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1 Introduction

Let C be a subset of real normed linear space X. A mapping T : C → C
is said to be asymptotically nonexpansive on C if there exists a sequence {rn} in
[0,∞) with lim

n→∞
rn = 0 such that for each x, y ∈ C,

‖Tnx− Tny‖ ≤ (1 + rn)‖x− y‖, ∀n ≥ 1.

If rn ≡ 0, then T is known as a nonexpansive mapping. T is called asymptoticall
nonexpansive in the intermediate sense [18] provided T is uniformly continuous
and

lim sup
n→∞

sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖) ≤ 0.

From the above definitions, it follows that asymptotically nonexpansive map-
ping must be asymptotically nonexpansive in the intermediate sense.

Fixed-point iterations process for asymptotically nonexpansive mappings in
Banach spaces including Mann and Ishikawa iterations process have been studied
extensively by many authors to solve the nonlinear operator equations as well as
variational inequations; see [1, 5–9, 11–14, 16–17].



372 Thai J. Math. 4(2006)/ S. Plubtieng and I. Inchan

In 2000, Noor [12] introduced a three-step iterative scheme and studied the
approximate solution of variational inclusion in Hilbert spaces by using the tech-
niques of updating the solution and the auxiliary principle. Glowinski and Le
Tallec [4] used three-step iterative schemes to find the approximate solutions of
the elastoviscoplasticity problem, liquid crystal theory, and eigenvalue computa-
tion. It has been shown in [4] that the three-step iterative scheme gives better
numberical results then the two-step and one-step approximate iterations. Thus
we conclude that three-step scheme plays an important and significant part in
solving various problems, which arise in pure and applied sciences.

Recently, Xu and Noor [18] introduced and studied a three-step scheme to ap-
proximate fixed points of asymptotically nonexpansive mappings in Banach space.
In 2004, Cho, Zhou and Guo [2] extended the work of Xu and Noor to the three-step
iterative scheme with errors and gave weak and strong convergence theorems for
asymptotically nonexpansive mappings in Banach space. Moreover, Plubtieng and
Wangkeeree [15] introduced strong convergence theorems of a multi-step scheme
with errors of asymptotically nonexpansive in the intermediate sense. Inspired
motivated by these fact, we introduce and study a multi-step scheme with errors
for finite family of asymptotically nonexpansive in the intermediate sense.

Let C be a nonempty subset of normed space X and T1, ..., TN : C → C be
mappings. For a given x1 ∈ C, and a fixed N ∈ N defined by





x1 = x ∈ C,

x
(1)
n = α

(1)
n xn + β

(1)
n Tn

1 xn + γ
(1)
n u

(1)
n ,

x
(2)
n = α

(2)
n xn + β

(2)
n Tn

2 x
(1)
n + γ

(2)
n u

(2)
n ,

...
xn+1 = x

(N)
n = α

(N)
n xn + β

(N)
n Tn

Nx
(N−1)
n + γ

(N)
n u

(N)
n , n ≥ 1,

(1.1)

where, {u(1)
n }, . . . , {u(N)

n } are bounded sequences in C and {α(i)
n }, {β(i)

n }, {γ(i)
n }

are appropriate real sequences in [0, 1] such that α
(i)
n + β

(i)
n + γ

(i)
n = 1 for each

i ∈ {1, 2, . . . , N}.
The iterative schemes (1.1) are called the multi-step iteratives with errors.
If T1 = T2 = · · · = TN = T , then (1.1) reduces to multi-step Noor iterations

with errors introduced by Plubtieng and Wangkeeree [15] defined by




x1 = x ∈ C,

x
(1)
n = α

(1)
n xn + β

(1)
n Tnxn + γ

(1)
n u

(1)
n ,

x
(2)
n = α

(2)
n xn + β

(2)
n Tnx

(1)
n + γ

(2)
n u

(2)
n ,

...
xn+1 = x

(N)
n = α

(N)
n xn + β

(N)
n Tnx

(N−1)
n + γ

(N)
n u

(N)
n , n ≥ 1,

(1.2)

