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1 Introduction

One crucial task both in the practical management of an insurance company
and in theoretical consideration is to determine premiums adequate to cover any
risks. These premiums are calculated based on the chosen model, information
in the insurance contract (e.g. claims experience), and a loss function which in
mathematical terms belongs to the area of Bayesian statistics.

It is a common practice to group individual risks, so that the risks within
each group are as homogeneous as possible in order to reach a fair and equitable
premium across all individuals. A collective premium, also known as the manual
premium, is then calculated and charged for this group. But in reality, not all risks
in any general class are truly homogeneous. However, no matter how detailed the
underwriting procedure, there still remains some heterogeneity with respect to risk
characteristics within a rating class. In this paper, we note that an individual’s
risk refers to the claim amounts for an individual.

In risk theory, each risk X for an individual is characterized by a risk parameter
θ (possibly vector valued) due to heterogeneity over policies in the portfolio being
examined. All values θ associated with each risk are modeled by the random
variable Θ. Let Π(θ) be the cumulative distribution function of Θ and assume
that the density of the random variable Θ exists and will be denoted by π(θ). The
function π(θ) is referred to as a structure function in actuarial studies and prior
distribution in statistical theory. In order to predict a possible future loss for the
risk X, we require a sequence of historical claims including accurately summarized
information from the observed data to estimate the distribution π(θ).

In the modeling of claims, several studies have assumed independence of claims
which may be appropriate in some practical situations, including mathematical
tractability. In real applications, we agree there are some situations in which these
assumptions may be violated; for example, in house insurance in which geographic
proximity of the insured may result in exposure to a common catastrophe, and in
motor insurance in which one collision may involve several insured parties.

The concept of modeling dependence began with a consideration of time de-
pendence but not of dependence across individuals. An early paper by Gerber and
Jones (1975)[1] and a paper by Frees et al. (1999)[2] are examples of credibility
models with time dependence for claims. Works by Wang (1998)[3] proposed a
set of statistical tools for modeling dependencies of risks in an insurance portfo-
lio. A paper by Purcaru and Denuit (2002)[4] provided a kind of dependence for
claim frequency induced by introducing common latent variables. Several gener-
alizations and alternative models of dependence have been suggested; however,
in the context of credibility pricing, dependence over individuals has not received
adequate attention from researchers and practitioners so far.

However, in 2006, Yeo and Valdez [5] proposed a claims dependent model
under the assumptions as follows: 1. claims in a portfolio are dependent across
time periods for a fixed individual and 2. claims in a portfolio are dependent
across individuals for a fixed time period.

In this paper, we introduce a different claims dependent model under the
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assumption that claims in a portfolio are only dependence across individuals for a
fixed time periods.

In the present model, the common effect is used to describe the common
dependence among individuals. This model is suitable for some situations such
as the data of dependence between time periods for each individual in a portfolio
may not appropriate or unavailable. The main purpose is to derive the Bayesian
premium corresponding to the model.

Furthermore, the explicit form of the Bayesian premium requires distributions
of both claim amounts and common effect. A paper by Yeo and Valdez (2006)[5]
considered both of these two distributions are only normally distributed. In our
work, we are especially interested in lognormal distribution. This distribution
is a long-tailed distribution that is widely used to describe a feature of claim
amounts in non-life insurance; for example, motor insurance, fire insurance or
allied perils insurance. We derive explicit form of the Bayesian premium under
normal common effect and lognormal claim amounts. We also obtain the explicit
form of the Bayesian premium under normal claim amounts which can be further
rewritten in a credibility formula.

The structure for the rest of the paper has been made as follows. In section 2,
model descriptions and preliminaries are introduced. We also derive some results in
order to find the Bayesian premium under the square-error loss function. Section
3 establishes the Bayesian premiums for lognormal and normal claim amounts
distributions while the common effects of both are normally distributed. Finally,
we provide some concluding remarks in section 4.

