (A1,1(x1) and . . . and Ai,1(xi) and . . . and An,1(xn) and Bf(1,...,1)(u))
or . . .

or (A1,r1(x1) and . . . and Ai,ri(xi) and . . . and An,rn(xn) and Bf(r1,...,rn)(u))
or . . .

or (A1,R1
(x1) and . . . and Ai,Ri

(xi) and . . . and An,Rn
(xn) and Bf(R1,...,Rn)(u)).

In line with this representation, fuzzy methodology starts by assigning, to each
imprecise property A to each real number x, a “degree” µA(x) ∈ [0, 1] to which
the number x satisfies this property (e.g., a degree to which a certain number is
small). This degree can be obtained:

• either by simply asking an expert to mark this degree on a scale from 0 to 1,

• or in a more probability-like way, e.g., by asking several experts and comput-
ing the proportion of the experts who believe that x satisfies the property A.

Once we have established the degrees µi,r(xi) to which xi satisfies each prop-
erty Ai,r and the degrees µr(u) to which u satisfies each property Br, we need
to use these degrees to estimate the degree to which each rule is satisfied. Ide-
ally, we should ask the expert’s opinion about all possible combinations of inputs
(x1, . . . , xn), but this is usually not realistic, so we must use the original degrees
to find the corresponding combinations.

In fuzzy methodology, we select two functions f&(a, b) and f∨(a, b) that corre-
spond to “and” and “or”. These functions should satisfy natural properties coming
from the fact that, e.g., A&B and B&A mean the same, and that A& (B&C)
and (A&B) &C mean the same – thus, both operations should be commutative
and associative. Such operations are known as “and”-operations (a.k.a. t-norms)
and “or”-operations (t-conorms).

By applying these operations, we can estimate, for each possible control value
u and for each rule r, the degree dr(u) to which this control value is consistent,
for the given input x, with this rule, as

dr(u) = f&(µ1,r1(x1), . . . , µi,ri(xi), . . . , µn,rn(xn), µf(r)(u)),
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and then we can compute the degree µ(u) to which the control value is reason-
able as

µ(u) = f∨(d(1,...,1)(u), . . . , d(r1,...,rn)(u), . . . , d(R1,...,Rn)(u)).

In situations when the purpose of the expert system is to advise the user,
then it is sufficient to describe, for each possible control value u, to what extent
this value is reasonable. In this case, a user can make a decision based on this
information. However, in many practical situations, we cannot afford to always
have a human decision maker in the loop. In such situations, we want the system to
make an automatic decision. For that, we need to select a single value u. Usually,
as such a value, we select the “centroid” value

u =

∫
u · µ(u) du∫
µ(u) du

.

Takagi-Sugeno fuzzy techniques. The above techniques – known as Mamdani
techniques after the first researcher who successfully applied these techniques to
a practical problem – assume that the consequences of all the rules are fuzzy.
In practice, sometimes, the experts describe consequences of their rule in precise
terms, as an explicit function describing the control value u in terms of the inputs
xi. In other words, we have rules of the following type:

if A1,r1(x1) and . . . and Ai,ri(xi) and . . . and An,rn(xn) then u = fr(x1, . . . , xn).

In such situations – first analyzed by Takagi and Sugeno – we first compute the
degree dr to which each rule is satisfied, as

dr = f&(µ1,r1(x1), . . . , µi,ri(xi), . . . , µn,rn(xn))

and then the desired control is produced as the weighted average of the values
fr(x1, . . . , xn) corresponding to different rules:

u =

(R1,...,Rn)∑
r=(1,...,1)

dr · fr(x1, . . . , xn)

(R1,...,Rn)∑
r=(1,...,1)

dr

.

Fuzzy control: successes and limitations. Fuzzy control methodology has
lead to many successful applications; see, e.g., [1,2]. However, a big problem is that
the above techniques are largely heuristic, they do not have a precise justification.
Because of this lack of justification, there is no guarantee that this empirically
successful method will be successful in all future applications as well.

It is therefore desirable to theoretically analyze fuzzy control techniques – and:

• either to justify the existing methodology,
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• or, if necessary, come up with a theoretically justified alternative to this
methodology.

What we do in this paper. In this paper:

• we apply the Bayesian approach to the original problem, and then

• we compare the result of applying this approach to the original fuzzy
methodology.

2 Let Us Apply Bayesian Methodology to Our
Problem

What is Bayesian methodology: a brief reminder. In the general Bayesain
approach, the original expert knowledge is described as a prior distribution.