where, {u(1)
n }, . . . , {u(N)

n } are bounded sequences in C and {α(i)
n }, {β(i)

n }, {γ(i)
n }

are appropriate real sequences in [0, 1] such that α
(i)
n + β

(i)
n + γ

(i)
n = 1 for each

i ∈ {1, 2, . . . , N}.
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The purpose of this paper is to establish several strong convergence theorems
of multi-step iterative scheme with errors for finite family of asymptotically non-
expansive in the intermediate sense in a uniformly convex Banach space. These
results presented in this paper extend and improve the corresponding ones an-
nounced by Plubtieng and Wangkeeree [15], and many others.

2 Preliminaries

In this section, we recall the well known conceot results. Let C be a nonempty
subset of normed space X and T1, . . . , TN : C → C be mappings. A family
{Ti : i = 1, 2, . . . , N} of N self-mappings of C (i.e., Ti : C −→ C) with F =
∩N

i=1F (Ti) 6= φ is said to satisfy condition (B) on C if there is a nondecreasing
function f : [0,∞) −→ [0,∞) with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such
that for all x ∈ C

max
1≤i≤N

{‖x− Tix‖} ≥ f(d(x, F )). (2.1)

A mapping T : C → C is called semi − compact if any sequence {xn} in C
satisfying ‖xn − Txn‖ → 0 as n →∞ has a convergent subsequence.

Lemma 2.1 ([17]) Suppose that X is a uniformly convex Banach space and 0 <
p ≤ tn ≤ q < 1 for all positive integers n. Also suppose that {xn} and {yn} are
two sequences of X such that

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

‖yn‖ ≤ r

and lim
n→∞

‖tnxn + (1− tn)yn‖ = r hold for some r ≥ 0. Then lim
n→∞

‖xn − yn‖ = 0.

Lemma 2.2 ([10]) Let {an}, {bn} and {γn} be nonnegative sequences of real num-
ber satisfying

an+1 ≤ (1 + γn)an + bn for all n ≥ 1.

If
∑∞

n=1 γn < ∞ and
∑∞

n=1 bn < ∞ then

(a) lim
n→∞

an exists;

(b) lim
n→∞

an = 0, whenever lim inf
n→∞

an = 0.

3 Main Theorems

This section we prove two strong convergence theorems for finite mappings of
asymptotically nonexpansive in the intermediate sense.

Lemma 3.1 Let X be a uniformly convex Banach space, C a nonempty closed
bounded convex subset of X. Let T1, T2, . . . , TN be finite mappings of asymptotically
nonexpansive in the intermediate sense with F = ∩N

i=1F (Ti) 6= φ. Put

G(i)
n = sup

x,y∈C
(‖Tn

i x− Tn
i y‖ − ‖x− y‖) ∨ 0, ∀n ≥ 1,
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so that
∑∞

n=1 G
(i)
n < ∞ for all i ∈ {1, 2, . . . , N}. Let {xn} be the sequence defined

by (1.1) with the following restrictions :

(i) α
(i)
n + β

(i)
n + γ

(i)
n = 1 for all i ∈ {1, 2, 3, . . . , N} and for all n ≥ 1;

(ii)
∑∞

n=1 γ
(i)
n < ∞ for all i ∈ {1, 2, 3, . . . , N}.

If p ∈ F , then lim
n→∞

‖xn − p‖ exists.

