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EDITORIAL

This special issue is devoted to some research in Applied Econometrics
using exclusively the Bayesian approach to statistical inference. This ap-
proach has become more and more popular in view of the computational
device known as MCMC (Markov Chain Monte Carlo). Rather than sum-
marizing the essentials of results presented in the issue, we choose to elabo-
rate a bit, for the benefit of a mathematical audience, on two fundamental
and useful questions in applying Bayesian statistics.

(i) How to carry out a Bayesian data analysis?

Fortunately, we have a answer handy! Thanks to the prestigeous Text

Bayesian Data Analysis

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari,
and D. B. Rubin

Chapman and Hall/CRC Press (Third Edition), 2014

which should be our best recommended research (and teaching) material to
those who wish to use Bayesian statistics as a tool in uncertainty analysis.

The basic steps to follow in order to conduct a meaningful Bayesian
data analysis are spelled out in complete details in this Text. And here
they are.

Step 1: Setting up a full probability model (consisting of a sampling
model and a prior model). Of course the model should be guided by the
problem under investigation.

Step 2: Conditioning on observed data (which consists essentially of
deriving the posterior distribution on which inference will be based).

Step 3: Model checking. This is a must step! The results obtained
at the end of Step 2 are not “final” yet until a final check is carried out.
Since all results depend upon both the suggested sampling model as well as
the subjective prior distribution (on the parameter space), these ingredients
need to be somewhat validated: For the sampling model, a kind of goodness
of fit is required, whereas for the prior distribution, a robust analysis is
necessary.

With respect to model checking (see Chaper 6 of the above Text), it
is interesting to observe that, while the analysis is completely within the
framewaork (and spirit) of Bayesian statistics, the model checking is for-
mulated as a “Fisher- Like” Null Hypothesis Significance Test where the
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“inference engine” (i.e., the way to jump from data to conclusions) is based
on the Fisher’s p-value (!) which was avoided in the Bayesian approach to
statistics, in the first place, since a p-value only provides a probability of
the data given the hypothesis, P (D|H), rather the desired P (H|D) which
should be ”more logical” to infer about the hypothesis H.

(ii) How to justify the Bayesian approach to statistics?

When we decide to model the epistemic uncertainty of a population
parameter by a (subjective) probability measure and then proceed ahead
with it, we are in a quite “comfortable” situation since further inference is
based on (posterior) probability distributions. However, not all statisticians
are Bayesians! since lots of them are not comfortable with their own or
others’ prior distributions. Thus, the best possible way to “justify” the
Bayesian approach is to ask “Is there some way to justify, in some cases,
the legitimacy of modeling epistemic uncertainty by probability measures?”
For this, we reproduce the famous theorem due to B. De Finetti.

De Finetti Representation Theorem

If Xn, n ≥ 1, is an exchangeable (infinite) sequence of random variables,
then there exist:

(i) a parametric model f(x|θ), labeled by some parameter θ ∈ Θ,
(ii) a probability distribution F on Θ
such that the joint density of (X1, X2, ..., Xn) is given as

f(x1, x2, ..., xn) =

∫
Θ

n∏
i=1

f(xi|θ)dF (θ)

meaning that, any finite subset of the exchangeable sequence is a random
sample of some model f(x|θ) and there exists a prior distribution F on Θ
which describes the initial information about the parameter which labels
the statistical model.

This representation theorem brings out the fact that if observations
are exchangeable, then they must indeed be a random sample from some
model and there must exist a prior probability distribution for θ so that
it is legitimate to consider the parameter as a random variable (with this
distribution).

Note that the theorem is only an existence theorem: it does not specify
the model and it never specifies the desirable prior distribution!

To be “concrete”, we consider the simplest case, with an elementary
proof.
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Theorem. Let Xn, n ≥ 1 be a infinite sequence of binary (0-1-valued ) ex-
changeable random variables (defined on (Ω,A, P )). Then there exists a
distribution function F on [0, 1] such that the joint density of (X1, X2, ..., Xn)
has the form

P (X1 = x1, X2 = x2, ..., Xn = xn) =

∫ 1

0

n∏
i=1

θxi(1− θ)1−xidF (θ).