In situations when we only have partial information about this distribution,
we use the Maximum Entropy approach to select the corresponding distribution –
i.e., we select a probability distribution ρ(x) for which the entropy

S = −
∫
ρ(x) · ln(ρ(x)) dx

is the largest possible; see, e.g., [4].
Then, we use the Bayes rule to update the corresponding probabilities – i.e.,

to come up with the posterior distribution.

How we will apply the Bayesian approach. To make this application as
clear as possible, we will not start by applying the Bayesian approach to the most
general form of the above problem. Instead, we start with the simplest possible
case, and then we will gradually add complexity – and at the end, we will have an
application to the most general form of intelligent control.

3 The Simplest Case: Single Variable and Dis-
joint Rules

Analysis of the problem. The simplest case is when we have only one input
x1. In this case, the rules have the form “if A1,r1(x1) then Bf(r1)(u).”

To apply the Bayesian approach, we need to describe the corresponding uncer-
tainty in probabilistic terms. For each value of the input x1, we have R1 possible
properties: A1,1, . . . , A1,R1

. Uncertainty means that for each value x1, we are
not 100% sure which of the properties is satisfied. In probabilistic terms, this
uncertainty can be naturally described as the conditional probability PI,1(r1 |x1)
that the r1-st property is satisfied under the condition that the input is equal to
x1 (here, I stands for “input”).
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The above rules describe all possible situations. It makes sense to assume that
we cannot have two different properties A1,r1 6= A1,r′1

satisfied at the same time:
otherwise, two different expert rules with the same condition would lead to two
different recommendations about control. Thus, it makes sense to assume that for
each x1, the corresponding conditional probabilities add up to 1:

R1∑
r1=1

PI,1(r1 |x1) = 1.

(In the next section, we describe what will happen if this sum is different from 1).
Similarly, the expert’s uncertainty about the control values u can be described

by assigning the corresponding probabilities PC(r |u), for which, for every u, we

have
RU∑
r=1

PC(r |u) = 1; here, C stands for “control”.

Our goal is to find, for each input x1 and for each possible control value u, to
what extend this value u is reasonable. In probabilistic terms, this means that we
are interested to find the corresponding conditional probabilities P (u |x1).

Since we assume that different rules r1 form a whole set of disjoint events, this
conditional probability can be computed by using the formula for the complete
probability:

P (u |x1) =

R1∑
r1=1

P (u, r1 |x1).

Here, the rule r1 determines the control value u, so each probability P (u, r1 |x1)
has the form

P (u, r1 |x1) = P (u | f(r1)) · PI,1(r1 |x1).

In this formula, we know the probabilities PI,1(r1 |x1). To find the probabilities
P (u | r), we need to use the Bayes formula:

P (u | r) =
PC(r |u) · P0(u)∫
PC(r |u′) · P0(u′) du′

,

where P0(u) is a prior probability of different control values.
In our expert situation, we do not have any prior information about the control.

Thus, we have no reason to believe that some values of control are more probable
than others. Therefore, it makes sense to assume that the value P0(u) is a constant
not depending on u. This assumption is in perfect accordance with the Maximum
Entropy approach: if we have no information about the probability distribution
on an interval, then this approach leads to a uniform distribution.

When P0(u) ≡ const, we can divide both sides of the probability distribution
by this constant, and get the following simplified formula:

P (u | r) =
PC(r |u)∫
PC(r |u′) du′

.

Thus, the desired degree of reasonableness takes the following form.
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The resulting formula for the degree of reasonableness. For each input
value x1 and each possible control value u, the degree d(u, x1) to which u is
reasonable is described by the following formula:

d(u, x1) = P (u |x1) =

R1∑
r1=1

PC(f(r1) |u)∫
PC(f(r1) |u′) du′

· PI,1(r1 |x1).

Comparing with the corresponding fuzzy formula. In fuzzy terms, the
degree PI,1(r |x1) corresponds to µ1,r1(x1), and the degree PC(r |u) corresponds
to µr(u). In these terms, the above formula has the form

d(u, x1) =

R1∑
r1=1

µf(r1)(u)∫
µf(r1)(u

′) du′
· µ1,r1(x1).

Let us compare this formula with the Mamdani formula:

d(u, x1) = f∨(f&(µ1,1(x1), µf(1)(u)), . . . , f&(µ1,R1
(x1), µf(R1)(u))).

The Bayesian formula can be obtained from the general Mamdani formula when:

• the “or”-operation is the sum: f∨(a, b) = a+ b;

• the “and”-operation is the product f&(a, b) = a · b, and

• all “membership functions” µr(u) have the same value of the inte-
gral

∫
µr(u) du.