Proof. Let p ∈ F for each n ≥ 1, we note that

‖x(1)
n − p‖ ≤ α(1)

n ‖Tn
1 xn − p‖+ β(1)

n ‖xn − p‖+ γ(1)
n ‖u(1)

n − p‖
≤ α(1)

n (‖xn − p‖+ ‖Tn
1 xn − p‖ − ‖xn − p‖) + β(1)

n ‖xn − p‖
+ γ(1)

n ‖u(1)
n − p‖

≤ α(1)
n ‖xn − p‖+ α(1)

n G(1)
n + β(1)

n ‖xn − p‖+ γ(1)
n ‖u(1)

n − p‖
≤ (α(1)

n + β(1)
n )‖xn − p‖+ d(1)

n

≤ ‖xn − p‖+ d(1)
n , (3.1)

where d
(1)
n = α

(1)
n G

(1)
n + γ

(1)
n ‖u(1)

n − p‖. Since
∑∞

n=1 G
(1)
n < ∞, we see that∑∞

n=1 d
(1)
n < ∞. It follows from (3.1) that

‖x(2)
n − p‖ ≤ α(2)

n ‖Tn
2 x(1)

n − p‖+ β(2)
n ‖xn − p‖+ γ(2)

n ‖u(2)
n − p‖

≤ α(2)
n (‖x(1)

n − p‖+ ‖Tn
2 x(1)

n − p‖ − ‖x(1)
n − p‖) + β(2)

n ‖xn − p‖
+ γ(2)

n ‖u(2)
n − p‖

≤ α(2)
n ‖x(1)

n − p‖+ α(2)
n G(2)

n + β(2)
n ‖xn − p‖+ γ(2)

n ‖u(2)
n − p‖

≤ α(2)
n (‖xn − p‖+ d(1)

n ) + α(2)
n G(2)

n + β(2)
n ‖xn − p‖+ γ(2)

n ‖u(2)
n − p‖

≤ (α(2)
n + β(2)

n )‖xn − p‖+ α(2)
n d(1)

n + α(2)
n G(2)

n + γ(2)
n ‖u(2)

n − p‖
≤ ‖xn − p‖+ d(2)

n (3.2)

where d
(2)
n = α

(2)
n d

(1)
n + α

(2)
n G

(2)
n + γ

(2)
n ‖u(2)

n − p‖. Since
∑∞

n=1 G
(2)
n < ∞ and∑∞

n=1 d
(1)
n < ∞, it follows that

∑∞
n=1 d

(2)
n < ∞. Moreover, we see that

‖x(3)
n − p‖ ≤ α(3)

n ‖Tn
3 x(2)

n − p‖+ β(3)
n ‖xn − p‖+ γ(3)

n ‖u(3)
n − p‖

≤ α(3)
n (‖x(2)

n − p‖+ ‖Tn
3 x(2)

n − p‖ − ‖x(2)
n − p‖) + β(3)

n ‖xn − p‖
+ γ(3)

n ‖u(3)
n − p‖

≤ α(3)
n ‖x(2)

n − p‖+ α(3)
n G(3)

n + β(3)
n ‖xn − p‖+ γ(3)

n ‖u(3)
n − p‖

≤ α(3)
n (‖xn − p‖+ d(2)

n ) + α(3)
n G(3)

n + β(3)
n ‖xn − p‖+ γ(3)

n ‖u(3)
n − p‖

≤ (α(3)
n + β(3)

n )‖xn − p‖+ α(3)
n d(2)

n + α(3)
n G(3)

n + γ(3)
n ‖u(3)

n − p‖
≤ ‖xn − p‖+ d(3)

n , (3.3)
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where d
(3)
n = α

(3)
n d

(2)
n + α

(3)
n G

(3)
n + γ

(3)
n ‖u(3)

n − p‖. So that
∑∞

n=1 d
(3)
n < ∞. By

continuing the above method, there are nonnegative real sequence {d(k)
n } such

that
∑∞

n=1 d
(k)
n < ∞ and

‖x(k)
n − p‖ ≤ ‖xn − p‖+ d(k)

n , (3.4)

for all k = 1, 2, . . . , N and for all n ∈ N. This together with Lemma 2.2 give that
limn→∞ ‖xn − p‖ exists. This completes the proof. ¤

