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Abstract : A Bayesian method is proposed for the parameter identification of
a stock market dynamics which is modeled by a Stochastic Differential Equation
(SDE) driven by fractional Brownian motion (fBm). The formulation for the
identification is based on the Wick-product solution of the SDE driven by an fBm.
The determination of the solution is carried out using an independence Metropolis
Hastings algorithm. The historical record of SET index is employed for the purpose
of method demonstration. For the SET index example, the estimate of the Hurst
exponent is approximately 0.5. Consequently, the market is considered efficient.
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1 Introduction

The behaviors of stock markets have continuously been a focus of studies in
the area of financial risk management. The market behaviors are generally charac-
terized via the market indices. A typical and widely-used model for characterizing
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the dynamics of a market index is in the form of a Stochastic Differential Equation
driven (SDE) driven by a standard Brownian motion (sBm) (see e.g. [1]),

dSt

St
= µdt+ σdBt (1.1)

St is the market index at time t for t ≥ 0, µ is the mean change rate of
the index, σ is the volatility, and Bt is the sBm. dSt

St
is the index return. An

underlying assumption for the validity of model (1.1) is that the index returns are
independent, i.e. not temporally correlated. In other words, the index returns
have to follow a random walk. When the assumption is violated, the results
from employing the model (1.1) can be to a certain extent different from the true
market dynamics. An example of such an assumption violation definitely includes
the financial data with long-range dependence. The long-range dependence was
observed and manifested in different types of assets [2–4]. To mitigate the modeling
risk, the random walk behavior should not be assumed a priori without rationale
justification. The generalization of model (1.1) can be accomplished by replacing
the sBm by a fractional Brownian motion (fBm):

dSt

St
= µdt+ σdBH

t (1.2)

BH
t is the fBm with a Hurst exponent H, where H ∈ (0, 1). The value of H

determines the dynamic characteristics of the process [5]. For H = 0.5, the pro-
cess becomes an sBm. The differences of the process in disjoint intervals are then
independent according to the properties of Brownian motion. If, 0 < H < 0.5,
the process belongs to the class of anti-persistent or mean-reverting processes. An
increment is likely to be followed by a decrement. The anti-persistent intensity in-
creases when H approaches zero. When, 0.5 < H < 1 the process has a persistent
characteristic. An increment (decrement) is likely to be followed by an increment
(a decrement). In other words, for H 6= 0.5, the differences of the process are cor-
related. Thus, the classification of the process in terms of its covariance structure
becomes realized using the value of H.

Several methods have been proposed for the determination of the Hurst expo-
nent. The methods include, for examples, the aggregate variance method [6], the
absolute moments method [6], the discrete variations [7], the Higuchi method [8],
the periodogram method [9], the variance of the regression residuals [10], the R/S
analysis and its variant [11], [12], the variance of the regression residuals [13], the
detrended fluctuation analysis [14], the detrended moving average [15], the Whittle
method [16], and the wavelet method as well as its variant [17–19]. It should be
noted that those methods yield either a point estimator of the Hurst exponent or
a confidence interval indicating the Hurst estimates. Recently, a Bayesian method
has been proposed for the estimation of the Hurst exponent [20]. The uncer-
tainty of the inferred parameter is naturally taken into account. Accordingly, the
Bayesian method can yield both the point estimator and confidence intervals at
the same time. It has been also shown in [20] that the Bayesian method results in



Modeling Stock Market Dynamics with Stochastic Differential Equation ... 15

more accurate estimation of Hurst exponent synthesized data, compared with the
periodogram method, the detrended fluctuation analysis, and the wavelet method.