To be more precise, in this case, the Bayesian formula leads to the values not
equal but proportional to the Mamdiani formula – divided by the common integral∫
µr(u) du.

The condition that the integral
∫
µr(u) du is the same for all r is usually

satisfied for most applications of fuzzy techniques. But what about the situations
when this condition is not satisfied? In this case, as we will show, the Bayesian
formula is more appropriate. Indeed, suppose that we have 2 rules:

• that when x1 = 1, we should use u = 2, and

• that when x1 is small, u should be small.

In this case, we should expect that when x1 = 1, the resulting control value will
be exactly 2.

• This is exactly what we observe in the Bayesian case.

• However, in the Mamdani approach, as one can easily check, many other
values will also be considered reasonable.

This was a clear advantage of the Bayesian approach. On the other hand,
the fuzzy approach has its own advantages. For example, in the fuzzy approach,
the possibility to have different “and”- and “or”-operations enables us to adjust
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the control depending on whether, e.g., we want it to be more stable or more
smooth [5, 6]. The Bayesian approach lacks this flexibility.

Resulting control values: Bayesian approach. As we have mentioned earlier,
in some cases, in addition to describing which control values u are more reasonable
and which are less reasonable, it is desirable to select a single control value u. It
makes sense to select the value for which the expected loss is the smallest possible.

The loss is caused by the difference u − u between the (unknown) actually
optimal value u and the selected value u, so the loss has the form J(u− u) for an
appropriate loss function J(x). For good expert knowledge, the control u is close

to the optimal control u. Thus, the difference ∆u
def
= u − u is small, so we can

expand the objective function J(u− u) in Taylor series

J(∆u) = J0 + J1 ·∆u+ J2 · (∆u)2 + . . . ,

and keep only the main term in the resulting expansion.
When ∆u = 0, i.e., when we apply the optimal control value u = u, the loss is

0, so J0 = 0. The loss is minimal for ∆u = 0, so the derivative J1 of J with respect
to ∆u is equal to 0, hence J(∆u) = J2 · (∆u)2 + . . . Thus, the quadratic term is
the first non-zero term and therefore, the main term in the Taylor expansion:
J(∆u) = J2 · (∆u)2.

When ∆u 6= 0, there is a positive loss, so J2 > 0. Minimization does not change
if we divide the objective function by a positive constant, so we can assume that
J(∆u) = (∆u)2. Thus, the value u should be selected based on the condition
that the expected value of the square (∆u)2 of the difference ∆u is the smallest
possible: ∫

P (u |x1) · (u− u)2 du→ min
u
.

Differentiating this objective function with respect to u, equating the derivative
to 0, and taking into account that

∫
P (u |x1) du = 1, we conclude that

u =

∫
P (u |x1) · u du.

In other words, as u, we should select the expected value of the control u.

Resulting control value: conclusion. As the desired control value, we should
select the expected value of the control u =

∫
P (u |x1) ·u du. In view of the above

formula for the probabilities P (u |x1), we get

u =

R1∑
r1=1

uf(r1) · PI,1(r1 |x1),

where

ur =

∫
P (r |u) · u du∫
P (r |u) du

.
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Comparison with the fuzzy formula. In fuzzy terms, the above formula has
the form

u =

R1∑
r1=1

uf(r1) · µ1,r1(x1),

where

ur =

∫
µr(u) · u du∫
µr(u) du

.

This formula coincides with the Mamdani formula under the same three conditions
as before – that “or” is sum, that “and” is product and that all functions µr(u)
have the same integral.

Interestingly, in general, the Bayesian formula is more similar to the Takagi-
Sugeno formula than to the general Mamdani formula.

4 What If the Probabilities Do Not Add Up to
One?

Description of the case. In the above formulas, we assumed:

• that for every input x1, the corresponding probabilities pr1 = PI,1(r1 |x1)
add up to 1 and

• that for the control u, the probabilities PC(r |u) also add up to 1.

But what if we estimate these probabilities and they do not add up to 1?

How to deal with this situation: an idea and its formalization. Estimates
are never exact. So, if instead of the actual (unknown) probabilities pr for which
R∑

r=1
pr = 1, we use approximate estimates p̃r ≈ pr, then the sum of the approximate

estimates is not necessarily equal to 1.
It is reasonable to assume that the approximation errors p̃r−pr are independent

normally distributed with 0 means and the same standard deviation. In this case,
to find the best estimates for the actual probabilities, we must find the values pr

for which
R∑

r=1
(p̃r − pr)2 under the constraint

R∑
r=1

pr = 1.