Lemma 3.2 Let X be a uniformly convex Banach space, C a nonempty closed
bounded convex subset of X. Let T1, T2, . . . , TN be finite mappings of asymptotically
nonexpansive in the intermediate sense with F = ∩N

i=1F (Ti) 6= φ. Put

G(i)
n = sup

x,y∈C
(‖Tn

i x− Tn
i y‖ − ‖x− y‖) ∨ 0, ∀n ≥ 1,

so that
∑∞

n=1 G
(i)
n < ∞ for all i ∈ {1, 2, . . . , N}. Let the sequence {xn} be defined

by (1.1) whenever {α(i)
n }, {β(i)

n }, {γ(i)
n } satisfy the same assumptions as in Lemma

3.1 for each i ∈ {1, 2, . . . , N} and the additional assumption that 0 < α ≤ α
(i)
n ≤

β < 1 for all n ≥ n0, for some n0 ∈ N. Then limn→∞ ‖Tixn − xn‖ = 0 for all
i = 1, 2, . . . , N.

Proof. For any p ∈ F , it follows from Lemma 3.1 that limn→∞ ‖xn − p‖ exists.
Let limn→∞ ‖xn − p‖ = c for some c ≥ 0. We note that

‖x(N−1)
n − p‖ ≤ ‖xn − p‖+ d(N−1)

n , ∀n ≥ 1

where {d(N−1)
n } is nonnegative real sequence such that

∑∞
n=1 d

(N−1)
n < ∞. It

follows that

lim sup
n→∞

‖x(N−1)
n − p‖ ≤ lim sup

n→∞
‖xn − p‖ = lim

n→∞
‖xn − p‖ = c,

from which we have

lim sup
n→∞

‖Tn
Nx(N−1)

n − p‖ ≤ lim sup
n→∞

(‖x(N−1)
n − p‖+ G(N)

n )

= lim sup
n→∞

(‖x(N−1)
n − p‖) ≤ c.

Next, we observe that

‖Tn
Nx(N−1)

n − p +
γ

(N)
n

2α
(N)
n

(u(N)
n − p)‖ ≤ ‖Tn

Nx(N−1)
n − p‖+ ‖ γ

(N)
n

2α
(N)
n

(u(N)
n − p)‖.

Thus we have

lim sup
n→∞

‖Tn
Nx(N−1)

n − p +
γ

(N)
n

2α
(N)
n

(u(N)
n − p)‖ ≤ c. (3.5)
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Also,

‖xn − p +
γ

(N)
n

2β
(N)
n

(u(N)
n − p)‖ ≤ ‖xn − p‖+ ‖ γ

(N)
n

2β
(N)
n

(u(N)
n − p)‖,

gives that

lim sup
n→∞

‖xn − p +
γ

(N)
n

2β
(N)
n

(u(N)
n − p)‖ ≤ c, (3.6)

and note that

c = lim
n→∞

‖x(N)
n − p‖ = lim

n→∞
‖α(N)

n Tn
Nx(N−1)

n + β(N)
n xn + γ(N)

n u(N)
n − p‖

= lim
n→∞

‖α(N)
n [Tn

Nx(N−1)
n − p +

γ
(N)
n

2α
(N)
n

(u(N)
n − p)]

+ β(N)
n [xn − p +

γ
(N)
n

2β
(N)
n

(u(N)
n − p)]‖

= lim
n→∞

‖α(N)
n [Tn

Nx(N−1)
n − p +

γ
(N)
n

2α
(N)
n

(u(N)
n − p)]

+ (1− α(N)
n )[xn − p +

γ
(N)
n

2β
(N)
n

(u(N)
n − p)]‖.

This together with (3.5), (3.6) and Lemma 2.1, give

lim
n→∞

‖Tn
Nx(N−1)

n − xn + (
γ

(N)
n

2α
(N)
n

− γ
(N)
n

2β
(N)
n

)(u(N)
n − p)‖ = 0.