The present work proposes a Bayesian inference of the parameters in an SDE
driven by an fBm. The SDE has the form of (1.2), the application of which
can be generally found in the context of financial risk modeling and analysis. The
Bayesian method is considered herein due to its afore-mentioned virtues. The con-
tribution of the current work is different from [20] in which the Bayesian method
was employed for the purpose of data analysis, i.e. to only infer the Hurst ex-
ponent associated with given time series. The evolution of the time series and
its modeling are not the subjects of interest in [20]. This work, instead, applies
the Bayesian method to the estimation of the parameters in a stochastic dynamic
system, based on the prescribed model of an SDE driven by an fBm and on the
measurement of the dynamic output, i.e. the index returns. Consequently, not
only the Hurst exponent is estimated, but also the stock market dynamics is math-
ematically modeled, which is definitely beneficial from the view point of financial
risk modeling and analysis.

After this introduction, the methodology will be described. The application
of the proposed methodology is next illustrated via a numerical example. Finally,
the conclusions are made at the end.

2 Methodology

2.1 Fractional Brownian Motion (fBm)

The fBm was first introduced by Kolmogorov in his work spirals of Wiener
[21]. It was later Mandelbrot and Van Ness who provided a stochastic integral
representation of the fBm in terms of an sBm [22] and coined the term fractional
Brownian motion. The fBm is be defined as follows (confer, for example, [23]):

Definition 2.1. Let H ∈ (0, 1) and is referred to as a Husrt exponent. An fBm
BH(t) = BH

t , where t ≥ 0, is a continuous process with the following properties:
1. BH

t is a Gaussian process for t ≥ 0.
2. BH

0 = 0 and E[BH
t ] = 0 fort ≥ 0.

3. E[BH
t B

H
s ] =

1

2
(t2H + s2H − |t− s|2H for all t ≥ 0 and s ≥ 0.

The term Hurst exponent was named after the hydrologist Hurst who had observed
the water run-offs of the Nile river [24] by Mandelbrot.

The solution of the SDE driven by an fBm, based on the Wick product [25], is

St = S0 exp(µt− σ2

2
t2H + σBH

t ), (2.1)

equivalently

Yt = (µt− σ2

2
t2H + σBH

t ) (2.2)
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in which

Yt = ln

(
St

S0

)
. (2.3)

2.2 Formulation for Bayesian Inference

The parameter estimation of the model (1.2) under the framework of the
Bayesian inference can be obtained in the form of the posterior distribution from
the Bayes theorem. The posterior distribution is given as

f(µ, σ,H|D) ∝ L(D|µ, σ,H)f(µ, σ,H) (2.4)

where D is the data and is defined as

D = (t1, Yt1), . . . , (tN , YtN ) (2.5)

N is the number of data points used in the inference. L(D|µ, σ,H) is the likelihood
and f(µ, σ,H) is the prior, respectively. The likelihood can be explicitly written
as

L(D|µ, σ,H) =
1

(2π)N/2|Σ|1/2
exp[−ZT Σ−1Z] (2.6)

where

Zk =
1

σ
[Ytk − µtk +

σ2

2
t2Hk ]; k = 1, . . . , N, (2.7)

and

Σij = E[BH
ti B

H
tj ] =

1

2
(t2Hi + t2Hj − |ti − tj |2H); i, j = 1, . . . , N (2.8)

2.3 Computational Procedure

The determination of the posterior distribution according to Eq.(2.4) can be
accomplished using the Markov Chain Monte Carlo (MCMC) algorithms. In this
paper, an MCMC algorithms, namely the Metropolis Hastings (MH) will be em-
ployed. Let θ = [θ1 . . . θNpar] be a vector of the parameters θj(j = 1, . . . , Npar),
where Npar is the total number of the parameters to be estimated. The MH al-
gorithm makes the generation of the samples from a target density function π(θ)
possible. Therefore, if π(θ) is the posterior distribution, the samples obtained by
the MH algorithm will distribute according to the posterior distribution. The MH
algorithm requires the specification of a proposal or candidate density q(θl+2|θl.
The general framework of the MH algorithm is as follows [26]. Repeat the following
steps for l = 1, . . . ,M where M is the total number of sampling times.

1. Draw a candidate θl+1 from q(θl+1|θl).
2. Accept θl+1 with the probability of α(θl, θl+1, otherwise set θl+1 to be θl.