2 Model Formulation and Preliminaries

Let (Ω,F ,P) be a probability space, let L2(F) denoted the Hilbert space
of all random variables X : Ω −→ R having a finite second moment. All random
variables that we shall work with will be in this space.

Let I and T be positive integers. Consider a portfolio of insurance contracts
consisting of I insured individuals and each individual has available a history of
T time periods. Denote by Xi,t; 1 ≤ i ≤ I, 1 ≤ t ≤ T , the claim amount for
individual i during period t. Therefore, the random vector

~Xi = (Xi,1, Xi,2, . . . , Xi,t)
′

represents the vector of claims for a particular individual i = 1, 2, . . . , I. We are
interested in the prediction of a future claim for each individual i based on all
the observed claims

~X = ( ~X1, ~X2, . . . , ~XI). (2.1)

This will be denoted by the random variable Xi,T+1.
Define a subspace H of L2(F) by

H := L2(σ( ~X1, ~X2, . . . , ~XI)).
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Since H is clearly a closed subspace of L2(F), then for a fixed i = 1, 2, . . . , I,
the projection theorem in Hilbert space yields the unique existence of p∗i ∈ H
satisfying

E[(Xi,T+1 − p∗i )2] = inf
p∈H

E[(Xi,T+1 − p)2].

It is well known from statistical theory that this solution p∗i satisfies p∗i =

E[Xi,T+1| ~X = ~x] and it is known as the Bayesian premium for risk ~Xi.

The One-Level Common Effect Model

As already mentioned in the introductory section, our main purpose is to study
the Bayesian premium under a type of dependence structure among individuals
which will be described by a common effect random variable Λ and its realization
λ. Conditional on this common effect , the random vectors ~Xi are independent.
This common effect will define the dependence structure between individual risks
and it can either be a discrete, continuous, or a mixture of discrete and continuous
random variables. We assume the density function fΛ(λ) is provided. More
precisely, we shall summarize these with the following assumptions.

A1. The common effect random variable Λ has known probability density
function fΛ(λ).

A2. For a fixed i = 1, 2, . . . , I, the random variables Xi,t, t = 1, 2, . . . , T + 1
are mutually independent and identically distributed.

A3. The random vectors ~Xi|Λ = λ, i = 1, 2, . . . , I where ~Xi = (Xi,1,

Xi,2, . . . , Xi,T+1)
′

are conditionally independent.
A4. For a fixed i = 1, 2, . . . , I and a fixed t = 1, 2, . . . , T +1, the conditional

random variable Xi,t given that Λ = λ has known probability function denoted
by

fXi,t|Λ(xi,t|λ) =:
fXi,t,Λ(xi,t, λ)

fΛ(λ)
.

One can think of Λ as the variable inducing dependence into the claim
among individuals, such as a catastrophe in general insurance, or simply bad
weather conditions on a day when automobile accidents are frequent. In order to
estimate parameters for the model, better parameter estimates can be acquired if
the historical claims data can be separated into categories of catastrophe and non-
catastrophe. This categorization information, keeping track of claims, especially
the cause of claims, should be readily available for most insurance companies as
they come in reported.

Method to find Bayesian premiums: For a fixed individual j = 1, 2, . . . , I, the
Bayesian premiums which can be conveniently expressed as

E[Xj,T+1| ~X = ~x] =

∫
xj,T+1 · fXj,T+1| ~X(xj,T+1|~x)dxj,T+1 (2.2)

requires an explicit formula for conditional density fXj,T+1| ~X(xj,T+1|~x). To achieve

this, we need a lemma.
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Lemma 2.1. Let Λ be a random variable satisfying the assumption A1 to A4
and ~X be the vector of all observable claims which is defined in (2.1). The joint

density of ~X and the overall risk parameter Λ can be expressed as

f ~X,Λ(~x, λ) =

I∏
i=1

f ~Xi|Λ
~(xi|λ)× fΛ(λ). (2.3)

Proof. From the definition for conditional density and assumption A3, we have

f ~X,Λ(~x, λ) = f ~X|Λ(~x, |λ)× fΛ(λ)

=

I∏
i=1

f ~Xi|Λ(~xi|λ)× fΛ(λ). (2.4)

The proof is now complete.