Since limn→∞ ‖( γ(N)
n

2α
(N)
n

− γ(N)
n

2β
(N)
n

)(u(N)
n − p)‖ = 0, it follows that

lim
n→∞

‖Tn
Nx(N−1)

n − xn‖ = 0.

Moreover, for each n ≥ 1, we note that

‖xn − p‖ ≤ ‖xn − Tn
Nx(N−1)

n ‖+ ‖Tn
Nx(N−1)

n − p‖
≤ ‖xn − TNx(N−1)

n ‖+ ‖x(N−1)
n − p‖+ G(N−1)

n .

Since limn→∞ ‖xn − TNx
(N−1)
n ‖ = 0 = limn→∞G

(N−1)
n , we obtain that

c = lim
n→∞

‖xn − p‖ ≤ lim inf
n→∞

‖x(N−1)
n − p‖ ≤ lim sup

n→∞
‖x(N−1)

n − p‖ ≤ c.

This implies that
lim

n→∞
‖x(N−1)

n − p‖ = c.

On the other hand, we note that

‖x(N−2)
n − p‖ ≤ ‖xn − p‖+ d(N−2)

n , ∀n ≥ 1,
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where {d(N−2)
n } is a nonnegative real sequence such that

∑∞
n=1 d

(N−2)
n < ∞. So

that
lim sup

n→∞
‖x(N−2)

n − p‖ ≤ lim sup
n→∞

‖xn − p‖ = c,

and hence

lim sup
n→∞

‖Tn
N−1x

(N−2)
n − p‖ ≤ lim sup

n→∞
(‖x(N−2)

n − p‖+ G(N−2)
n ) ≤ c.

Next, we observe that

‖Tn
N−1x

(N−2)
n − p +

γ
(N−1)
n

2α
(N−1)
n

(u(N−1)
n − p)‖ ≤ ‖Tn

N−1x
(N−2)
n − p‖

+ ‖ γ
(N−1)
n

2α
(N−1)
n

(u(N−1)
n − p)‖.

Thus, we have

lim sup
n→∞

‖Tn
N−1x

(N−2)
n − p +

γ
(N−1)
n

2α
(N−1)
n

(u(N−1)
n − p)‖ ≤ c. (3.7)

Also,

‖xn − p +
γ

(N−1)
n

2β
(N−1)
n

(u(N−1)
n − p)‖ ≤ ‖xn − p‖+ ‖ γ

(N−1)
n

2β
(N−1)
n

(u(N−1)
n − p)‖,

gives that

lim sup
n→∞

‖xn − p +
γ

(N−1)
n

2β
(N−1)
n

(u(N−1)
n − p)‖ ≤ c, (3.8)

and note that

c = lim
n→∞

‖x(N−1)
n − p‖ = lim

n→∞
‖α(N−1)

n Tn
N−1x

(N−2)
n + β(N−1)

n xn − p‖

= lim
n→∞

‖α(N−1)
n [Tn

N−1x
(N−2)
n − p +

γ
(N−1)
n

2α
(N−1)
n

(u(N−1)
n − p)]

+ β(N−1)
n [xn − p +

γ
(N−1)
n

2α
(N−1)
n

(u(N−1)
n − p)]‖

= lim
n→∞

‖α(N−1)
n [Tn

N−1x
(N−2)
n − p +

γ
(N−1)
n

2α
(N−1)
n

(u(N−1)
n − p)]

+ (1− α(N−1)
n )[xn − p +

γ
(N−1)
n

2α
(N−1)
n

(u(N−1)
n − p)]‖.

This together with (3.7), (3.8) and Lemma 2.1, give

lim
n→∞

‖Tn
N−1x

(N−2)
n − xn + (

γ
(N−1)
n

2α
(N−1)
n

− γ
(N−1)
n

2β
(N−1)
n

)(u(N−1)
n − p)‖ = 0.