Then return to step 1.
The probability of acceptance is

α(θl, θl+1) = min

(
π(θl+1)/q(θl+1|θl)
π(θl)/q(θl|θl+1)

, l

)
(2.9)
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The accepted θl+1 will form samples whose limiting distribution is π(θ). Instead of
using the proposal density which depends on the previous candidate, the proposal
density can be independent from the previous state, i.e. q(θl+1|θl+1) = q(θl+1).
Accordingly, this becomes the so-called independence MH algorithm with the com-
putational steps:

1. Draw θl+1 from q(θl+1).

2. Accept θl+1 with the probability of α(θl, θl+1), where

α(θl, θl+1) = min

(
π(θl+1)/q(θl+1)

π(θl)/q(θl)
, l

)
(2.10)

Again, the accepted θl+1 will form samples whose limiting distribution is π(θ).

3 Numerical Example

3.1 Data

The daily closing values of the SET index from 2nd of January 2014 to 28th of
June 2016, altogether 606 data points (see Figure 1).

Figure 1: Daily closing values of the SET index from 2/1/2014 to 28/6/2016.
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3.2 Computation and Results

The inference applies the following priors:

f(µ, σ,H) = f(µ)f(σ)f(H), (3.1)

where

f(µ) ∼ U(1.00× 10−4, 5.00× 10−4) (3.2)

f(σ) ∼ LOGN(−5.81, 9.98× 10−4) (3.3)

f(H) ∼ U(0, 1) (3.4)

The uniform distributions are used as the priors for µ and H because there is
no information about those parameters, whereas the log-normal prior distribution
is taken as the prior for σ to ensure its non-negative property.

Total number of realizations is 20000 with the 10000-realization burn-in. Thus,
only 10000 realizations are taken into account for the inference purpose. The
histogram corresponding to the marginal posterior distribution of each parameter
is shown in Figure2, Figure 3 and Figure 4, respectively.

When applying MCMC, it is required that the convergence to the target den-
sity function be validated. Accordingly, the trace plot, running mean plot, and
autocorrelation plot of respective inferred parameters are performed for the pur-
pose of the convergence diagnostic.

Figure 2: Histogram of µ from independence MH with sample size of 10000.
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Figure 3: Histogram of σ from independence MH with sample size of 10000.

Figure 4: Histogram of H from independence MH with sample size of 10000.

The results are graphically given in Figure 5, Figure 6, and Figure 7, respec-
tively. The trace plot and running mean plot in all cases indicate the good-mixing
behavior of the simulated chain. The autocorrelation associated with each param-
eter is considerably reducing for higher values of lag. This indicates low degree
of correlation among samples. The independency among realizations can be thus
accepted.
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When the mode is taken as the estimate, the following values are obtained:

Ĥ = 0.51 (3.5)

µ̂ = 4.736× 10−4 (3.6)

σ̂ = 3.087× 10−4 (3.7)

Since the estimate of H is approximately 0.5, the driving Brownian motion can
be approximately taken as an sBm. Regarding the estimated H, the market is
considered efficient.

Figure 5: Convergence diagnostic of µ: (a) trace plot, (b) running mean plot, (c)
autocorrelation plot..
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Figure 6: Convergence diagnostic of σ: (a) trace plot, (b) running mean plot, (c)
autocorrelation plot.

Figure 7: Convergence diagnostic of H: (a) trace plot, (b) running mean plot, (c)
autocorrelation plot.
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4 Conclusions

A Bayesian method is proposed for the parameter identification of an SDE
driven by an fBm. Accordingly, a priori assumption of using the Hurst exponent
as 0.5 that can be untrue and erroneous is automatically avoid. MCMC is utilized
in order to obtain the numerical values of the identified parameters. The pro-
posed method is demonstrated through the modeling of stock market dynamics in
which the SET index is considered. The convergence diagnostic of the identified
parameters are satisfactorily verified via the trace plot, running mean plot, and
autocorrelation plot.
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