Next, we compute fΛ| ~X(λ|~x). Using the definition of conditional density, we

have

fΛ| ~X(λ|~x) = f ~X,Λ(~x, λ)× 1

f ~X(~x)
. (2.5)

Substituting (2.4) into the right-hand side of (2.5), one gets

fΛ| ~X(λ|~x) = C ×
I∏
i=1

f ~Xi|Λ(~xi|λ)× fΛ(λ), (2.6)

where C = 1
f ~X(~x) = (

∫
f ~X,Λ(~x, λ)dλ)−1 is a normalizing constant.

Theorem 2.1. Suppose the random variable Λ and the random vector ~X satisfy
all assumptions as in Lemma 2.1. The conditional density of Xj,T+1| ~X can be
expressed as

fXj,T+1| ~X(xj,T+1|~x) =

∫
fXj,T+1|Λ(xj,T+1|λ)× fΛ| ~X(λ|~x) dλ. (2.7)

Proof. In the definition of conditional density, we have

fXj,T+1| ~X(xj,T+1|~x) = fXj,T+1, ~X
(xj,T+1, ~x)× 1

f ~X(~x)
. (2.8)

We note that the density fXj,T+1, ~X
(xj,T+1, ~x) can be calculated by integrat-

ing fXj,T+1, ~X,Λ
(xj,T+1~x, λ) with respect to λ. Hence, firstly we shall compute

fXj,T+1, ~X,Λ
(xj,T+1, ~x, λ). Using the definition of conditional density, assumptions

A3 and A4 then we have

fXj,T+1, ~X,Λ
(xj,T+1, ~x, λ) = fXj,T+1|Λ(xj,T+1|λ)×

I∏
i=1

fXi|Λ(xi, |λ)×fΛ(λ). (2.9)
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By equation (2.6), one gets

I∏
i=1

f ~Xi|Λ(~xi|λ)× fΛ(λ) = fΛ| ~X(λ|~x)× f ~X(~x). (2.10)

Substituting (2.10) into the right-hand side of (2.9) yields

fXj,T+1, ~X,Λ
(xj,T+1, ~x, λ) = fXj,T+1|Λ(xj,T+1|λ)× fΛ| ~X(λ|~x)× f ~X(~x). (2.11)

Next, integrating (2.11) with respect to λ, we have

fXj,T+1, ~X
(xj,T+1, ~x) = f ~X(~x)

∫
fXj,T+1|Λ(xi,T+1|λ)× fΛ| ~X(λ|~x) dλ. (2.12)

Substituting (2.12) into the right-hand side of (2.8), we obtain

fXj,T+1| ~X(xj,T+1|~x) =

∫
fXj,T+1|Λ(xj,T+1|λ)× fΛ| ~X(λ|~x) dλ.

The proof is now complete.

The objective of the theorem above is to derive an explicit expression for the
conditional density in terms of all available or given information. Notice that
the conditional density fXj,T+1|Λ(xj,T+1|λ) which according to assumption A4 is
known and given, and that of

fΛ| ~X(λ|~x) = fΛ, ~X(λ, ~x)× 1

f ~X(~x)
, (2.13)

for which the numerator can be evaluated using Lemma (2.1) together with the
independence of the common effect Λ.

3 Bayesian Premiums with Normal Common Ef-
fect

The normal distribution is the most widely known and used of all distributions
because the normal distribution approximates many natural phenomena. In this
section, we shall use equation (2.2) to find the Bayesian premium when the common
effect λ is assumed to be normally distributed. We consider the claim amounts
following lognormal or normal distribution. We divide our investigation into two
cases.