From the idea to explicit formulas. For the above constraint optimization
problem, the Lagrange multiplier approach leads to the following unconstrained
optimization problem:

R∑
r=1

(p̃r − pr)2 + λ ·

(
R∑

r=1

pr − 1

)
→ min

pr

.

When pr 6= 0, then the derivative of the above objective function with respect to
pr should be equal to 0, so we have 2(pr− p̃r)+λ = 0 and thus, pr = p̃r− c, where

c
def
=

λ

2
is a constant.
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In particular, when the original sum
R∑

r=1
p̃r is smaller than 1, then we should

have c < 0, and this constant can be computed from the condition that

R∑
r=1

pr =

R∑
r=1

(p̃r − c) = 1,

thus c = −
1−

R∑
r=1

p̃r

R
.

Thus, we arrive at the following solution.

Resulting formula. When
R∑

r=1
p̃r = 1, we take pr = p̃r.

When
R∑

r=1
p̃r < 1, we take pr = p̃r − c, where

c = −
1−

R∑
r=1

p̃r

R
.

When
R∑

r=1
p̃r > 1, we first try the same formula, but if it leads to negative

probabilities, then instead, after sorting the probabilities in the increasing order
p̃1 ≤ . . . ≤ p̃R, we take p1 = . . . = pr0 = 0 and rr = p̃r − c for r > r0, where

c =

R∑
r=r0+1

pr − 1

R− r0
and p̃r0 ≤ c.

For each r0, we have an explicit formula for pr. Thus, the desired values pr
can be computed, e.g., by trying all possible r0 = 1, 2, . . . .

Resulting formulas for intelligent control. We start with the empirical values
P̃I,1(r1 |x1) and P̃C(r |u). Based on these values, for each x1 and each u, we apply
the above procedure and get the updated values PI,1(r1 |x1) and PC(r |u) that
add up to 1.

Based on these values, we then compute the degrees of reasonableness P (u |x1)
and, if needed, the resulting single control value u.

5 Case of Several Inputs

Formulation of the problem. For several inputs, we can use similar Bayesian
formulas, but for that, we need to know the probabilities

PI(r |x) = PI(r1, . . . , rn |x1, . . . , xn),
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while what we get from experts are the probabilities PI,i(ri |xi) corresponding to
individual inputs i.

Let us solve this problem. We have no information about the dependence
between different inputs. To find a joint distribution, we can therefore use the
Maximum Entropy approach, which in this case, as is well known, results in inde-
pendence. Thus,

PI(r |x) =

n∏
i=1

PI,i(ri |xi).

Once we get these values, we can take

P (u |x) =

(R1,...,Rn)∑
r=(1,...,1)

PC(r |u)∫
PC(r |u′) du′

· PI(r |x).

Comparison with fuzzy formulas. Similar to the case of a single input, the
Bayesian case corresponds to situation when the “and”-operation is the product.

However, in this case, we can go beyond the product and still stay within the
probabilistic approach: namely, instead of using the independence assumption, we
can use copulas to combine the probabilities P (xi | r) corresponding to different
inputs xi; see, e.g., [7–9].

6 Takagi-Sugeno Case

General description. Let us now consider the case when the expert rules have
the form “if Ar(x), then u = fr(x1, . . . , xn)”, where Ar(x) stands for

“A1,r1(x1) and . . . and An,rn(xn).”

Analysis of the problem. In this case, we first use the formulas from the
previous section to compute the probabilities PI(r |x).

The actual control is thus equal to fr(x) with probability P (r |x). Similarly
to the simplest case, the smallest possible expected loss is when u is equal to the
mean value of control, i.e., in this case, to

u =

(R1,...,Rn)∑
r=(1,...,1)

PI(r |x) · fr(x).

Comparison with the fuzzy case. In the fuzzy case, we have a similar formula,
the main difference is that the values P (r |x) are now computed differently.

7 General Conclusions

In this paper, we have shown that Bayesian approach can be efficiently used
for solving intelligent control problems.
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• In some cases, we get formulas which are very similar to the corresponding
fuzzy formulas – and thus, provide the desired probabilistic justifications for
the semi-heuristic formulas of fuzzy control.

• In some other cases, we have slightly different formulas – and, e.g., when
different rules correspond to different levels of uncertainty, these different
formulas more adequately represent expert knowledge.

• In yet other cases, the formulas of fuzzy control are more flexible and thus
allow us to describe a higher quality control (e.g., more stable or more
smooth).

Each approach – fuzzy and Bayesian – has its own advantages and limitations.
It would be great to combine the advantages of fuzzy and Bayesian approaches.
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