378 Thai J. Math. 4(2006)/ S. Plubtieng and I. Inchan

Since

lim
n→∞

∥∥∥∥∥(
γ

(N−1)
n

2α
(N−1)
n

− γ
(N−1)
n

2β
(N−1)
n

)(u(N−1)
n − p)

∥∥∥∥∥ = 0,

it follows that
lim

n→∞
‖Tn

N−1x
(N−2)
n − xn‖ = 0.

Similarly, as in the proof above we can show that

lim
n→∞

‖Tn
N−2x

(N−3)
n − xn‖ = lim

n→∞
‖Tn

N−3x
(N−4)
n − xn‖

...

= lim
n→∞

‖Tn
1 x(1)

n − xn‖
= lim

n→∞
‖Tn

1 xn − xn‖ = 0.

For any i ∈ {2, 3, . . . , N}, we note that

‖Tn
i xn − xn‖ ≤ ‖Tn

i xn − Tn
i x(i−1)

n ‖+ ‖Tn
i x(i−1)

n − xn‖
≤ ‖xn − x(i−1)

n ‖+ G(i)
n + ‖Tn

i x(i−1)
n − xn‖

≤ α(i−1)
n ‖xn − Tn

i x(i−1)
n ‖+ G(i)

n + γ(i−1)
n ‖u(i−1)

n − xn‖
+ ‖Tn

i x(i−1)
n − xn‖ → 0, as n →∞ (3.9)

and

‖xn+1 − xn‖ ≤ α(N)
n ‖TNx(i−1)

n − xn‖+ γ(N)
n ‖u(N)

n − xn‖ → 0 (3.10)

as n →∞. Since

‖Tixn − xn‖ ≤ ‖xn+1 − xn‖+ ‖xn+1 − Tn+1
i xn+1‖

+ ‖Tn+1
i xn+1 − Tn+1

i xn‖+ ‖Tn+1
i xn − Tixn‖,

it follows from (3.9), (3.10) and uniformly continuity of Ti that

lim
n→∞

‖Tixn − xn‖ = 0, for all i = 1, 2, . . . , N. (3.11)

This completes the proof. ¤

Theorem 3.3 Let X be a uniformly convex Banach space, C a nonempty closed
bounded convex subset of X. Let T1, T2, . . . , TN be finite mappings of asymptotically
nonexpansive in the intermediate sense with F = ∩N

i=1F (Ti) 6= φ and satisfying
condition (B). Put

G(i)
n = sup

x,y∈C
(‖Tn

i x− Tn
i y‖ − ‖x− y‖) ∨ 0, ∀n ≥ 1,
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so that
∑∞

n=1 G
(i)
n < ∞. Let the sequence {xn} be defined by (1.1) whenever

{α(i)
n }, {β(i)

n }, {γ(i)
n } satisfy the same assumptions as in Lemma 3.1 and the addi-

tional assumption that 0 < α ≤ α
(i)
n ≤ β < 1 for each i ∈ {1, 2, 3, . . . , N} for all

n ≥ n0, for some n0 ∈ N. Then {xn} converges strongly to a common fixed point
in F .

Proof. It follows from Lemma 3.2 that

lim
n→∞

‖xn − Tixn‖ = 0, for all i = 1, 2, ..., N.

Now by the condition (B), there exists f : [0,∞) → [0,∞) is nondecreasing
function such that

max
1≤i≤N

{‖Tixn − xn‖} ≥ f(d(xn, F )).

Then limn→∞ f(d(xn, F )) = 0. Since f is nondecreasing function and f(0) = 0,
we have

lim
n→∞

d(xn, F ) = 0. (3.12)

We next show that {xn} is a cauchy sequence. Let ε > 0. By (3.4), we obtain

‖xn+1 − p‖ ≤ ‖xn − p‖+ d(N)
n , ∀p ∈ F, ∀ n ∈ N.

Thus, we note that

‖xn+m − p‖ ≤ ‖xn+(m−1) − p‖+ d
(N)
n+(m−1), ∀p ∈ F.