Proof. Let

f(x1, x2, ..., xn) = P (X1 = x1, X2 = x2, ..., Xn = xn)

for xi ∈ {0, 1}. Then, by exchangeablity, we have

P (X1 +X2 + ...+Xn =
n∑
i=1

xi = sn) =

(
n
sn

)
f(x1, x2, ..., xn)

where Sn = X1 +X2 + ...+Xn , and sn = x1 + x2 + ...+ xn ∈ {0, 1, ..., n}.
This is so, since, for example, for n = 3, and x1 = 1, x2 = 1, x3 = 0, we

have

(S3 = 2) =(X1 = 1, X2 = 1, X3 = 0) ∪ (X1 = 1, X2 = 0, X3 = 1)

∪ (X1 = 0, X2 = 1, X3 = 1)

in which, e.g.,

P (X1 = 1, X2 = 0, X3 = 1) = P (X1 = xσ(1), X2 = xσ(2), X = xσ(3))

with σ : {1, 2, 3} → {1, 3, 2}, and thus equal to f(1, 1, 0), recalling that
exchangeability means (X1, X2, X3) is equal in distribution to
(Xσ(1), Xσ(2), Xσ(3)), i.e.,

f(x1, x2, x3) = P (X1 = x1, X2 = x2, X3 = x3)

= f(X1 = xσ(1), X2 = xσ(2), X3 = xσ(3)).

Thus,

f(xσ(1), xσ(2), ..., xσ(n)) =

(
n
sn

)−1

P (Sn = sn).

For 0 ≤ sn ≤ n ≤ N (finite), consider SN ∈ {0, 1, ..., N}, so that

P (Sn = sn) = P ((Sn = sn) ∩ Ω) = P ((Sn = sn) ∩ (∪Nj=0(SN = j))
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N∑
j=0

P (Sn = sn|SN = j)P (SN = j).

But P (Sn = sn|SN = j) = 0 for
(a) j < sn, since SN =

∑N
i=1 xi, with xi ∈ {0, 1}, so that SN ≥ Sn for

N ≥ n.
(b) j > N − (n− sn), since (n− sn) is the number of i such that xi = 0

in sn =
∑n

i=1 xi, so that N − (n − sn) is the maximum number of 1′s in

SN = sn +
∑N

i=n+1 xi.
Thus (taking also exchangeability into account), we have

P (Sn = sn) =

N−(n−sn)∑
j=sn

P (Sn = sn|SN = j)P (SN = j).

Now observe that

P (Sn = sn|SN = j) =

(
j
sn

)(
N − j
n− sn

)
(
N
n

)
which is the hypergeometric distribution with parameters (N, j, n). Thus,

P (Sn = sn) =

N−(n−sn)∑
j=sn

(
j
sn

)(
N − j
n− sn

)
(
N
n

) P (SN = j)

and hence

f(xσ(1), xσ(2), ..., xσ(n)) =

(
n
sn

)−1 N−(n−sn)∑
j=sn

(
j
sn

)(
N − j
n− sn

)
(
N
n

) P (SN = j).

If we use the notation (M)m = M !
(M−m)! , then

f(xσ(1), xσ(2), ..., xσ(n)) =

(
n
sn

)−1 N−(n−sn)∑
j=sn

(
j
sn

)(
N − j
n− sn

)
(
N
n

) P (SN = j)
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=

N−(n−sn)∑
j=sn

(j)sn(N − j)n−sn
(N)n

P (SN = j).

Define the distribution function on [0, 1] by

FN (.) : [0, 1]→ [0, 1], FN (θ) =
∑

{j: j
N
≤θ}

P (SN = j),

i.e., FN (.) is a step function with jump of size P (SN = j), at θ = j
N ,

j = 0, 1, ..., N .
Then, by writing j = θN , N − j = (1− θ)N , we have,

N−(n−sn)∑
j=sn

(j)sn(N − j)n−sn
(N)n

P (SN = j) =

∫ 1

0

(θN)sn((1− θ)N)n−sn
(N)n

dFN (θ).

Since this is true for any N , we should let N →∞! Now, as N →∞,

(θN)sn((1− θ)N)n−sn
(N)n

→ θsn(1− θ)n−sn =

n∏
i=1

θxi(1− θ)1−xi

uniformly in θ (using the fact that hypergeometric distribution is approxi-
mated by binomial distribution).

Finally, FN (.), N ≥ 1, is a sequence of distribution functions, and as
such, has a convergent subsequence FNk

, k = 1, 2, ..., converging to some
distribution function F , i.e.,

lim
k→∞

FNk
(θ) = F (θ)

by Helly’s theorem In summary,

f(x1, x2, ..., xn) =

∫ 1

0

n∏
i=1

θxi(1− θ)1−xidF (θ).

Remark The general De Finetti’s theorem is this. If (Xn, n ≥ 1) is ex-
changeable under P , then there exists a probability measure Q on the space
of all distribution functions F on R, such that the joint distribution of
(X1, X2, ..., Xn) has the form∫

F

n∏
i=1

F (Xi)dQ(F )
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