3.1 Bayesian Premiums with Lognormal Claim Amounts

In this case, we make the following assumptions: for convenience, we write
X|λ := X|Λ = λ.

L1. the random variables Xj,t|λ are lognormally distributed, i.e.,

Xj,t|λ ∼ LN(µj + λ, σ2
x) for j = 1, 2, . . . , I, and t = 1, 2, . . . , T,
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where µj is a constant depending on individual j and needs to be chosen.

Then Xj,t|λ has a mean of e(µj+λ)+
σ2x
2 and a variance of (eσ

2
x−1)(e2(µj+λ)+σ2

x),
L2. the common effect λ is normally distributed with mean µλ and variance

σ2
λ.

A useful application of Theorem 2.1 appears in the following theorem.

Theorem 3.1. Suppose the random variable Λ and the random vector ~X satisfy
all assumptions as in Lemma 2.1. Assume further that Xj,t|λ and common effect
λ satisfy L1 and L2, respectively. Then the Bayesian premium can be written as

E[Xj,T+1| ~X = ~x] = e

σ2λ(∑I
i=1

∑T
t=1 lnXi,t−T

∑I
i=1 µi+µjIT)+σ2x

(
µλ+µj

)
σ2
λ
IT+σ2x



× e

(σ2λ(IT+1)+σ2x

)
σ2x

2(σ2
λ
IT+σ2x)


(3.1)

for j = 1, 2, . . . , I.

Proof. We proceed the proof by following steps:
Step 1. We recall equation (2.2):

E[Xj,T+1| ~X = ~x] =

∫
xj,T+1 · fXj,T+1| ~X(xj,T+1|~x)dxj,T+1.

Our main interest is to derive the density of Xj,T+1| ~X = ~x where without loss
of generality, we fix j = 1.
From assumptions L1 and L2, we have

fXj,t|Λ(xj,t|λ) =
1

xj,tσx
√

2π
e
− 1

2

(
ln xj,t−(µj+λ)

σx

)2

, and (3.2)

fΛ(λ) =
1

σλ
√

2π
e
− 1

2

(
λ−µλ
σλ

)2

.

And the conditional density fX1,T+1|Λ(x1,T+1|λ) is already known to be

fX1,T+1|Λ(x1,T+1|λ) =
1

x1,T+1σx
√

2π
e
− 1

2

(
ln x1,T+1−(µj+λ)

σx

)2

. (3.3)

Applying Theorem (2.1), we have

fX1,T+1| ~X(x1,T+1|~x) = C1

∫
fX1,T+1|Λ(x1,T+1|λ)× fΛ, ~X(λ, ~x) dλ. (3.4)

where C1 = 1
f ~X(~x) is just a normalizing constant and does not have to be solved

for explicitly. Here, and in the subsequent development, the limits of the integrals
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are the entire real line. The joint density fΛ, ~X(λ, ~x) can be derived by using

lemma (2.1), giving

f ~X,Λ(~x, λ) =

I∏
i=1

( T∏
t=1

1

xi,tσx
√

2π
e
− 1

2

(
ln xi,t−(µi+λ)

σx

)2) 1

σλ
√

2π
e
− 1

2

(
λ−µλ
σλ

)2

.

(3.5)

Substituting (3.3) and (3.5) into (3.4), we have the density of X1,T+1| ~X = ~x is in
the form

fX1,T+1| ~X(x1,T+1|~x) =

∫
C1

x1,T+1

∏I
i=1

(∏T
t=1 xi,t

)
(σx)IT+1(2π)

IT+2
2 σλ

× e
− 1

2

[∑T+1
t=1

(
ln x1,t−(µ1+λ)

σx

)2]
× e

− 1
2

(
λ−µλ
σλ

)2

× e
− 1

2

[∑I
i=2

∑T
t=1

(
ln xi,t−(µi+λ)