By (3.12) and
∑∞

n=1 d
(N)
n < ∞, there exists N1 ∈ N such that

d(xn, F ) <
ε

3
and

∞∑
n=1

d(N)
n <

ε

3
,

for all n ≥ N1. Let n ≥ N1. Then there exists p1 ∈ F such that ‖xn − p1‖ < ε
3 .

Hence for each m ∈ N, we have

‖xn+m − xn‖ ≤ ‖xn+m − p1‖+ ‖xn − p1‖
≤ ‖xn+(m−1) − p1‖+ ‖xn − p1‖+ d

(N)
n+(m−1)

≤ ‖xn − p1‖+ ‖xn − p‖+ Σm
i=1d

(N)
n+(m−i)

<
ε

3
+

ε

3
+

ε

3
= ε.

Thus, we have {xn} is a cauchy sequence. Since X is complete, it follows that
{xn} is converges, that is xn → p as n → ∞ for some p ∈ X. We now show that
p ∈ F . For i ∈ {1, 2, ..., N}, we have

‖Tip− p‖ ≤ ‖Tip− Tixn‖+ ‖Tixn − xn‖+ ‖xn − p‖,
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it follows from Lemma 3.2 and uniform continuous of Ti that

‖Tip− p‖ = 0 as n →∞.

Thus p is common fixed point in F . This completes the proof. ¤

Theorem 3.4 Let X be a uniformly convex Banach space, C a nonempty closed
bounded convex subset of X. Let T1, T2, . . . , TN be finite mappings of asymptotically
nonexpansive in the intermediate sense with F = ∩N

i=1F (Ti) 6= φ and one of
mappings in {Ti : i = 1, 2, . . . , N} is semi− compact. Put

G(i)
n = sup

x,y∈C
(‖Tn

i x− Tn
i y‖ − ‖x− y‖) ∨ 0, ∀n ≥ 1,

so that
∑∞

n=1 G
(i)
n < ∞. Let the sequence {xn} be defined by (1.1) whenever

{α(i)
n }, {β(i)

n }, {γ(i)
n } satisfy the same assumptions as in Lemma 3.1 for each i ∈

{1, 2, 3, . . . , N} and the additional assumption that 0 < α ≤ α
(i)
n ≤ β < 1 for all

n ≥ n0, for some n0 ∈ N. Then {xn} converges strongly to a common fixed point
in F .

Proof. Suppose that Ti0 is semi− compact for some i0 = 1, 2, . . . , N . By Lemma
3.1, we have limn→∞ ‖xn − Ti0xn‖ = 0. So there exists a subsequence {xnj}
of {xn} such that xnj → p ∈ C as j → ∞. Now Lemma 3.2 guarantees that
limj→∞ ‖xnj −Tlxnj‖ = 0 for all l = 1, 2, . . . , N . These imply ‖p−Tlp‖ = 0 for all
l = 1, 2, . . . , N . This implies that p ∈ F . By Lemma 3.1 limn→∞ ‖xn − p‖ exists
and then limn→∞ ‖xn − p‖ = limn→∞ ‖xnj − p‖ = 0. This completes the proof. ¤

If T1 = T2 = · · · = TN = T , then we obtain the following result.

Theorem 3.5 Let X be a uniformly convex Banach space, C a nonempty closed
bounded convex subset of X. Let T : C −→ C be a mappings of completely contin-
uous asymptotically nonexpansive in the intermediate sense. Put

Gn = sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖) ∨ 0, ∀n ≥ 1,

so that
∑∞

n=1 Gn < ∞. Let the sequence {xn} be defined by (1.2) whenever
{α(i)

n }, {β(i)
n }, {γ(i)

n } satisfy the same assumptions as in Lemma 3.1 for each i ∈
{1, 2, ..., N} and the additional assumption that 0 < α ≤ α

(N−1)
n , α

(N)
n ≤ β < 1 for

all n ≥ n0, for some n0 ∈ N. Then {x(k)
n } converges strongly to a fixed point of T .
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