σx

)2]
dλ. (3.6)

Step 2. Consider the right-hand side of (3.6), we show that∫
1

2π
e
− 1

2

[∑T+1
t=1

(
ln x1,t−(µ1+λ)

σx

)2

+
∑I
i=2

∑T
t=1

(
ln xi,t−(µi+λ)

σx

)2

+

(
λ−µλ
σλ

)2]
dλ

= ϕ(

√
IT + 1

σ2
λ(IT + 1) + σ2

x

[(∑I
i=1

∑T
t=1 ln xi,t+ln x1,T+1

)
−
(
T

∑I
i=1 µi+µ1

)
IT+1 − µλ

]
)

× σxσ
2
λ

√
IT+1

√
σ2
λ
(IT+1)

σ2x
+1

× e
− 1

2σ2x

[
−
([∑I

i=1
∑T
t=1 ln xi,t+ln x1,T+1

]
−
[
T

∑I
i=1 µi+µ1

])2
IT+1

]

× e
− 1

2σ2x

[ (∑I
i=1

∑T
t=1(ln xi,t)

2+(ln x1,T+1)2
)
−2
(∑I

i=1(µi
∑T
t=1 ln xi,t)+(ln x1,T+1·µ1)

)]
× e

− 1
2σ2x

[
T

∑I
i=1 µ

2
i+µ

2
1

]
. (3.7)

From equation (3.6), the term containing λ can be written in the form∫
1

2π
e
− 1

2

[∑T+1
t=1

(
ln x1,t−(µ1+λ)

σx

)2

+
∑I
i=2

∑T
t=1

(
ln xi,t−(µi+λ)

σx

)2

+

(
λ−µλ
σλ

)2]
dλ. (3.8)

By extracting and regrouping (3.8), we get a term which can be simplified as
follow:

1

2π
e
− IT+1

2σ2x

[(
λ−

(∑I
i=1

∑T
t=1 ln xi,t+ln x1,T+1

)
−
(
T

∑I
i=1 µi+µ1

)
IT+1

)2]
e
− 1

2

(
λ−µλ
σλ

)2

= σxσλ√
IT+1

× ϕ(
√
IT+1
σx

[
λ−

(∑I
i=1

∑T
t=1 ln xi,t+ln x1,T+1

)
−
(
T

∑I
i=1 µi+µ1

)
IT+1

]
)

× ϕ(λ−µλσλ
), (3.9)
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where ϕ(z) is the standard normal density.

We use a result from Valdez (2004)[6] to simplify (3.9). This result states that
for ϕ(z) and any constants a and b, the following is true:

∫ ∞
−∞

ϕ(z)ϕ(a− bz)dz =
1√
b2 + 1

ϕ(

√
a2

b2 + 1
). (3.10)

Thus, by letting z = λ−µλ
σλ

so that dz = 1
σλ
dλ, then applying (3.10) to (3.9)

and after simplifying, one gets equation (3.7).

Step 3. To verify the equation

fX1,T+1| ~X(x1,T+1|~x) =
C2

x1,T+1
× e−

1
2

[
A(ln x1,T+1)2−2B(ln x1,T+1)+K

]
, (3.11)

where

A =
σ2
x + σ2

λIT

(σ2
λ(IT + 1) + σ2

x)σ2
x

,

B =
σ2
λ

(∑I
i=1

∑T
t=1 lnxi,t − T

∑I
i=1 µi + µ1IT

)
+ σ2

x(µλ + µ1)

(σ2
λ(IT + 1) + σ2

x)σ2
x

, and

K =
−(σ2

λ(IT + 1))(
∑I
i=1

∑T
t=1 lnxi,t)

2 − (σ2
λ(IT + 1))

[
T
∑I
i=1 µi + µ1

]2
(σ2
λ(IT + 1) + σ2

x)σ2
x(IT + 1)

+
2(σ2

λ(IT + 1))(
∑I
i=1

∑T
t=1 lnxi,t)(T

∑I
i=1 µi + µ1)

(σ2
λ(IT + 1) + σ2

x)σ2
x(IT + 1)

+

(∑I
i=1

∑T
t=1(lnxi,t)

2
)(
σ2
λ(IT + 1)2 + σ2

x(IT + 1)
)

(σ2
λ(IT + 1) + σ2

x)σ2
x(IT + 1)

+

(∑I
i=1(µi

∑T
t=1 lnxi,t)

)(
− 2σ2

λ(IT + 1)2 − 2σ2
x(IT + 1)

)
(σ2
λ(IT + 1) + σ2

x)σ2
x(IT + 1)

+

(
T
∑I
i=1 µ

2
i + µ2

1

)(
σ2
λ(IT + 1)2 + σ2

x(IT + 1)
)

(σ2
λ(IT + 1) + σ2

x)σ2
x(IT + 1)

−
2σ2

xµλ(IT + 1)
(∑I

i=1

∑T
t=1 lnxi,t

)
(σ2
λ(IT + 1) + σ2

x)σ2
x(IT + 1)

+
2σ2

xµλ(IT + 1)
(
T
∑I
i=1 µi + µ1

)
+ σ2

x(IT + 1)2µ2
λ

(σ2
λ(IT + 1) + σ2

x)σ2
x(IT + 1)

. (3.12)



10 Thai J. Math. (Special Issue, 2016)/ T. Pongsart et al.

We continue from (3.6) by substituting (3.7) back into the equation to obtain

fX1,T+1| ~X(x1,T+1|~x)

=
1√
2π
× e
− 1

2

(
IT+1

σ2
λ
(IT+1)+σ2x

[(∑I
i=1

∑T
t=1 ln xi,t+ln x1,T+1

)
−
(
T

∑I
i=1 µi+µ1

)
IT+1 −µλ

]2)

× e
− 1

2σ2x

[
−
([∑I

i=1
∑T
t=1 ln xi,t+ln x1,T+1

]
−
[
T

∑I
i=1 µi+µ1

])2
IT+1

]
× e

− 1
2σ2x

[ (∑I
i=1

∑T
t=1(ln xi,t)

2+(ln x1,T+1)2
)
−2
(∑I

i=1(µi
∑T
t=1 ln xi,t)+(ln x1,T+1·µ1)

)]
× e

− 1
2σ2x

[
T

∑I
i=1 µ

2
i+µ

2
1

]
× C1σλ

x1,T+1(
∏I
i=1

∏T
t=1 xi,t)(σx)IT (2π)

IT+1
2
√
IT+1

√
σ2
λ
(IT+1)

σ2x
+1

.

(3.13)

By setting a constant:

C2 =
C1σλ

(
∏I
i=1

∏T
t=1 xi,t)(σx)IT (2π)

IT+1
2

√
IT + 1

√
σ2
λ(IT+1)

σ2
x

+ 1
,

then we substitute the constant back into (3.13), and after extracting and grouping
the terms containing (lnx1,T+1)2 and lnx1,T+1 in this equation, we obtain the
result as presented in (3.11).

Step 3. Now we prove the Theorem 3.1. By applying the square operation:

e−
1
2

[
Ax2−2x+K

]
= e−

1
2

[
K−B2

A

]
× e
− 1

2

[(x−B
A

)2
1
A

]
,

into (3.11) then we have

fX1,T+1| ~X(x1,T+1|~x) =
C2

x1,T+1
e
− 1

2

[( ln x1,T+1−
B
A

)2
1
A

]
× e−

1
2

[
K−B2

A

]
. (3.14)

We observe that 1
x1,T+1

e
− 1

2

[( ln x1,T+1−
B
A

)2
1
A

]
is the kernel of lognormal distribution.

Therefore, it can be concluded that X1,T+1| ~X = ~x ∼ LN(µ1,T+1, σ
2
1,T+1) where

µ1,T+1 = B
A and σ2

1,T+1 = 1
A . Thus

E[X1,T+1| ~X = ~x] = eµ1,T+1+
σ21,T+1

2

= e

[σ2λ(∑I
i=1

∑T
t=1 ln xi,t−T

∑I
i=1 µi+µ1IT

)
+σ2x(µλ+µ1)

σ2x+σ2
λ
IT

]
× e
[(σ2λ(IT+1)+σ2x

)
σ2x

2(σ2x+σ2
λ
IT )

]
. (3.15)

This concludes the proof.
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3.2 Bayesian Premiums with Normal Claim Amounts

In this subsection, we consider the case in which the risks in a portfolio are
homogeneous, i.e., each individual’s claim amounts have the same mean and vari-
ance, and the claims of each individual in the group policy are normally distributed
with mean (µ+ λ) and variance σ2

x. More precisely, we make the assumption
N1. the random variables Xj,t|λ are normally distributed, i.e.,

Xj,t|λ ∼ N(µ+ λ, σ2
x) for j = 1, 2, . . . , I, and t = 1, 2, . . . , T,

where µ is a constant which is used for all individuals and needs to be chosen. We
assume the common effect λ satisfies assumption L2. In this case, we can write
the Bayesian premium in the more compact form of the credibility formula. That
is, we have the following theorem.

Theorem 3.2. Suppose the random variable Λ and the random vector ~X satisfy
all assumptions as in Lemma 2.1. Assume further that Xj,t|λ and common effect
λ satisfy N1 and L2, respectively. Then the Bayesian premium can be written as

E[Xj,T+1| ~X = ~x] =
σ2
λIT

(∑I
i=1

∑T
t=1 xi,t

)
IT + σ2

x(µλ + µ)

σ2
λIT + σ2

x

= w1
¯̄X + (1− w1)(µλ + µ) (3.16)

for j = 1, 2, . . . , I, where w1 =
σ2
λIT

σ2
λIT+σ2

x
, and ¯̄X =

(∑I
i=1

∑T
t=1 xi,t

)
IT .

Proof. The proof for this theorem is similar that for Theorem (3.1). By just
substituting normal density for lognormal density in equation (3.2) and (3.3).
Thus continuing the proof in the same manner as in Theorem (3.1) one gets the
credibility formula (3.16)

4 Conclusions

This article proposes a model for claim dependence across insured individuals
by using the common effect (in the terminology of Yeo and Valdez, 2006[5]). This
model is built within the framework for calculating the Bayesian premium. We
are able to derive an explicit form of the Bayesian premium in the case where
the common effect follows normal distribution and claim amounts are lognormally
distributed. Moreover, the Bayesian premium can be expressed in the credibility
form when claim amounts follow normal distribution.

It is worth mentioning that the Bayesian premium with lognormal claims (see,
assumption L1) needs to choose the value µj that depend on individual j. To ob-
tain a suitable value is still an interesting problem needing further investigation.
However, we can use claims experience including other factors from their portfolios
to justify the appropriacy of this value. Moreover, the modeling claim dependence



12 Thai J. Math. (Special Issue, 2016)/ T. Pongsart et al.

using common effect in the proposed model requires distribution formulas for both
risks and common effect which could lead to a cumbersome process for obtaining
the required premiums. One can conduct further investigations by omitting the
form for distributions and using other methodologies such as the means of the pro-
jection method involving significant constraints (analogous to Wen et al., 2009[7]).

In a future, follow-up work towards applications of the theoretical results in
this paper, the effect of prior distributions, as well as the sampling models should
be addressed, when real data are available. This is a mandate to make sure data fit
well the model, and robustness of prior models are checked. For these purposes,
the Bayesian model checking procedures outlined in Chapter 6 of the Text by
Gelman et al. (2014)[8], could be used
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